
[bookmark: _43y57rh5xsld]Supplementary Materials
[bookmark: _h5er7ou85nbz]S1. Supplementary Methods
[bookmark: _u3khx7islcke]S1.1 Data & Preprocessing
We analyzed a corpus of 1,117 de-identified obstetric discharge notes from a tertiary women’s hospital in Brazil. A comprehensive statistical summary of the corpus is provided in Table S1. The distribution of note lengths is detailed in Figure S1, with notes containing a median of 222 tokens (IQR 178–292) and an average of 251.1 ± 124.8 tokens.
For the purpose of this descriptive analysis, tokenization was performed using a regular expression (\w+) to count sequences of alphanumeric characters, with Unicode support. This method effectively defines a token as a word or number, while excluding punctuation.
A critical preprocessing step involved the normalization of the ICD-10 codes to ensure label consistency. This process included: (i) converting all codes to uppercase; (ii) standardizing separators by replacing hyphens and commas with periods; and The resulting frequency distribution of the top 20 most common 3-character ICD-10 categories is shown in Figure S2.

	Figure S1. Distribution of note lengths (tokens per discharge note).
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	Figure S2. Frequency distribution of the top 20 Three-character category ICD-10
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	[bookmark: _2anexsenwv9k]Table S1. Corpus summary.

	Metric
	Value

	Notes (n)
	1117

	Tokens per note — mean ± SD
	251.1 ± 124.8

	Tokens per note — median [IQR] ]
	222 [178–292]

	Codes per note (leaf) — mean ± SD
	2.58 ± 1.39

	Codes per note (leaf) — median [IQR]
	2 [2–3]

	Codes per note (3-character) — mean ± SD
	2.58 ± 1.38

	Codes per note (3-character) — median [IQR]
	2 [2–3]

	Distinct 3-character categories
	261

	Distinct leaf codes
	450

	Top-10 coverage (3-character categories)
	58.30%

	Top-20 coverage (3-character categories)
	73.09%

	% of 3-character categories with support <5
	74.33%

	% of 3-character categories with support <10
	86.97%



[bookmark: _fxkzpsdybnlg]S1.2 LLM Inference Details


All systems produced JSON-only outputs validated with a Pydantic schema and ICD-10 regex normalization. Portuguese prompts were mirrored with faithful English translations in the translation arm. We evaluated GPT-4o (gpt-4o-2024-08-06), GPT-4o-mini (gpt-4o-mini-2024-07-18), a fine-tuned GPT-4o-mini (ft:gpt-4o-mini-2024-07-18:personal:experimento-cid:BczZ76m5), Sabiá-3.1 (sabia-3.1, OpenAI-compatible endpoint), DeepSeek-chat (deepseek-chat), and Gemini 1.5 Flash (gemini-1.5-flash). Per the provider’s documentation, deepseek-chat maps to DeepSeek-V3-0324. UTC inference dates for each model are reported in Table S2.

	[bookmark: _vqv5wwk3on36]Table S2. ICD-10 Coding Performance by Model — Portuguese, Three-Character Category Level.

	Model (exact ID)
	Provider
	API / Endpoint
	Inference date (UTC)
	Output constraint

	gpt-4o-2024-08-06
	OpenAI
	Chat Completions
	June 10–11, 2025
	JSON schema (Pydantic)

	gpt-4o-mini-2024-07-18
	OpenAI
	Chat Completions
	June 10–11, 2025
	JSON schema (Pydantic)

	ft:gpt-4o-mini-2024-07-18:personal:experimento-cid:BczZ76m5
	OpenAI
	Chat Completions (FT)
	June 10–11, 2025
	JSON schema (Pydantic)

	sabia-3.1
	Maritalk AI
	OpenAI-compatible
	June 10–11, 2025
	JSON / regex

	deepseek-chat (DeepSeek-V3-0324)
	DeepSeek
	OpenAI-compatible
	June 10–11, 2025
	JSON / regex

	gemini-1.5-flash
	Google
	Gemini API
	June 10–11, 2025
	JSON (constrained)



[bookmark: _cfc7niioh8n7]S1.3 Fine-tuning of the specialist variant
[bookmark: _x0vjgvfyiwxg]S1.3.1 Objective
We fine-tuned gpt-4o-mini-2024-07-18 to emit JSON-only ICD-10 codes from Portuguese discharge notes, using a description→single-code mapping derived from an ICD-10 subcategory catalogue (S1.3.4). This tests whether lightweight specialization on single-label mappings transfers to multi-label coding of free-text notes.
S1.3.2 Configuration and metadata.
The fine-tuning configuration and outputs are summarized in Table S3. 

	[bookmark: _5whz2zmaw5fm]Table S3. Fine-tuning metadata (job snapshot)

	Field
	Value

	Training method
	Supervised

	Job ID
	ftjob-wqj9laPJ3wHdBc75fVmpGEgU

	Output model
	ft:gpt-4o-mini-2024-07-18:personal:experimento-cid:BczZ76m5

	Status
	Succeeded

	Base model
	gpt-4o-mini-2024-07-18

	Created at
	May 30, 2025, 15:39

	Epochs
	2

	Batch size
	16

	LR multiplier
	1.8

	Seed
	1

	Trained tokens
	2,325,050

	Training file
	CID_10_subcategorias_toolcall.jsonl

	Validation file
	Not provided

	Checkpoints
	…BczZ7fOS:ckpt-step-779; final ft:gpt-4o-mini-2024-07-18:personal:experimento-cid:BczZ76m5

	Final training loss
	0.025

	Safety audit
	13/13 checks passed


S1.3.3 Training telemetry (step log)
The step log records 1,557 steps. Training loss decreases from 3.303 (step 1) to 0.025 (step 1,557), with usual mini-batch variability. The accuracy curve rises throughout training and approaches ≈0.99 at the end (see Figure S3).
	[bookmark: _dojt55rgjzsx]Figure S3. Fine-tuning telemetry for the specialist variant (gpt-4o-mini-2024-07-18; output ft:gpt-4o-mini-2024-07-18:personal:experimento-cid:BczZ76m5).
[bookmark: _g8870dupi1h5]Top: training loss (log scale) across 1,557 optimization steps; bottom: token-level accuracy on training batches. Loss decreased from ~3.30 to 0.025, while accuracy rose toward ~0.99. No validation curve was logged; the final checkpoint was used for evaluation. Hyperparameters: 2 epochs, batch size 16, LR multiplier 1.8, seed 1.
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S1.3.4 Training data specification
The ICD-10 subcategory pairs used to construct the description→code mapping stored in Each are of the type: {"descrição": "<Portuguese ICD-10 subcategory description>", "codigo": "<ICD-10 code>"}
We counted 12,451 description–code pairs spanning A00–Z99; codes follow the pattern (e.g., O24.9).
S1.3.5 Safety and governance
A safety audit for the fine-tuned endpoint indicates 13/13 checks passed across policy categories. 
S1.3.6 Limitations specific to this fine-tune
We did not configure a validation split or an early-stopping rule; training ran for two epochs and the final checkpoint (ft:gpt-4o-mini-2024-07-18:personal:experimento-cid:BczZ76m5) was used.
The step log records batch-level loss and token accuracy only; optimizer-level diagnostics (e.g., gradients, learning-rate schedule) are not available, so we restrict interpretation to the overall downward trend in loss and the accuracy plateau.
Supervision used single-label description→code pairs; transfer to multi-label coding of free-text discharge notes may be limited, so we treat results as exploratory.
[bookmark: _qufmsautsl1p]S1.4 Prompts
[bookmark: _ttoyecfe3fth]This section provides the verbatim prompts used for the Large Language Models. The Portuguese prompt was used for the main analysis, and a faithful English translation was used for the translation arm of the study. All models were instructed to return a structured JSON output.
[bookmark: _7i5n6e2ab2ln]S1.3.1 Portuguese Prompt (Original)

{ 
"role": "system",
"content": """Você é um médico especializado na determinação de códigos CID-10 (Classificação Internacional de Doenças) que atua em um hospital de saúde materna e neonatal. Ao receber uma nota clínica, identifique exclusivamente os códigos CID-10 mais associados àquela nota, sem qualquer informação ou explicação adicional. Utilize apenas diretrizes médicas reconhecidas (OMS, CDC, FDA, NICE). 
Leia atentamente a nota clínica abaixo e extraia:
- 1 CID “principal” (motivo principal de internação/alta);
- 1 CID “secundário” (complicações ou comorbidades relevantes);
- Vários CIDs “terciários” (demais condições associadas).
 Sua resposta deve ser UM JSON VÁLIDO no formato de exemplo: 

{ "cids": [ { "cid": "O80", "tipo": "principal" }, { "cid": "O99.8", "tipo": "secundário" }, { "cid": "Z39.0", "tipo": "terciários" }, { "cid": "F53.0", "tipo": "terciários" } ] }

Nada além desse JSON — sem comentários ou campos extras. """ },
 {
 "role": "user", "content": "{clinical_note_text}" 
}

[bookmark: _e2w4nxbqeo11]S1.3.2 English Prompt

{ 
"role": "system",
"content": """You are a physician specializing in assigning ICD-10 codes (International Classification of Diseases) working in a maternal and neonatal health hospital. Upon receiving a clinical note, identify only the ICD-10 codes most relevant to that note, without any explanations or additional information. Use only recognized medical guidelines such as WHO, CDC, FDA, or NICE. 
Read the clinical note below and extract. 
- 1 primary ICD-10 code;
- 1 secondary ICD-10 code;
- several tertiary ICD-10 codes.
 Return a VALID JSON in this format (no extra fields): 

{ "icds": [ { "icd": "O80", "tipo": "primary" }, { "icd": "O99.8", "tipo": "secundary" }, { "icd": "Z39.0", "tipo": "terciary" } ] }
 {
 "role": "user", "content": "{clinical_note_text}" 
}

[bookmark: _grclx6es80iq]S1.5 Human Validation Protocol
To assess the clinical validity of the model-proposed codes, we conducted a human validation on a subset of 315 notes. The evaluator was an experienced, board-certified obstetrician-gynecologist with residency training in Gynecology, research presentations at national and international obstetrics conferences, and ongoing subspecialty training in Gynecologic and Obstetric Ultrasound. The evaluator was blinded to the source of the codes (i.e., whether they came from the gold standard or a specific model).
For each note, the clinician was presented with the de-identified text alongside a unified list of all candidate codes (the union of gold-standard and all model-proposed codes for that note). The codes were presented in a randomized order. The reviewer's task was to mark each candidate code as "appropriate" or "not appropriate" based on whether there was sufficient evidence within the clinical note to justify its assignment. Multiple "appropriate" selections were permitted per note. A screenshot of the validation interface is provided in Figure S3.


	Figure S4 — Interface used for human validation. For each obstetric discharge note, the evaluator (a board-certified obstetrician) viewed the note in a de-identified format, accompanied by a list of candidate codes (mixing gold-standard predictions and outputs from all models, presented in random order and with no source identification). The reviewer marked each code as either Appropriate or Not appropriate.
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[bookmark: _51hlh09ntxln]

[bookmark: _y72b94uavf0c]S2 Supplementary Results
[bookmark: _cfilqasi8e2g]S2.1 Descriptive model statistics
Table S4 summarizes per-model output characteristics across the 1,117 discharge notes in our test set. For each model, we report the mean and median number of predictions per note, the total number of distinct ICD-10 leaf codes and three-character categories predicted, and the proportion of all predicted categories accounted for by the 10 and 20 most frequent categories. These descriptive statistics provide a high-level view of each model’s coding behavior and diversity of predictions.

	[bookmark: _u0pc6l4o6kvm]Table S4 — Per-model output summary.
[bookmark: _ukri681ebu54]For each model: notes (n), notes with ≥1 valid prediction (%), predictions per note (mean±SD; median [IQR]), distinct leaf codes (A00–Z99 with optional subcategory), distinct 3-character categories, and coverage of the top-10/20 categories among all predicted categories.

	Model
	Predictions per note — mean ± SD
	Predictions per note — median [IQR]
	Distinct leaf codes
	Distinct 3-char categories
	Top-10 category coverage
	Top-20 category coverage

	Sabiá-3.1 
	6.24 ± 1.89
	6 [5–7]
	977
	481
	40.74%
	55.34%

	Deep-Seek V-3 
	5.53 ± 1.35
	5 [5–6]
	622
	349
	46.22%
	66.14%

	Fine-Tuned Model 
	5.68 ± 2.06
	5 [5–6]
	523
	241
	55.43%
	75.54%

	GPT-4o-Mini 
	5.26 ± 0.99
	5 [5–6]
	488
	298
	56.85%
	73.72%

	GPT- 4o 
	4.42 ± 1.36
	4 [3–5]
	622
	352
	40.23%
	61.34%

	Gemini 1.5 Flash
	4.93 ± 1.34
	5 [4–6]
	629
	371
	45.70%
	67.70%



[bookmark: _gyev6f8fi55i]S2.2 Bootstrap Confidence Intervals — Graphical Analysis
We performed bootstrap resampling (n = 10,000 note-level resamples) to compute the empirical distribution of micro- and macro-precision, recall, and F1 scores, for both Leaf level (full ICD-10 codes) and Three-character level categories. Each histogram shows the bootstrap distribution for a given metric, with vertical lines indicating the point estimate (red) and the 95% percentile confidence interval bounds (green).

	Figure S5 — Micro Precision (Leaf level)
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	Figure S6 — Micro Precision (Three-character level)
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	Figure S7 — Micro Precision (Three-character level)
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	Figure S8 — Micro Recall (Leaf level)
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	Figure S9 — Micro Recall (Three-character level)
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	Figure S10 — Micro F1 (Leaf level)
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	Figure S11 — Micro F1 (Three-character level)

[image: ]



	Figure S12 — Macro Precision (Leaf level)
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	Figure S13 — Macro Precision (Three-character level)
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	Figure S14 — Macro Recall (Leaf level)
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	Figure S15 — Macro Recall (Three-character level)
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	Figure S16 — Macro F1 (Leaf level)
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	Figure S17 — Macro F1 (Three-character level)
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[bookmark: _tp033qcsjxki]S2.3 Machine-translation engine selection (PT→EN)

We compared three translation engines, Google Translate, GPT-4o-mini, and Sabiá-3.1 and the ICD-10 pipeline identical (JSON-only prompt, same schema/regex validator). Among the three, Google Translate yielded the highest scores (e.g., leaf micro-F1 ≈ 0.127 vs 0.124 with GPT-4o-mini and 0.118 with Sabiá 3.1; 3-character micro-F1 ≈ 0.311 vs 0.303–0.306 for the others), with similarly small advantages on macro-F1. We also tested configurations that preserved versus expanded Portuguese clinical abbreviations and acronyms, observing no meaningful impact on coding performance. Differences across engines were modest, but to standardize the English-input arm we adopted Google Translate for subsequent tests.


	[bookmark: _hhf4ial2synk]Table S5. Machine-translation ablation with Sabiá-3.1 as the coding model. Four input conditions are compared: native Portuguese (shown elsewhere), Google Translate, GPT-4o-mini translation, and Sabiá 3.1 translation. Metrics are reported at leaf and 3-character levels (micro/macro Precision, Recall, F1). 

	Level
	Translation
	Micro
	Macro

	
	
	Precision
	Recall
	F1-Score
	Precision
	Recall
	F1-Score

	Leaf Level
	Google Translate API
	0.0935
	0.1968
	0.1268
	0.0935
	0.2095
	0.2897

	
	GPT-4o-mini API
	0.0899
	0.2002
	0.1240
	0.0913
	0.2082
	0.2831

	
	Sabia 3.1 API
	0.0857
	0.1906
	0.1182
	0.0865
	0.2028
	0.2765

	Three-character
	Google Translate API
	0.2292
	0.4821
	0.3106
	0.2286
	0.5183
	0.3810

	
	GPT-4o-mini API
	0,2191
	0.4883
	0.3025
	0.2220
	0.5166
	0.3699

	
	Sabia 3.1 API
	0,2216
	0.4928
	0.3057
	0.2235
	0.5219
	0.3709



[bookmark: _2h3e5istt7bf]S2.3 Hierarchical Coding Performance
In addition to computing set-level metrics on the flattened outputs, we evaluated the correctness of codes in each semantic role specified by the model’s instruction: ‘primary’ (main reason for admission/discharge) and ‘secondary’ (relevant comorbidities/complications). Precision was calculated separately for each role, at both the three-character and leaf levels. This role-specific evaluation is exploratory, as the reference standard does not explicitly assign gold codes to these roles.
When considering role-specific precision, GPT-4o-mini achieved the highest primary precision at the three-character level (0.6625), while GPT-4o obtained the highest secondary precision (0.3115). Leaf-level precision was consistently lower across roles (≤0.2426). These results indicate that models tend to assign more correct codes to the primary role than to secondary roles, which may reflect both model limitations and the lack of explicit role mapping in the gold standard.
Role-specific evaluation suggests that LLMs are better at assigning correct codes to the primary role than to the secondary role. This may be due to the clearer signal for the main diagnosis in discharge notes, compared to secondary diagnoses which often require nuanced interpretation of comorbidities. However, since our gold standard lacks explicit role labels, these results should be interpreted as indicative rather than definitive

	Table S6. Hierarchical Coding Performance — Precision for Primary and Secondary Codes.
Precision of model-assigned primary and secondary codes against the gold standard. The analysis evaluates how accurately models identify the hierarchical role of a code, a distinct task from a code's mere presence in the note. Note that for some models, the precision in identifying the primary code (e.g., 0.66 for GPT-4o-mini) is substantially higher than their overall score for code extraction, highlighting a potential strength in identifying the main diagnosis.

	Model
	Primary
	Secondary

	
	Three-Character
	Leaf Level.
	Three-Character
	Leaf Level.

	DeepSeek-V3
	0.5237
	0.2426
	0.3008
	0.1119

	GPT-4o
	0.5255
	0.1629
	0.3115
	0.1235

	GPT-4o-mini
	0.6625
	0.2301
	0.2793
	0.1262

	Sabiá-3.1
	0.5157
	0.1970
	0.2963
	0.0895

	Gemini-1.5 Flash
	0.2927
	0.0618
	0.2247
	0.0555

	Fine-Tuned GPT-4o-mini
	0.4575
	0.1173
	0.1656
	0.0295
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