Supplementary notes for the computational model.

Methods: Equations for Cerebellum model

Inferior Olive

Here, we modeled the inferior olive (I0) neuron as a single-compartment unit. Our model was a
slight modification of that in (1). We arranged the 10 neurons in a linear chain connected by gap
junctions. The i™ neuron is described by the ODE:
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(1 + k = SDCN,i)

where C,,( =1 uF) is the membrane capacitance, R (= 0.4 M) is the gap junction resistance, k
(=20) is the synaptic weight, and sy is the GABAergeic gating variable for the DCN. The
dynamics of spcy are described in the DCN section below. Ioyy, Inoises I, Inas Ik, Ica, In are the
membrane currents for baseline background current, white noise current, leak current, sodium
current, potassium current, T-type calcium current, and HCN current respectively. I, was
informed by previous literature(1) and was uniformly distributed from —2 to —1 nA. Here,
I0ise Was modeled as Gaussian white noise with standard deviation of 1.75 nA and was
randomly generated every time step of the simulation.

)

The active currents are described by the following equations:

I =g(V—-E)

Ing = gNamoo(V)3h(V — Eng)
Iy = ggn*(V — Eg)

Ieq = gCakBZ(V — Ecq)

In = gnq(V — Ep)

where gi1, Ina» 9k 9car n, are the maximum conductance of the corresponding currents. The
gating variables h,n, k, [, q are defined by the following ordinary differential equations:
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The sodium channel’s gating functions obey the following equations:
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The potassium channel’s gating functions are defined by the following equations:
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The calcium channel’s gating functions are given by the following equations:
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The H-Current channel’s gating functions are described as the following equations:
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The driving potentials for each ion were set as follows:

E, =-70mV
Eng = +55mV
Ex =-=75mV
Ecq = +120 mV
Ey =—43mV

The maximal conductance for each channel was slightly modified from (1) to account for the
single-compartment model. These values correspond to healthy (non-harmaline) 10 neurons.
Where noted, we modulated the values of g, as a function of harmaline.

g = 0.1uS
Ina =70 uS
gk =18 S
9ca = 0.33 uS
gy = 0.66 uS

Here, s;o denotes the gating variable for the 10 synapse (also referred to as the climbing fiber).

ds;p 1+ tanh(V +20) — )0
dt B ch

The time constant was chosen to be 7.s = 5 msec. Here, 1 + tanh represents a continuous
version of a delta spike. If the voltage passes above —20 mV, the 10 is considered to have fired
a spike.



Purkinje Cell

In order to reduce computational complexity and minimize simulation time, we modeled the
Purkinje cell as a two-compartment model with a somatic compartment and a proximal
dendritic compartment. Because we were interested in complex spikes induced by climbing

fiber activation, we simplified the parallel fiber input as a constant input Iapp. Given the

necessity of calcium dynamics for generating complex spikes, we also incorporated calcium
dynamics and calcium ion diffusion.

Voltage Dynamics

The voltage dynamics of the dendritic and somatic compartments were governed by the
following equations:
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where C;(= 1 nF) is the somatic membrane capacitance, C;(= 12 nF) is the dendritic
membrane capacitance, and R (= 4 MQ) is axial resistance. We set the applied currents I, to
.75 nA , representing the average background synaptic current from the parallel fibers. All I's
are membrane currents explained as follows.

We modeled the climbing fiber synapses as a simple current-based synapses. The synaptic
currents are given by

Iersi = (Gropc + 3dis)sio; + 3dis(si0,i-1 + S10,-1)
Iepa; = dend x ((gIO,PC + 3di5)510,i + 3di5(510,i—1 + SIO,i—l))

We set g;0 pc = 1 nA. We used dis to represent the overgrowth of adjacent climbing fibers, as
well as the increased innervation of climbing fibers onto the Purkinje cell distal dendritic tree
(2). Here, we let dis represent the increasing the synaptic weights for the pathological
connections. For healthy cerebella, dis = 0, while dis = 1 represented unhealthy cerebella
afflicted with climbing fiber overgrowth. Where noted, dis can vary between 1 and 0. The
relative strength of dendritic input to somatic input was greater; accordingly, we set dend = 8

The leak current was derived from unpublished data from Dr. David Friel’s lab, and was
described as:
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We used a sodium current based on the model by Dr. De Schutter and Bower (3), with slight
adjustments to enhance the dominance of the fast channel. Additionally, since Dr. De Schutter’s
resting potential differed from ours, we adjusted the voltage accordingly. The final model
included a fast-activating sodium channel (labeled F) and a persistent sodium channel (labeled
P). The sodium current is given by the equation:

Inag = Inar + INap
15000m3hp + 10m3
7510
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Here, the gating kinetics are given by:

dm
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The gating functions are given by:
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The voltage-activated potassium channels included three components: a fast-activating current,
a medium-activating current, and a slow-activating current. These channels were based on the
model by Khalig, Gouwens, and Raman (4). The potassium current was described by:
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We included a P/Q-type calcium channel, notable for being the primary calcium current
detected in both the dendrites and soma. As a calcium current, its driving potential was



originally governed by the Goldman—Hodgkin—Katz current equation. However, to improve
computational efficiency, we simplified it to an Ohmic current to avoid unnecessary complexity
and ODE stiffness. This channel was initially characterized by Miyasho (5).
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We included a BK current, a calcium-activated potassium current that depends on both voltage
and intracellular calcium concentration. BK channels are found in both the dendrites and soma

(6).
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We set the ion driving potentials as:

Eyg =122mvV
EK == _90 mV
ECCI. = 135 mV



The conductances for the healthy Purkinje cell are given below. Note that some channel
conductances varied depending on the experimental condition and are noted where applicable.
We denoted somatic compartment conductances as g, ¢ and dendritic compartment
conductances as g, 4. We set the conductances as follows:

9rs = 1.369uS

Ina =143 uS

gk =3.15uS

grgs = 142uS
9sk,s =10uS
gra =-754S
gpgs =10puS
9sk,s =23 US

Calcium Dynamics

We computed the internal calcium concentration (Ca) in three distinct compartments of the
Purkinje cell: a thin shell beneath the somatic membrane Casp, bulk cytosolic concentration
Cacy, and the proximal dendritic concentration Cag. All calcium concentrations were measured
in uM.

The change in calcium concentration was modeled as a function of all fluxes into and out of
each compartment as follows:

dcash _]Pq _]P +]L _ Cash - Cacy

dt Kvolg, D¢y sn
dCacy  Cagy—Cagp  Cagy —Cag
dt Dsh,cy Dd,cy
dcad _ ]Pq _]P +]L _ Cad - Cacy
dt Kvol, D¢y a

In this context, concentration dynamics are influenced by compartment volume and calcium
buffering. We adopted the assumption of instantaneous buffering, characterized by a volume
expansion factor k = 1000. The compartment volumes were specified as volg, = 6.6 X 107>
mm3 and voly; = 7.4 X 107> mm3.

The terms D, ,, represent flux between two compartments, and were set as:

Deysn = 759 msec
Dsp ey = .149 msec
D¢ya =.03725 msec
Dgcy =.149 msec

We included the calcium-pump flux as Jp. Calcium pumps are responsible for transporting
calcium ions from the cytosol to the extracellular space and were modeled as a linear process.



Here we model the somatic (/p s,) and dendritic (/p 4) calcium pumps as separate processes.
Similarly, J, sn and J; 4 represented the linear calcium leak from the somatic and dendritic
extracellular spaces into the cytosol. We balanced these two fluxes to maintain an internal
calcium concentration of 0.08u mol at rest, when the P/Q channels were closed.

The two pump terms are described by the following equations:

]P,sh = kp,shcash
Jpa :kp,dcad

With pump strengths k,, o, = 19.2 msec™! and kpq = .68 msec™! . Likewise, the two leak
terms are given by

Jush = kl,sh(Cao — Cagp)
Ja =kipa(Cag—Cay)

Likewise, we set the leak strengths as k; ¢, = 1.67 msec™* and k; ; = .05 msec™ . With Ca,
representing the external calcium concentration and set at Ca, = 1000 uM

The flux from the PQ calcium channel is denoted as Jp,, and is given by the following equations:

_ gpq,smpq,s (Vs - ECa)

]Pq,sh - ZF
J _ gpq,dmpq,d(Vd — Ecq)
Fad = 2F

c . . . .
where F = 9.648846 ——is Faraday’s constant. Recall because calcium is a divalent ion, we

included a factor of 2. Here, g, is the maximal conductance listed above, and m,,, is the
gating variable described above.

Synaptic gate

The gating variable for the PC synapse is given by sp., with its dynamics described by the
following equation:

dSpC _ 1+ tanh([ls + 10) — Spc

dt Tpc

The time constant 7. was set at 10msec. As before, 1 + tanh represents a continuous version
of a delta spike. If the voltage passes above —10 mV, the PC is considered to have fired a spike.



Our investigation revealed that applying these currents resulted in a Purkinje cell model that
exhibited a high degree of physiological accuracy while remaining computationally tractable.
This simplified computational representation enabled rapid, sufficiently precise simulations and
facilitated the implementation of moderately sized neural circuits on standard laptop hardware.

Deep Cerebellar Nuclei

In our study, we classified Deep Cerebellar Nuclei (DCN) neurons as relatively straightforward
units responsible for relaying information back to the 10. Notably, DCN neurons projecting to
the 10 are GABAergic, primarily influencing the effective gap-junction dynamics among 10
neurons. We modeled Purkinje cells as the exclusive input source to the DCN. In the absence of
PC input, DCN neurons tonically spiked; when exposed to weak PC input, their firing rate
diminished, whereas strong input rendered them silent. To implement this model, we
employed a Morris—Lecar neuron framework, qualitatively aligning its input—frequency
response curve to replicate established DCN behavior. The resultant DCN neuron model was
characterized by the following equations:

dv

T —grc,aSpc,i(V — Egapa) — g.(V — EL)
—gkw(V — Ex) — gcaMo (V)(V — E¢q) + Lapp
dw We (V) —w

dt - 1,
dspey 1+ tanh(V) —sp

We set the conductances and driving potentials to be:

Ecq =100mvV

Ex =-70mV
E, =-50mV
Ecapa = —100 mV
gea =1p4S
gk =24S
g =548
lgpp = -17nA

The instantaneous functions are described by the following equations:

1 + tanh (v_—l)

mo(V) = 2 14.5
1+tanh(vz—510)
We (V) = >
o (529
TW(V) =

3



Finally, the synaptic variable 7.y was set to 10 msec.
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