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1 Note S1: Enrichment analysis of method rankings

To evaluate whether specific groups are significantly enriched in the top or bottom n rankings,
we performed an enrichment analysis using a one-sided hypergeometric test. The P-value,
defined as the probability of observing at least & methods from a specific ranking category
within the selected rank cutoff, is calculated as:

min(n,K) (K) (N—K)

P(X > k) = Z (T")—

where N is the total number of evaluated methods, K is the total number of methods in the

(1)

specific category, n is the cutoff size (e.g., top 10), and k is the observed number of methods
from that group within the cutoff. Statistical significance is indicated by asterisks (x : P < 0.05,
sk 0 P < 0.01, xx%: P <0.001).

2 Note S2: Implementation of cell-specific latent time
for RNA velocity methods

In this section, we describe the implementation details for obtaining cell-specific latent time
(CLT) for each RNA velocity method, tailored to its temporal modeling strategy. As introduced
in the manuscript, we categorized the 25 RNA velocity methods into four groups based on how
they model temporal information. Specifically, Group 1 methods explicitly estimate a unified
CLT, whereas Group 2 methods estimate gene-specific latent times. Group 3 methods either
infer CLT indirectly through a graph-based approach or do not provide temporal outputs at
all. Lastly, the Group 4 method (SDEvelo) estimates CLT using an SDE model combined with
optimal transport (OT) alignment.

In this section, we describe the implementation details used to obtain cell-specific latent
time (CLT) for each RNA velocity method according to its temporal modeling strategy. As
introduced in the manuscript, we categorized the 25 RNA velocity methods into four groups
based on how they model temporal information. Specifically, Group 1 methods explicitly
estimate a unified CLT, whereas Group 2 methods estimate gene-specific latent times. Group 3
methods either infer CLT indirectly through a graph-based approach or do not provide temporal
outputs at all. Lastly, the Group 4 method (SDEvelo) estimates CLT using an SDE model
combined with optimal transport (OT) alignment.

We obtained CLT estimates for each group as follows:

e Groups 1 and 4: We directly used the CLT estimates generated simultaneously with
the velocity estimates.

e Group 2: We followed the original implementations and applied scvelo.tl.latent _time ()
to obtain the CLT. This function heuristically aggregates gene-specific latent times by
assuming that early cells tend to be early across most genes, while terminal cells tend to
be late.



e Group 3: For methods that provide their own CLT estimation procedures, we followed
their original implementations (detailed below). For the remaining Group 3 methods,
which do not produce native temporal outputs, we ensured a fair comparison by applying
scvelo.tl.velocity pseudotime(), following the approach used in scVelo (stc). This
function estimates CLT based on a graph constructed from the velocity outputs of the
corresponding methods.

Method-specific implementations for Group 3:

e cellDancer: Uses celldancer.pseudo_time() following kinetic parameter estimation.
This function estimates CLT by simulating RNA velocity streamlines in low-dimensional
embeddings and ordering cells along dominant trajectories via graph-based time alignment.

e Dynamo (ml): Applies dynamo.ext.ddhodge() following velocity inference. This
function infers a single-cell potential, which serves as a proxy for CLT, by building a
velocity-informed diffusion graph and computing the scalar potential from the divergence
of the graph-based vector field via Hodge decomposition.

3 Note S3: Justification for additional tasks excluded
from the overall ranking

To provide a more systematic assessment, our benchmarking framework includes four additional
tasks: quantification stability, simulation experiments, multimodal integration, and computa-
tional scalability. However, these were excluded from the overall rankings to ensure a fair and
robust comparison focused on core performance. The specific rationale for excluding each of
these tasks is detailed below.

Quantification stability was evaluated separately, as quantification is an independent
upstream process whose variability could confound the direct assessment of the velocity
estimation methods themselves. Therefore, this metric mainly provides practical guidance for
real-world usage rather than serving as a measure of a model’s intrinsic modeling capacity
or biological interpretability. Simulation experiments were omitted due to the significant
discrepancy between synthetic and real-world datasets. Specifically, simulations tended to bias
results against deep learning (DL)-based methods while favoring those built on generative
assumptions similar to the simulation. Multimodal integration was excluded because it is
a specialized feature limited to a small subset of tools, making it unsuitable as a universal
metric. Finally, as computational scalability reflects technical capacity rather than biological
accuracy, we provide separate five-tier scalability tiers for cells and genes, respectively, to guide
researchers without conflating performance with resource requirements.

4 Note S4: Additional benchmarking metrics

Distance correlation

For each simulated dataset, ground-truth RNA velocity was available in gene space. However,
for methods that output only low-dimensional embedded velocities (e.g., VeloAE, scTour, and

3



LatentVelo (std)), direct comparison with the high-dimensional ground truth is not feasible.
Distance correlation (dCor) [1} 2] was therefore used to quantify nonlinear associations between
inferred and true velocity structures based on pairwise cell—cell similarities. Formally,

Sy AijBy;
N N
\/(Zi,j:l A?j) (Zi,j:l B’LZJ)

where A and B are double-centered pairwise Euclidean distance matrices of V¥ and V™,

dcor(\/'true7 Vinf) —

(2)

respectively:
Aij = aij — C_LZ'. — (_l.j + C_L.‘, Bij = bij — BZ — B.j + B.., (3)

true
A

with a;; = [[vi™® — vi™°||y and b = ||vi* — vi"]|,. Higher dCor values indicate stronger

%

nonlinear concordance between inferred and true velocity structures.

Pearson’s correlation

For each simulated dataset, Pearson’s correlation between true and inferred CLT values was used
to assess temporal accuracy. Higher correlation values indicate more accurate CLT inference.

5 Note S5: Computational environments

All analyses were performed on a Linux server running Ubuntu 22.04 LTS (Kernel 5.15),
equipped with Intel Xeon Platinum 8352V CPUs (128 threads), 1 TB of RAM, and a single
NVIDIA vGPU (32 GB of memory).

6 Note S6: Benchmarking datasets

Data 1

This dataset captures transcriptional dynamics in human bone marrow using single-cell RNA
sequencing [3]. Tt profiles key bone marrow cell populations and is designed to capture major
transitions in hematopoietic differentiation, including the progressive loss of cellular plasticity.
For the CBDir evaluation, directional correctness was assessed across established differentiation
trajectories: (Hematopoietic stem cells 1 — Hematopoietic stem cells 2), (Hematopoietic stem
cells 1 — Erythroids 1), and (Erythroids 1 — Erythroids 2). Three-fold cross-validation was
performed on this dataset.

Data 2

This dataset captures gene-regulatory dynamics in the developing human cerebral cortex using
single-cell multiomic profiling [4]. It integrates single-cell RNA-seq and ATAC-seq data from
primary cortical tissue collected at post-conceptional weeks 16, 20, 21, and 24, profiling major
neuronal and glial populations across key stages of corticogenesis. The data span continuous
differentiation trajectories from radial glia and intermediate progenitors to excitatory neurons
and interneurons, with well-characterized developmental markers. For the CBDir evaluation,
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directional correctness was assessed across established differentiation trajectories: (Cycling
progenitor cells — Radial glia / Astrocytes), (Cycling progenitor cells — Neuronal intermediate
progenitor cells / Excitatory neurons), (Neuronal intermediate progenitor cells / Excitatory
neurons — Upper-layer excitatory neurons), and (Upper-layer excitatory neurons — Deep-layer
excitatory neurons). Five-fold cross-validation was performed on this dataset.

Data 3

This dataset captures transcriptional dynamics in the developing dentate gyrus using droplet-
based single-cell RNA sequencing (10x Genomics Chromium) [5]. Cells were profiled at two
developmental time points, P12 and P35, capturing maturation of the granule cell lineage
as well as other differentiated cell populations within the developing tissue. For the CBDir
evaluation, directional correctness was assessed across the following differentiation trajectories:
(nIPC — Neuroblast), (Neuroblast — Granule immature), (Granule immature — Granule
mature), (Radial Glia-like — Astrocytes), and (OPC — OL). Two-fold cross-validation was
performed on this dataset.

Data 4

This dataset captures transcriptional dynamics during mouse gastrulation using single-cell
RNA sequencing and was specifically subset to the erythroid lineage [6]. It contains cells
collected at nine developmental time points between embryonic day 6.5 and day 8.5, providing
a focused view of erythroid differentiation within the broader gastrulation program. For the
CBDir evaluation, directional correctness was assessed across known differentiation trajectories:
(Blood progenitors 1 — Blood progenitors 2), (Blood progenitors 2 — Erythroid 1), (Erythroid
1 — Erythroid 2), and (Erythroid 2 — Erythroid 3). Three-fold cross-validation was performed
on this dataset.

Data 5

This dataset captures transcriptional dynamics in the developing pancreas using single-cell RNA
sequencing, focusing on epithelial cells and Ngn3—Venus fusion cells at embryonic day 15.5 [7].
It provides a snapshot of endocrine differentiation as progenitor cells within the pancreatic
epithelium progress toward four major endocrine fates: alpha, beta, delta, and epsilon cells.
For the CBDir evaluation, directional correctness was assessed across established differentiation
trajectories: (Ngn3 high EP — Pre-endocrine), (Pre-endocrine — Alpha), (Pre-endocrine —
Beta), (Pre-endocrine — Delta), and (Pre-endocrine — Epsilon). Three-fold cross-validation
was performed on this dataset.

Data 6

This dataset captures transcriptional dynamics in mouse intestinal organoids using single-cell
5-ethynyl uridine (EU)-labeled RNA sequencing (scEU-seq), which simultaneously quantifies
newly transcribed and pre-existing mRNAs [§]. For the CBDir evaluation, directional correctness
was assessed across known differentiation trajectories: (Stem cells — TA cells), (TA cells —



Enterocytes), (Stem cells — Enteroendocrine progenitors), and (Enteroendocrine progenitors
— Enteroendocrine cells). Three-fold cross-validation was performed on this dataset.

Data 7

This dataset profiles transcriptional dynamics in primary mouse cortical neurons using single-cell
metabolically labeled new RNA tagging sequencing (scNT-seq) [9]. Neurons were stimulated
with potassium chloride (KCl) and sampled at 0, 15, 30, 60, and 120 minutes. For the CBDir
evaluation, directional correctness was assessed across sequential time intervals: (0 — 15),
(15 — 30), (30 — 60), and (60 — 120). Three-fold cross-validation was performed on this
dataset.

Data 8

This dataset characterizes gene expression in fluorescence ubiquitination cell cycle indi-
cator (FUCCI) U20S cells [I0]. To establish discrete ground-truth temporal labels, the
continuous FUCCI pseudotime was discretized into five bins following the published tu-
torial: https://yoseflab.github.io/velovi_reproducibility/estimation_comparison/
fucci.html. Three-fold cross-validatio n was performed on this dataset.

Data 9

This dataset profiles the developing murine hindlimb across four embryonic time points: E11.5,
E13.5, E15.5, and E18.5 [11]. Data processing was performed using cellranger (v8.0.0) for
read alignment and velocyto (v0.17.17) for quantification of spliced and unspliced mRNA
abundances. Three-fold cross-validation was performed on this dataset.

Data 10

This dataset captures transcriptomic diversification and maturation in the mouse primary visual
cortex (V1) during postnatal development using droplet-based single-nucleus RNA sequencing.
Nuclear transcriptomes were profiled at six postnatal time points (P8, P14, P17, P21, P28,
and P38), spanning stages before, during, and after the critical period of ocular dominance
plasticity [12]. we focused on the Gluta_NR subset, corresponding to glutamatergic neurons in
the non-responsive lineage. Five-fold cross-validation was performed on this dataset.

Data 11

This dataset captures the reprogramming of mouse embryonic fibroblasts (MEFs) into induced
endoderm progenitors (iEPs), with samples collected at eight time points [13]. Five-fold
cross-validation was performed on this dataset.

Data 12

This dataset profiles the reprogramming of MEF's into induced pluripotent stem cells (iPSCs)
under serum and 2i conditions, with samples collected at 39 time points over 18 days [14]. For
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the present analysis, only the serum condition was considered. Five-fold cross-validation was
performed on this dataset.

Data 13

This dataset consists of PBMCs from a 10X Genomics experiment containing 65,877 cells. It
profiles major immune cell types derived from hematopoietic stem cells in the bone marrow and
includes representatives of both myeloid and lymphoid lineages [15]. Five-fold cross-validation
was performed on this dataset.

Data 14 & 16

These two datasets consist of PBMCs from a healthy female donor aged 25, obtained by 10x
Genomics from AllCells. Data 14 [16] consists of 10,194 cells, and Data 16 [17] consists of
10,497 cells. Three-fold cross-validation was performed on both datasets.

Data 15 & 17

These two datasets consist of PBMCs from two different healthy donors. Data 15 [18] contains
8,381 cells, and Data 17 [19] contains 11,769 cells. Three-fold cross-validation was performed
on both datasets.

Data 18

This dataset contains joint single-nucleus ATAC-seq and gene expression profiles from embryonic
mouse brain at E18. It provides paired chromatin accessibility and transcriptional measurements
that capture cellular heterogeneity across major embryonic brain regions [20]. For the CBDir
evaluation, directional correctness was assessed across known differentiation trajectories: (RG,
Astro, OPC — IPC), (IPC — V-SVZ), (V-SVZ — Upper layer), and (Upper layer — Deeper
layer). Three-fold cross-validation was performed on this dataset.

Data 19

This dataset profiles human hematopoietic stem and progenitor cells (HSPCs) and their
early erythroid and myeloid progeny [21]. The original study used Cap Analysis of Gene
Expression, ChIP-seq for histone modifications, and Moloney leukemia virus integration site
mapping to characterize transcriptional activity and regulatory element usage during early
hematopoietic differentiation. These data capture promoter, enhancer, and super-enhancer
landscapes across multipotent stem cells and lineage-committed progenitors, providing a
detailed view of transcriptional states along the myeloid and erythroid lineages. For the CBDir
evaluation, directional correctness was assessed across established differentiation trajectories:
(HSC — MPP), (MPP — LMPP), (LMPP — GMP), (HSC — MEP), (MEP — Erythrocyte),
(MEP — Prog MK), and (Prog MK — Platelet). Three-fold cross-validation was performed on
this dataset.



Data 20

This dataset contains joint chromatin accessibility and gene expression profiles from mouse skin
generated using the SHARE-seq protocol [22]. The original study produced large-scale single-
cell ATAC-seq and RNA measurements from adult skin to define cis-regulatory interactions and
chromatin domains enriched for lineage-determining genes. During hair follicle differentiation,
accessibility at these regulatory regions precedes gene activation, revealing chromatin priming
events associated with cell fate commitment. This dataset provides high-resolution multimodal
measurements that capture regulatory and transcriptional dynamics in a heterogeneous tissue.
For the CBDir evaluation, directional correctness was assessed across known differentiation
trajectories: (TAC-1 — TAC-2), (TAC-2 — Hair shaft cuticle/cortex), (TAC-2 — IRS), and
(TAC-2 — Medulla). Three-fold cross-validation was performed on this dataset.

Data 21

This dataset utilizes scEU-seq to simultaneously quantify metabolically labeled and pre-existing
unlabeled transcripts in mouse intestinal stem cells, comprising samples from both pulse
and chase experiments [§]. For this study, data from the pulse experiment were selected
and processed following the guidelines provided at: https://yoseflab.github.io/velovi_
reproducibility/estimation_comparison/sceu.html. To establish discrete ground-truth
temporal labels, continuous cell cycle scores were discretized into five bins. Three-fold cross-
validation was performed on this dataset.

Data 22

This dataset profiles the dynamics of human hematopoiesis using scNT-seq to capture metabolic
labeling information [23]. For the CBDir evaluation, directional correctness was assessed across
established differentiation trajectories: (HSC — MEP-like), (HSC — GMP-like), (MEP-like —
Meg), (MEP-like — Ery), (MEP-like — Bas), (GMP-like — Bas), (GMP-like — Mon), and
(GMP-like — Neu). Three-fold cross-validation was performed on this dataset.

Data 23 & 24

These two datasets were generated using ODE-based dynamics with scvelo.datasets.simulation()
in scVelo [24]. Each dataset contains 1,500 cells, with Data 23 comprising 100 genes and Data
24 comprising 500 genes. Transcription, splicing, and degradation rates were fixed at a = 5,
£ = 0.3, and v = 0.5, respectively. Three-fold cross-validation was performed on both datasets.

Data 25 & 26

These two datasets were generated using SDE-based dynamics with sdevelo.SimData() in
SDEvelo [25]. Each dataset contains 1,600 cells, with Data 25 comprising 100 genes and Data 26
comprising 500 genes. The number of trajectories K was fixed at 8. Three-fold cross-validation
was performed on both datasets.
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Data 27 & 28

These two datasets were generated using dyngen, a multimodal simulation framework that
models gene regulatory networks and transcriptional kinetics. Each dataset contains 1,500 cells
with 100 target genes, 100 housekeeping genes, and a set of transcription factors determined
by the specified trajectory backbone. Data 27 uses a linear backbone, whereas Data 28 uses
a bifurcating backbone. Key simulation parameters were tau = 0.01, census_interval = 1,
and num_simulations = 100. Three-fold cross-validation was performed on both datasets.

Data 29 & 30

These two datasets were generated using ODE-based dynamics with scvelo.datasets.
simulation() in scVelo [24]. Data 29 consists of seven datasets with cell counts ranging from
n = 1,000 to 1,000,000, with fixed gene counts at 1,000. Data 30 consists of six datasets with
gene counts ranging from p = 1,000 to 20, 000, with fixed cell counts at 10,000. Transcription,
splicing, and degradation rates were fixed at « =5, § = 0.3, and v = 0.5, respectively.

References

[1] Székely GJ, Rizzo ML, Bakirov NK. Measuring and testing independence by correlation
of distances. Ann Stat. 2007;35(6):2769-2794. doii10.1214/009053607000000505.

[2] Székely GJ, Rizzo ML. Brownian distance covariance. Ann Appl Stat. 2009;3(4):1236-1265.
doi:10.1214/09-A0AS312.

[3] Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe’er D. Characterization of cell
fate probabilities in single-cell data with Palantir. Nat Biotechnol. 2019;37(4):451-460.
doi:10.1038/s41587-019-0068-4.

[4] Trevino AE, Miiller F, Andersen J, Sundaram L, Kathiria A, Shcherbina A, et al. Chromatin
and gene-regulatory dynamics of the developing human cerebral cortex at single-cell
resolution. Cell. 2021 Sep;184(19):5053-5069.€23. doii10.1016/j.cell.2021.07.039.

[5] Hochgerner H, Zeisel A, Lonnerberg P, Linnarsson S. Conserved properties of dentate
gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing.
Nat Neurosci. 2018 Jan;21(2):290-299. doi:10.1038/s41593-017-0056-2.

[6] Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, et al.
A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019
Feb;566(7745):490-495. doii10.1038/s41586-019-0933-9.

[7] Bastidas-Ponce A, Tritschler S, Dony L, Scheibner K, Tarquis-Medina M, Salinno C,
et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic
endocrinogenesis. Development. 2019 Jun;doii10.1242/dev.173849.

[8] Battich N, Beumer J, De Barbanson B, Krenning L, Baron CS, Tanenbaum ME, et al. Se-
quencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies.
Science. 2020;367(6482):1151-1156. doi:10.1126/science.aax3072.

9


10.1214/009053607000000505
10.1214/09-AOAS312
10.1038/s41587-019-0068-4
10.1016/j.cell.2021.07.039
10.1038/s41593-017-0056-2
10.1038/s41586-019-0933-9
10.1242/dev.173849
10.1126/science.aax3072

9] Qiu Q, Hu P, Qiu X, Govek KW, Cdmara PG, Wu H. Massively parallel and time-resolved
RNA sequencing in single cells with scNT-seq. Nat Methods. 2020;17(10):991-1001.
doi:10.1038/s41592-020-0935-4.

[10] Mahdessian D, Cesnik AJ, Gnann C, Danielsson F, Stenstrom L, Arif M, et al. Spatiotempo-
ral dissection of the cell cycle with single-cell proteogenomics. Nature. 2021;590(7847):649—
654. doi;10.1038/s41586-021-03232-9.

[11] Kelly NH, Huynh NPT, Guilak F. Single cell RNA-sequencing reveals cellular heterogeneity
and trajectories of lineage specification during murine embryonic limb development. Matrix
Biol. 2020;89:1-10. doi:10.1016/j.matbio.2019.12.004.

[12] Cheng S, Butrus S, Tan L, Xu R, Sagireddy S, Trachtenberg JT, et al. Vision-dependent
specification of cell types and function in the developing cortex. Cell. 2022 Jan;185(2):311-
327.e24. doi:10.1016/j.cell.2021.12.022

[13] Biddy BA, Kong W, Kamimoto K, Guo C, Waye SE, Sun T, et al. Single-cell mapping of
lineage and identity in direct reprogramming. Nature. 2018;564(7735):219-224. doi:10.
1038/s41586-018-0744-4.

[14] Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, et al. Optimal-
transport analysis of single-cell gene expression identifies developmental trajectories in
reprogramming. Cell. 2019;176(4):928-943.¢22. doii10.1016/j.cel1.2019.01.006.

[15] Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively
parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):14049.
doi;10.1038/ncomms14049.

[16] 10x Genomics. PBMCs from a healthy donor: whole transcriptome analysis.
https://www.10xgenomics.com/; 2020. https://www.l0xgenomics.com/datasets/
pbm-cs-from-a-healthy-donor-whole-transcriptome-analysis-3-1-standard-4-0-0|

[17] 10x Genomics. PBMCs from a healthy donor: targeted immunology panel.
https://www.10xgenomics.com/; 2020. https://www.1l0xgenomics.com/datasets/
pbm-cs-from-a-healthy-donor-targeted-immunology-panel-3-1-standard-4-0-0.

[18] 10x  Genomics. 8k  PBMCs from a  healthy donor. https://www.
10xgenomics.com/; 2017. https://www.10xgenomics.com/datasets/
8-k-pbm-cs-from-a-healthy-donor-2-standard-2-1-0.

[19] 10x  Genomics. 10k PBMCs from a  healthy donor. https://www.
10xgenomics.com/; 2018. https://www.10xgenomics.com/datasets/
10-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0.

[20] 10x  Genomics.  Fresh  embryonic E18 mouse brain  (5k). https://
www.10xgenomics.com/; 2020. https://www.10xgenomics.com/datasets/
fresh-embryonic-e-18-mouse-brain-5-k-1-standard-1-0-0.

10


10.1038/s41592-020-0935-4
10.1038/s41586-021-03232-9
10.1016/j.matbio.2019.12.004
10.1016/j.cell.2021.12.022
10.1038/s41586-018-0744-4
10.1038/s41586-018-0744-4
10.1016/j.cell.2019.01.006
10.1038/ncomms14049
https://www.10xgenomics.com/
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-whole-transcriptome-analysis-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-whole-transcriptome-analysis-3-1-standard-4-0-0
https://www.10xgenomics.com/
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/
https://www.10xgenomics.com/
https://www.10xgenomics.com/datasets/8-k-pbm-cs-from-a-healthy-donor-2-standard-2-1-0
https://www.10xgenomics.com/datasets/8-k-pbm-cs-from-a-healthy-donor-2-standard-2-1-0
https://www.10xgenomics.com/
https://www.10xgenomics.com/
https://www.10xgenomics.com/datasets/10-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/datasets/10-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/
https://www.10xgenomics.com/
https://www.10xgenomics.com/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-standard-1-0-0
https://www.10xgenomics.com/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-standard-1-0-0

[21]

22]

23]

Romano O, Peano C, Tagliazucchi GM, Petiti L, Poletti V, Cocchiarella F, et al. Tran-
scriptional, epigenetic and retroviral signatures identify regulatory regions involved in
hematopoietic lineage commitment. Sci Rep. 2016;6:24724. doi:10.1038/srep24724.

Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z, Hu Y, et al. Chromatin potential identified
by shared single-cell profiling of RNA and chromatin. Cell. 2020;183(4):1103-1116.€20.
doi:10.1016/j.cell.2020.09.056.

Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, Yang D, et al. Mapping
transcriptomic vector fields of single cells. Cell. 2022;185(4):690-711. doi:10.1016/j.cell.
2021.12.045.

Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient
cell states through dynamical modeling. Nat Biotechnol. 2020;38(12):1408-1414. doi:10.
1038/s41587-020-0591-3.

Liao X, Kang L, Peng Y, Chai X, Xie P, Lin C, et al. Multivariate stochastic modeling
for transcriptional dynamics with cell-specific latent time using SDEvelo. Nat Commun.
2024;15(1):10849. doii10.1038/s41467-024-55146-5.

11


10.1038/srep24724
10.1016/j.cell.2020.09.056
10.1016/j.cell.2021.12.045
10.1016/j.cell.2021.12.045
10.1038/s41587-020-0591-3
10.1038/s41587-020-0591-3
10.1038/s41467-024-55146-5

	Note S1: Enrichment analysis of method rankings
	Note S2: Implementation of cell-specific latent time for RNA velocity methods
	Note S3: Justification for additional tasks excluded from the overall ranking
	Note S4: Additional benchmarking metrics
	Note S5: Computational environments
	Note S6: Benchmarking datasets

