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1 Note S1: Enrichment analysis of method rankings

To evaluate whether specific groups are significantly enriched in the top or bottom n rankings,

we performed an enrichment analysis using a one-sided hypergeometric test. The P -value,

defined as the probability of observing at least k methods from a specific ranking category

within the selected rank cutoff, is calculated as:

P (X ≥ k) =

min(n,K)∑
i=k

(
K
i

)(
N−K
n−i

)(
N
n

) (1)

where N is the total number of evaluated methods, K is the total number of methods in the

specific category, n is the cutoff size (e.g., top 10), and k is the observed number of methods

from that group within the cutoff. Statistical significance is indicated by asterisks (∗ : P < 0.05,

∗∗ : P < 0.01, ∗ ∗ ∗ : P < 0.001).

2 Note S2: Implementation of cell-specific latent time

for RNA velocity methods

In this section, we describe the implementation details for obtaining cell-specific latent time

(CLT) for each RNA velocity method, tailored to its temporal modeling strategy. As introduced

in the manuscript, we categorized the 25 RNA velocity methods into four groups based on how

they model temporal information. Specifically, Group 1 methods explicitly estimate a unified

CLT, whereas Group 2 methods estimate gene-specific latent times. Group 3 methods either

infer CLT indirectly through a graph-based approach or do not provide temporal outputs at

all. Lastly, the Group 4 method (SDEvelo) estimates CLT using an SDE model combined with

optimal transport (OT) alignment.

In this section, we describe the implementation details used to obtain cell-specific latent

time (CLT) for each RNA velocity method according to its temporal modeling strategy. As

introduced in the manuscript, we categorized the 25 RNA velocity methods into four groups

based on how they model temporal information. Specifically, Group 1 methods explicitly

estimate a unified CLT, whereas Group 2 methods estimate gene-specific latent times. Group 3

methods either infer CLT indirectly through a graph-based approach or do not provide temporal

outputs at all. Lastly, the Group 4 method (SDEvelo) estimates CLT using an SDE model

combined with optimal transport (OT) alignment.

We obtained CLT estimates for each group as follows:

• Groups 1 and 4: We directly used the CLT estimates generated simultaneously with

the velocity estimates.

• Group 2: We followed the original implementations and applied scvelo.tl.latent time()

to obtain the CLT. This function heuristically aggregates gene-specific latent times by

assuming that early cells tend to be early across most genes, while terminal cells tend to

be late.
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• Group 3: For methods that provide their own CLT estimation procedures, we followed

their original implementations (detailed below). For the remaining Group 3 methods,

which do not produce native temporal outputs, we ensured a fair comparison by applying

scvelo.tl.velocity pseudotime(), following the approach used in scVelo (stc). This

function estimates CLT based on a graph constructed from the velocity outputs of the

corresponding methods.

Method-specific implementations for Group 3:

• cellDancer: Uses celldancer.pseudo time() following kinetic parameter estimation.

This function estimates CLT by simulating RNA velocity streamlines in low-dimensional

embeddings and ordering cells along dominant trajectories via graph-based time alignment.

• Dynamo (m1): Applies dynamo.ext.ddhodge() following velocity inference. This

function infers a single-cell potential, which serves as a proxy for CLT, by building a

velocity-informed diffusion graph and computing the scalar potential from the divergence

of the graph-based vector field via Hodge decomposition.

3 Note S3: Justification for additional tasks excluded

from the overall ranking

To provide a more systematic assessment, our benchmarking framework includes four additional

tasks: quantification stability, simulation experiments, multimodal integration, and computa-

tional scalability. However, these were excluded from the overall rankings to ensure a fair and

robust comparison focused on core performance. The specific rationale for excluding each of

these tasks is detailed below.

Quantification stability was evaluated separately, as quantification is an independent

upstream process whose variability could confound the direct assessment of the velocity

estimation methods themselves. Therefore, this metric mainly provides practical guidance for

real-world usage rather than serving as a measure of a model’s intrinsic modeling capacity

or biological interpretability. Simulation experiments were omitted due to the significant

discrepancy between synthetic and real-world datasets. Specifically, simulations tended to bias

results against deep learning (DL)-based methods while favoring those built on generative

assumptions similar to the simulation. Multimodal integration was excluded because it is

a specialized feature limited to a small subset of tools, making it unsuitable as a universal

metric. Finally, as computational scalability reflects technical capacity rather than biological

accuracy, we provide separate five-tier scalability tiers for cells and genes, respectively, to guide

researchers without conflating performance with resource requirements.

4 Note S4: Additional benchmarking metrics

Distance correlation

For each simulated dataset, ground-truth RNA velocity was available in gene space. However,

for methods that output only low-dimensional embedded velocities (e.g., VeloAE, scTour, and
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LatentVelo (std)), direct comparison with the high-dimensional ground truth is not feasible.

Distance correlation (dCor) [1, 2] was therefore used to quantify nonlinear associations between

inferred and true velocity structures based on pairwise cell–cell similarities. Formally,

dCor(Vtrue,Vinf) =

∑N
i,j=1 AijBij√(∑N

i,j=1A
2
ij

)(∑N
i,j=1B

2
ij

) , (2)

where A and B are double-centered pairwise Euclidean distance matrices of Vtrue and Vinf,

respectively:

Aij = aij − āi· − ā·j + ā··, Bij = bij − b̄i· − b̄·j + b̄··, (3)

with aij = ∥vtrue
i − vtrue

j ∥2 and bij = ∥vinf
i − vinf

j ∥2. Higher dCor values indicate stronger

nonlinear concordance between inferred and true velocity structures.

Pearson’s correlation

For each simulated dataset, Pearson’s correlation between true and inferred CLT values was used

to assess temporal accuracy. Higher correlation values indicate more accurate CLT inference.

5 Note S5: Computational environments

All analyses were performed on a Linux server running Ubuntu 22.04 LTS (Kernel 5.15),

equipped with Intel Xeon Platinum 8352V CPUs (128 threads), 1 TB of RAM, and a single

NVIDIA vGPU (32 GB of memory).

6 Note S6: Benchmarking datasets

Data 1

This dataset captures transcriptional dynamics in human bone marrow using single-cell RNA

sequencing [3]. It profiles key bone marrow cell populations and is designed to capture major

transitions in hematopoietic differentiation, including the progressive loss of cellular plasticity.

For the CBDir evaluation, directional correctness was assessed across established differentiation

trajectories: (Hematopoietic stem cells 1 → Hematopoietic stem cells 2), (Hematopoietic stem

cells 1 → Erythroids 1), and (Erythroids 1 → Erythroids 2). Three-fold cross-validation was

performed on this dataset.

Data 2

This dataset captures gene-regulatory dynamics in the developing human cerebral cortex using

single-cell multiomic profiling [4]. It integrates single-cell RNA-seq and ATAC-seq data from

primary cortical tissue collected at post-conceptional weeks 16, 20, 21, and 24, profiling major

neuronal and glial populations across key stages of corticogenesis. The data span continuous

differentiation trajectories from radial glia and intermediate progenitors to excitatory neurons

and interneurons, with well-characterized developmental markers. For the CBDir evaluation,
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directional correctness was assessed across established differentiation trajectories: (Cycling

progenitor cells → Radial glia / Astrocytes), (Cycling progenitor cells → Neuronal intermediate

progenitor cells / Excitatory neurons), (Neuronal intermediate progenitor cells / Excitatory

neurons → Upper-layer excitatory neurons), and (Upper-layer excitatory neurons → Deep-layer

excitatory neurons). Five-fold cross-validation was performed on this dataset.

Data 3

This dataset captures transcriptional dynamics in the developing dentate gyrus using droplet-

based single-cell RNA sequencing (10x Genomics Chromium) [5]. Cells were profiled at two

developmental time points, P12 and P35, capturing maturation of the granule cell lineage

as well as other differentiated cell populations within the developing tissue. For the CBDir

evaluation, directional correctness was assessed across the following differentiation trajectories:

(nIPC → Neuroblast), (Neuroblast → Granule immature), (Granule immature → Granule

mature), (Radial Glia-like → Astrocytes), and (OPC → OL). Two-fold cross-validation was

performed on this dataset.

Data 4

This dataset captures transcriptional dynamics during mouse gastrulation using single-cell

RNA sequencing and was specifically subset to the erythroid lineage [6]. It contains cells

collected at nine developmental time points between embryonic day 6.5 and day 8.5, providing

a focused view of erythroid differentiation within the broader gastrulation program. For the

CBDir evaluation, directional correctness was assessed across known differentiation trajectories:

(Blood progenitors 1 → Blood progenitors 2), (Blood progenitors 2 → Erythroid 1), (Erythroid

1 → Erythroid 2), and (Erythroid 2 → Erythroid 3). Three-fold cross-validation was performed

on this dataset.

Data 5

This dataset captures transcriptional dynamics in the developing pancreas using single-cell RNA

sequencing, focusing on epithelial cells and Ngn3–Venus fusion cells at embryonic day 15.5 [7].

It provides a snapshot of endocrine differentiation as progenitor cells within the pancreatic

epithelium progress toward four major endocrine fates: alpha, beta, delta, and epsilon cells.

For the CBDir evaluation, directional correctness was assessed across established differentiation

trajectories: (Ngn3 high EP → Pre-endocrine), (Pre-endocrine → Alpha), (Pre-endocrine →
Beta), (Pre-endocrine → Delta), and (Pre-endocrine → Epsilon). Three-fold cross-validation

was performed on this dataset.

Data 6

This dataset captures transcriptional dynamics in mouse intestinal organoids using single-cell

5-ethynyl uridine (EU)-labeled RNA sequencing (scEU-seq), which simultaneously quantifies

newly transcribed and pre-existing mRNAs [8]. For the CBDir evaluation, directional correctness

was assessed across known differentiation trajectories: (Stem cells → TA cells), (TA cells →
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Enterocytes), (Stem cells → Enteroendocrine progenitors), and (Enteroendocrine progenitors

→ Enteroendocrine cells). Three-fold cross-validation was performed on this dataset.

Data 7

This dataset profiles transcriptional dynamics in primary mouse cortical neurons using single-cell

metabolically labeled new RNA tagging sequencing (scNT-seq) [9]. Neurons were stimulated

with potassium chloride (KCl) and sampled at 0, 15, 30, 60, and 120 minutes. For the CBDir

evaluation, directional correctness was assessed across sequential time intervals: (0 → 15),

(15 → 30), (30 → 60), and (60 → 120). Three-fold cross-validation was performed on this

dataset.

Data 8

This dataset characterizes gene expression in fluorescence ubiquitination cell cycle indi-

cator (FUCCI) U2OS cells [10]. To establish discrete ground-truth temporal labels, the

continuous FUCCI pseudotime was discretized into five bins following the published tu-

torial: https://yoseflab.github.io/velovi_reproducibility/estimation_comparison/

fucci.html. Three-fold cross-validatio n was performed on this dataset.

Data 9

This dataset profiles the developing murine hindlimb across four embryonic time points: E11.5,

E13.5, E15.5, and E18.5 [11]. Data processing was performed using cellranger (v8.0.0) for

read alignment and velocyto (v0.17.17) for quantification of spliced and unspliced mRNA

abundances. Three-fold cross-validation was performed on this dataset.

Data 10

This dataset captures transcriptomic diversification and maturation in the mouse primary visual

cortex (V1) during postnatal development using droplet-based single-nucleus RNA sequencing.

Nuclear transcriptomes were profiled at six postnatal time points (P8, P14, P17, P21, P28,

and P38), spanning stages before, during, and after the critical period of ocular dominance

plasticity [12]. we focused on the Gluta NR subset, corresponding to glutamatergic neurons in

the non-responsive lineage. Five-fold cross-validation was performed on this dataset.

Data 11

This dataset captures the reprogramming of mouse embryonic fibroblasts (MEFs) into induced

endoderm progenitors (iEPs), with samples collected at eight time points [13]. Five-fold

cross-validation was performed on this dataset.

Data 12

This dataset profiles the reprogramming of MEFs into induced pluripotent stem cells (iPSCs)

under serum and 2i conditions, with samples collected at 39 time points over 18 days [14]. For
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the present analysis, only the serum condition was considered. Five-fold cross-validation was

performed on this dataset.

Data 13

This dataset consists of PBMCs from a 10X Genomics experiment containing 65,877 cells. It

profiles major immune cell types derived from hematopoietic stem cells in the bone marrow and

includes representatives of both myeloid and lymphoid lineages [15]. Five-fold cross-validation

was performed on this dataset.

Data 14 & 16

These two datasets consist of PBMCs from a healthy female donor aged 25, obtained by 10x

Genomics from AllCells. Data 14 [16] consists of 10,194 cells, and Data 16 [17] consists of

10,497 cells. Three-fold cross-validation was performed on both datasets.

Data 15 & 17

These two datasets consist of PBMCs from two different healthy donors. Data 15 [18] contains

8,381 cells, and Data 17 [19] contains 11,769 cells. Three-fold cross-validation was performed

on both datasets.

Data 18

This dataset contains joint single-nucleus ATAC-seq and gene expression profiles from embryonic

mouse brain at E18. It provides paired chromatin accessibility and transcriptional measurements

that capture cellular heterogeneity across major embryonic brain regions [20]. For the CBDir

evaluation, directional correctness was assessed across known differentiation trajectories: (RG,

Astro, OPC → IPC), (IPC → V-SVZ), (V-SVZ → Upper layer), and (Upper layer → Deeper

layer). Three-fold cross-validation was performed on this dataset.

Data 19

This dataset profiles human hematopoietic stem and progenitor cells (HSPCs) and their

early erythroid and myeloid progeny [21]. The original study used Cap Analysis of Gene

Expression, ChIP-seq for histone modifications, and Moloney leukemia virus integration site

mapping to characterize transcriptional activity and regulatory element usage during early

hematopoietic differentiation. These data capture promoter, enhancer, and super-enhancer

landscapes across multipotent stem cells and lineage-committed progenitors, providing a

detailed view of transcriptional states along the myeloid and erythroid lineages. For the CBDir

evaluation, directional correctness was assessed across established differentiation trajectories:

(HSC → MPP), (MPP → LMPP), (LMPP → GMP), (HSC → MEP), (MEP → Erythrocyte),

(MEP → Prog MK), and (Prog MK → Platelet). Three-fold cross-validation was performed on

this dataset.
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Data 20

This dataset contains joint chromatin accessibility and gene expression profiles from mouse skin

generated using the SHARE-seq protocol [22]. The original study produced large-scale single-

cell ATAC-seq and RNA measurements from adult skin to define cis-regulatory interactions and

chromatin domains enriched for lineage-determining genes. During hair follicle differentiation,

accessibility at these regulatory regions precedes gene activation, revealing chromatin priming

events associated with cell fate commitment. This dataset provides high-resolution multimodal

measurements that capture regulatory and transcriptional dynamics in a heterogeneous tissue.

For the CBDir evaluation, directional correctness was assessed across known differentiation

trajectories: (TAC-1 → TAC-2), (TAC-2 → Hair shaft cuticle/cortex), (TAC-2 → IRS), and

(TAC-2 → Medulla). Three-fold cross-validation was performed on this dataset.

Data 21

This dataset utilizes scEU-seq to simultaneously quantify metabolically labeled and pre-existing

unlabeled transcripts in mouse intestinal stem cells, comprising samples from both pulse

and chase experiments [8]. For this study, data from the pulse experiment were selected

and processed following the guidelines provided at: https://yoseflab.github.io/velovi_

reproducibility/estimation_comparison/sceu.html. To establish discrete ground-truth

temporal labels, continuous cell cycle scores were discretized into five bins. Three-fold cross-

validation was performed on this dataset.

Data 22

This dataset profiles the dynamics of human hematopoiesis using scNT-seq to capture metabolic

labeling information [23]. For the CBDir evaluation, directional correctness was assessed across

established differentiation trajectories: (HSC → MEP-like), (HSC → GMP-like), (MEP-like →
Meg), (MEP-like → Ery), (MEP-like → Bas), (GMP-like → Bas), (GMP-like → Mon), and

(GMP-like → Neu). Three-fold cross-validation was performed on this dataset.

Data 23 & 24

These two datasets were generated using ODE-based dynamics with scvelo.datasets.simulation()

in scVelo [24]. Each dataset contains 1,500 cells, with Data 23 comprising 100 genes and Data

24 comprising 500 genes. Transcription, splicing, and degradation rates were fixed at α = 5,

β = 0.3, and γ = 0.5, respectively. Three-fold cross-validation was performed on both datasets.

Data 25 & 26

These two datasets were generated using SDE-based dynamics with sdevelo.SimData() in

SDEvelo [25]. Each dataset contains 1,600 cells, with Data 25 comprising 100 genes and Data 26

comprising 500 genes. The number of trajectories K was fixed at 8. Three-fold cross-validation

was performed on both datasets.

8

https://yoseflab.github.io/velovi_reproducibility/estimation_comparison/sceu.html
https://yoseflab.github.io/velovi_reproducibility/estimation_comparison/sceu.html


Data 27 & 28

These two datasets were generated using dyngen, a multimodal simulation framework that

models gene regulatory networks and transcriptional kinetics. Each dataset contains 1,500 cells

with 100 target genes, 100 housekeeping genes, and a set of transcription factors determined

by the specified trajectory backbone. Data 27 uses a linear backbone, whereas Data 28 uses

a bifurcating backbone. Key simulation parameters were tau = 0.01, census interval = 1,

and num simulations = 100. Three-fold cross-validation was performed on both datasets.

Data 29 & 30

These two datasets were generated using ODE-based dynamics with scvelo.datasets.

simulation() in scVelo [24]. Data 29 consists of seven datasets with cell counts ranging from

n = 1, 000 to 1, 000, 000, with fixed gene counts at 1,000. Data 30 consists of six datasets with

gene counts ranging from p = 1, 000 to 20, 000, with fixed cell counts at 10,000. Transcription,

splicing, and degradation rates were fixed at α = 5, β = 0.3, and γ = 0.5, respectively.
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