
Supplementary notes for the computational model.  

Methods: Equations for Cerebellum model 

Inferior Olive 

Here, we modeled the inferior olive (IO) neuron as a single-compartment unit. Our model was a 
slight modification of that in (1). We arranged the IO neurons in a linear chain connected by gap 

junctions. The 𝑖th neuron is described by the ODE: 

𝐶𝑚

𝑑𝑉𝑖

𝑑𝑡
= 𝐼𝑎𝑝𝑝 + 𝐼𝑛𝑜𝑖𝑠𝑒(𝑡) − 𝐼𝐿 − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐶𝑎 − 𝐼ℎ

+
𝑅(𝑉𝑖+1 + 𝑉𝑖−1 − 2𝑉𝑖)

(1 + 𝑘 ∗ 𝑠𝐷𝐶𝑁,𝑖)
,

 

where 𝐶𝑚(＝1 𝜇F) is the membrane capacitance, 𝑅 (= 0.4 𝑀𝛺) is the gap junction resistance, 𝑘 

(=20) is the synaptic weight, and 𝑠𝐷𝐶𝑁 is the GABAergeic gating variable for the DCN. The 
dynamics of 𝑠𝐷𝐶𝑁 are described in the DCN section below. 𝐼𝑎𝑝𝑝, 𝐼𝑛𝑜𝑖𝑠𝑒, 𝐼𝐿, 𝐼𝑁𝑎, 𝐼𝐾, 𝐼𝐶𝑎, 𝐼ℎ are the  

membrane currents for baseline background current, white noise current, leak current, sodium 
current, potassium current, T-type calcium current, and HCN current respectively. 𝐼𝑎𝑝𝑝 was 

informed by previous literature(1) and was uniformly distributed from −2 to −1 𝑛𝐴.  Here, 
𝐼𝑛𝑜𝑖𝑠𝑒 was modeled as Gaussian white noise with standard deviation of 1.75 𝑛𝐴 and was 
randomly generated every time step of the simulation. 

The active currents are described by the following equations:  

𝐼𝐿 = 𝑔𝑙(𝑉 − 𝐸𝐿)

𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚∞(𝑉)3ℎ(𝑉 − 𝐸𝑁𝑎)

𝐼𝐾 = 𝑔𝐾𝑛4(𝑉 − 𝐸𝐾)

𝐼𝐶𝑎 = 𝑔𝐶𝑎𝑘3𝑙(𝑉 − 𝐸𝐶𝑎)

𝐼ℎ = 𝑔ℎ𝑞(𝑉 − 𝐸ℎ)

 

where 𝑔𝑙,  𝑔𝑁𝑎, 𝑔𝑘, 𝑔𝐶𝑎, 𝑔ℎ,  are the maximum conductance of the corresponding currents. The 
gating variables h, 𝑛, 𝑘, 𝑙, 𝑞  are defined by the following ordinary differential equations: 



𝑑ℎ

𝑑𝑡
=

ℎ∞(𝑉) − ℎ

𝜏ℎ(𝑉)

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉) − 𝑛

𝜏𝑛(𝑉)

𝑑𝑘

𝑑𝑡
=

𝑘∞(𝑉) − 𝑘

𝜏𝑘

𝑑𝑙

𝑑𝑡
=

𝑙∞(𝑉) − 𝑙

𝜏𝑙(𝑉)

𝑑𝑞

𝑑𝑡
=

𝑞∞(𝑉) − ℎ

𝜏𝑞(𝑉)

 

The sodium channel’s gating functions obey the following equations: 

𝑚∞(𝑉) =
𝑎𝑚(𝑉)

𝑎𝑚(𝑉) + 𝑏𝑚(𝑉)

𝑎𝑚(𝑉) =
0.1(𝑉 + 41)

1 − 𝑒
−(𝑉+41)

10

𝑏𝑚(𝑉) = 9𝑒
−(𝑉+66)

20

ℎ∞(𝑉) =
𝑎ℎ(𝑉)

𝑎ℎ(𝑉) + 𝑏ℎ(𝑉)

𝜏ℎ(𝑉) =
170

𝑎ℎ(𝑉) + 𝑏ℎ(𝑉)

𝑎ℎ(𝑉) = 5 ∗ 𝑒
−(𝑉+66)

20

𝑏ℎ(𝑉) =
𝑉 + 50

1 − 𝑒
−(𝑉+50)

10

 

The potassium channel’s gating functions are defined by the following equations: 

𝑎𝑛(𝑉) =
𝑉 + 41

1 − 𝑒
−(𝑉+41)

10

𝑏𝑛(𝑉) = 12.5𝑒
−(𝑉+51)

80

𝑛∞(𝑉) =
𝑎𝑛(𝑉)

𝑎𝑛(𝑉) + 𝑏𝑛(𝑉)

𝜏𝑛(𝑉) =
5

𝑎𝑛(𝑉) + 𝑏𝑛(𝑉)

 

The calcium channel’s gating functions are given by the following equations: 



𝑘∞(𝑉) =
1

1 + 𝑒
−(𝑣+61)

4.2

𝜏𝑘 = 5

𝑙∞(𝑉) =
1

1 + 𝑒
−(𝑉+85.5)

8.5

𝜏𝑙(𝑉) = 35 +
20𝑒

𝑉+160
30

1 + 𝑒
𝑉+84

7.3

 

The H-Current channel’s gating functions are described as the following equations: 

𝑞∞(𝑉) =
1

1 + 𝑒
𝑉+75

5.5

𝜏𝑞(𝑉) =
1

𝑒−(.086𝑉+14) + 𝑒(.07𝑉−1.87)

 

The driving potentials for each ion were set as follows: 

𝐸𝐿 = −70 mV

𝐸𝑁𝑎 = +55 mV

𝐸𝐾 = −75 mV

𝐸𝐶𝑎 = +120 mV

𝐸𝐻 = −43 mV

 

The maximal conductance for each channel was slightly modified from (1) to account for the 
single-compartment model. These values correspond to healthy (non-harmaline) IO neurons. 
Where noted, we modulated the values of 𝑔𝐶𝑎  as a function of harmaline. 

𝑔𝐿 = 0.1 𝜇S

𝑔𝑁𝑎 = 70 𝜇S

𝑔𝐾 = 18 𝜇S

𝑔𝐶𝑎 = 0.33 𝜇S

𝑔𝐻 = 0.66 𝜇S

 

Here, 𝑠𝐼𝑂 denotes the gating variable for the IO synapse (also referred to as the climbing fiber). 

𝑑𝑠𝐼𝑂

𝑑𝑡
=

1 + tanh(𝑉 + 20) − 𝑠𝐼𝑂

𝜏𝑐𝑓
 

The time constant was chosen to be 𝜏𝑐𝑓 = 5 𝑚𝑠𝑒𝑐. Here, 1 + tanh represents a continuous 

version of a delta spike. If the voltage passes above −20 𝑚𝑉, the IO is considered to have fired 
a spike. 



Purkinje Cell 

In order to reduce computational complexity and minimize simulation time, we modeled the 
Purkinje cell as a two-compartment model with a somatic compartment and a proximal 
dendritic compartment. Because we were interested in complex spikes induced by climbing 

fiber activation, we simplified the parallel fiber input as a constant input 𝐼𝑎𝑝𝑝. Given the 

necessity of calcium dynamics for generating complex spikes, we also incorporated calcium 
dynamics and calcium ion diffusion. 

Voltage Dynamics 

The voltage dynamics of the dendritic and somatic compartments were governed by the 
following equations: 

𝐶𝑠

𝑑𝑉𝑠

𝑑𝑡
= 𝐼𝑎𝑝𝑝 + 𝐼𝐶𝐹,𝑠 − 𝐼𝐿,𝑠 − 𝐼𝑁𝑎 − 𝐼𝐾

slow − 𝐼𝐾
mid − 𝐼𝐾

fast

− 𝐼𝐶𝑎
PQ − 𝐼𝐾𝐶𝑎

BK −
𝑉𝑠 − 𝑉𝑑

𝑅

𝐶𝑑

𝑑𝑉𝑑

𝑑𝑡
= 𝐼𝑎𝑝𝑝 + 𝐼𝐶𝐹,𝑑 − 𝐼𝐿,𝑑 − 𝐼𝐶𝑎

PQ−I𝐾𝐶𝑎
BK −

𝑉𝑑 − 𝑉𝑠

𝑅

 

where  𝐶𝑠(= 1 𝑛𝐹) is the somatic membrane capacitance, 𝐶𝑑(= 12 𝑛𝐹) is the dendritic 
membrane capacitance, and 𝑅 (= 4 𝑀Ω) is axial resistance. We set the applied currents 𝐼𝑎𝑝𝑝 to 

. 75 𝑛𝐴 , representing the average background synaptic current from the parallel fibers. All 𝐼s 
are membrane currents explained as follows. 

We modeled the climbing fiber synapses as a simple current-based synapses. The synaptic 
currents are given by 

𝐼𝐶𝐹,𝑠,𝑖 = (𝑔𝐼𝑂,𝑃𝐶 + 3𝑑𝑖𝑠)𝑠𝐼𝑂,𝑖 + 3𝑑𝑖𝑠(𝑠𝐼𝑂,𝑖−1 + 𝑠𝐼𝑂,𝑖−1)

𝐼𝐶𝐹,𝑑,𝑖 = 𝑑𝑒𝑛𝑑 ∗ ((𝑔𝐼𝑂,𝑃𝐶 + 3𝑑𝑖𝑠)𝑠𝐼𝑂,𝑖 + 3𝑑𝑖𝑠(𝑠𝐼𝑂,𝑖−1 + 𝑠𝐼𝑂,𝑖−1))
 

We set 𝑔𝐼𝑂,𝑃𝐶 = 1 𝑛𝐴. We used 𝑑𝑖𝑠 to represent the overgrowth of adjacent climbing fibers, as 
well as the increased innervation of climbing fibers onto the Purkinje cell distal dendritic tree 
(2). Here, we let 𝑑𝑖𝑠 represent the increasing the synaptic weights for the pathological 
connections.  For healthy cerebella, 𝑑𝑖𝑠 = 0, while 𝑑𝑖𝑠 = 1 represented unhealthy cerebella 
afflicted with climbing fiber overgrowth. Where noted, 𝑑𝑖𝑠 can vary between 1 and 0. The 
relative strength of dendritic input to somatic input was greater; accordingly, we set 𝑑𝑒𝑛𝑑 = 8 

The leak current was derived from unpublished data from Dr. David Friel’s lab, and was 
described as:  



𝐼𝐿(𝑉) = 𝑔𝐿𝑓(𝑉 + 12.5)

𝑓(𝑉) = 0.4916
(𝑉 + 36.587)

1 + 𝑒−.13(𝑉+33.179)

+.046346
𝑉 + 57.528

2.1

 

We used a sodium current based on the model by Dr. De Schutter and Bower (3), with slight 
adjustments to enhance the dominance of the fast channel. Additionally, since Dr. De Schutter’s 
resting potential differed from ours, we adjusted the voltage accordingly. The final model 
included a fast-activating sodium channel (labeled F) and a persistent sodium channel (labeled 
P). The sodium current is given by the equation: 

𝐼𝑁𝑎 = 𝐼𝑁𝑎,𝐹 + 𝐼𝑁𝑎,𝑃

= 𝑔𝑁𝑎

15000𝑚𝐹
3ℎ𝐹 + 10𝑚𝑃

3

7510
(𝑉 − 𝐸𝑁𝑎)

 

Here, the gating kinetics are given by: 

𝑑𝑚𝐹

𝑑𝑡
= 𝑎𝑚𝐹(𝑉 + 10)(1 − 𝑚𝐹) − 𝑏𝑚𝐹(𝑚𝐹)

𝑑ℎ𝐹

𝑑𝑡
= 𝑎ℎ𝐹(𝑉 + 10)(1 − ℎ𝐹) − 𝑏ℎ𝐹(ℎ𝐹)

𝑑𝑚𝑃

𝑑𝑡
= 𝑎𝑚𝑃(𝑉 + 10)(1 − 𝑚𝑃) − 𝑏𝑚𝐹(𝑚𝑃)

 

 The gating functions are given by: 

𝑎𝑚𝐹(𝑉) =
35

𝑒
−(𝑉+5)

10

𝑏𝑚𝐹(𝑉) =
7

𝑒
(𝑉+65)

20

𝑎ℎ𝐹(𝑉) =
. 225

1 + 𝑒
(𝑉+80)

10

𝑏ℎ𝐹(𝑉) =
7.5

𝑒
−(𝑉−3)

18

𝑎𝑚𝑃(𝑉) =
200

1 + 𝑒
−(𝑉−18)

−16

𝑏𝑚𝑃(𝑉) =
35

1 + 𝑒
(𝑉+58)

8

 

The voltage-activated potassium channels included three components: a fast-activating current, 
a medium-activating current, and a slow-activating current. These channels were based on the 
model by Khaliq, Gouwens, and Raman (4). The potassium current was described by: 



𝐼𝐾
slow + 𝐼𝐾

mid + 𝐼𝐾
fast = 𝑔𝐾(2𝑛𝑓

3ℎ𝑓 + 𝑛𝑚
4 + 2𝑛𝑠

4)(𝑉 − 𝐸𝐾) 

Here the slow current is described by 

𝐼𝐾
slow = 𝑔𝐾𝑛𝑠

4(𝑉 − 𝐸𝐾)

𝑑𝑛𝑠

𝑑𝑡
=

𝑛𝑠∞
(𝑉) − 𝑛𝑠

𝜏𝑛𝑠
(𝑉)

𝑛𝑠∞
(𝑉) =

1

𝑒0.0543(−𝑉−16.5) + 1

𝜏𝑛𝑠
(𝑉) =

1

0.796  +
1000

𝑒−0.0134(𝑉−306.7) + 𝑒0.0854(𝑉+73.2)

 

The medium current is 

𝐼𝐾
mid = 𝑔𝐾𝑛𝑚

4 (𝑉 − 𝐸𝐾)

𝑑𝑛𝑚

𝑑𝑡
=

𝑛𝑚∞
(𝑉) − 𝑛𝑚

𝜏𝑛𝑚
(𝑉)

𝑛𝑚∞
(𝑉) =

1

𝑒0.0490(−𝑉−24) + 1

𝜏𝑛𝑚
(𝑉) = {

0.688 +
1000

𝑒−0.0287(𝑉−141.5) + 𝑒0.154(𝑉+64.2)
𝑉 < −20

0.16 + 0.8𝑒−0.0267𝑉 𝑉 ≥ −20

 

Finally, the fast current is given by 

𝐼𝐾
fast = 𝑔𝐾𝑛𝑓

3ℎ𝑓(𝑉 − 𝐸𝐾)

𝑑𝑛𝑓

𝑑𝑡
=

𝑛𝑓∞
(𝑉) − 𝑛𝑓

𝜏𝑛𝑓
(𝑉)

𝑛𝑓∞
(𝑉) =

1

𝑒0.06494(−𝑉−24) + 1

𝜏𝑛𝑓
(𝑉) = {

0.103 + 14.9𝑒0.035𝑉 𝑉 < −35

0.129 +
1000

𝑒0.043(56.3−𝑉) + 𝑒0.0775(𝑉+100.7)
𝑉 ≥ −35

𝑑ℎ𝑓

𝑑𝑡
=

ℎ𝑓∞
(𝑉 − ℎ𝑓)

𝜏ℎ𝑓
(𝑉)

𝑑ℎ𝑓∞
(𝑉) =

0.69

𝑒0.0893(𝑉+5.8) + 1

𝜏ℎ𝑓
(𝑉) = {

0.012  + 12𝑒−0.000406(𝑉+56.3)2
𝑉 ≤ 0

1.2 + 2.3𝑒−0.141𝑉 𝑉 > 0

 

We included a P/Q-type calcium channel, notable for being the primary calcium current 
detected in both the dendrites and soma. As a calcium current, its driving potential was 



originally governed by the Goldman–Hodgkin–Katz current equation. However, to improve 
computational efficiency, we simplified it to an Ohmic current to avoid unnecessary complexity 
and ODE stiffness. This channel was initially characterized by Miyasho (5). 

𝐼𝐶𝑎
PQ = 𝑔𝐶𝑎𝑚𝐶𝑎(𝑉 − 𝐸𝐶𝑎) 

𝑚𝐶𝑎

𝑑𝑡
=

𝑚𝐶𝑎∞
(𝑉) − 𝑚𝐶𝑎

𝜏𝑚𝐶𝑎

𝑚𝐶𝑎∞
(𝑉) =

𝛼𝐶𝑎(𝑉)

𝛼𝐶𝑎(𝑉) + 𝛽𝐶𝑎(𝑉)

𝜏𝐶𝑎(𝑉) =
1

𝛼𝐶𝑎(𝑉) + 𝛽𝐶𝑎(𝑉)

𝛼𝐶𝑎(𝑉) =
8.5

1 + 𝑒
𝑉−8

−12.5

𝛽𝐶𝑎(𝑉) =
35

1 + 𝑒
𝑉+74
14.5

 

We included a BK current, a calcium-activated potassium current that depends on both voltage 
and intracellular calcium concentration. BK channels are found in both the dendrites and soma 
(6). 

𝐼𝐾
BK = 𝑔𝐵𝐾𝑚𝐵𝐾𝑧𝐵𝐾

2 (𝑉 − 𝐸𝐾)

𝑑𝑚𝐵𝐾

𝑑𝑡
=

𝑚𝐵𝐾∞
(𝑉) − 𝑚𝐵𝐾

𝜏𝑚𝐵𝐾
(𝑉)

𝑚𝐵𝐾∞
(𝑉) =

𝛼𝐵𝐾(𝑉)

𝛼𝐵𝐾(𝑉) + 𝛽𝐵𝐾(𝑉)

𝜏𝐵𝐾(𝑉) =
1

𝛼𝐵𝐾(𝑉) + 𝛽𝐵𝐾(𝑉)

𝛼𝐵𝐾(𝑉) = 7.5

𝛽𝐶𝑎(𝑉) =
. 11

𝑒
𝑉−35
14.9

𝑑𝑧𝐵𝐾

𝑑𝑡
=

𝑧𝐵𝐾∞
(𝐶𝑎) − 𝑧𝐵𝐾

𝜏𝑧(𝐶𝑎)

𝑧𝐵𝐾∞
(𝐶𝑎) =

0.4𝐶𝑎

1 + 0.4𝐶𝑎
𝜏𝑧(𝐶𝑎) = 10

 

We set the ion driving potentials as:  

𝐸𝑁𝑎 = 122 mV
𝐸𝐾 = −90 mV

𝐸𝐶𝑎 = 135 mV
 



The conductances for the healthy Purkinje cell are given below. Note that some channel 
conductances varied depending on the experimental condition and are noted where applicable. 
We denoted somatic compartment conductances as 𝑔𝑥,𝑠 and dendritic compartment 
conductances as 𝑔𝑥,𝑑. We set the conductances as follows:  

𝑔𝐿,𝑠 = 1.369 𝜇S

𝑔𝑁𝑎 = 14.3 𝜇S
𝑔𝐾 = 3.15 𝜇S

𝑔𝑃𝑄,𝑠 = 1.42 𝜇S

𝑔𝐵𝐾,𝑠 = 10 𝜇S

𝑔𝐿,𝑑 = .75 𝜇S

𝑔𝑃𝑄,𝑠 = 10 𝜇S

𝑔𝐵𝐾,𝑠 = 23 𝜇S

 

Calcium Dynamics 

We computed the internal calcium concentration (𝐶𝑎) in three distinct compartments of the 
Purkinje cell: a thin shell beneath the somatic membrane 𝐶𝑎𝑠ℎ, bulk cytosolic concentration  
𝐶𝑎𝑐𝑦, and the proximal dendritic concentration 𝐶𝑎𝑑. All calcium concentrations were measured 

in µM. 
The change in calcium concentration was modeled as a function of all fluxes into and out of 
each compartment as follows: 

𝑑𝐶𝑎𝑠ℎ

𝑑𝑡
=

𝐽𝑃𝑞 − 𝐽𝑃 + 𝐽𝐿

𝜅𝑣𝑜𝑙𝑠ℎ
−

𝐶𝑎𝑠ℎ − 𝐶𝑎𝑐𝑦

𝐷𝑐𝑦,𝑠ℎ

𝑑𝐶𝑎𝑐𝑦

𝑑𝑡
= −

𝐶𝑎𝑐𝑦 − 𝐶𝑎𝑠ℎ

𝐷𝑠ℎ,𝑐𝑦
−

𝐶𝑎𝑐𝑦 − 𝐶𝑎𝑑

𝐷𝑑,𝑐𝑦

𝑑𝐶𝑎𝑑

𝑑𝑡
=

𝐽𝑃𝑞 − 𝐽𝑃 + 𝐽𝐿

𝜅𝑣𝑜𝑙𝑑
−

𝐶𝑎𝑑 − 𝐶𝑎𝑐𝑦

𝐷𝑐𝑦,𝑑

 

In this context, concentration dynamics are influenced by compartment volume and calcium 
buffering. We adopted the assumption of instantaneous buffering, characterized by a volume 
expansion factor 𝜅 = 1000. The compartment volumes were specified as 𝑣𝑜𝑙𝑠ℎ = 6.6 × 10−5 
𝑚𝑚3 and 𝑣𝑜𝑙𝑑 = 7.4 × 10−5 𝑚𝑚3. 

The terms 𝐷𝑥,𝑦 represent flux between two compartments, and were set as:  

𝐷𝑐𝑦,𝑠ℎ = 759 msec 

𝐷𝑠ℎ,𝑐𝑦 = .149 msec 

𝐷𝑐𝑦,𝑑 = .03725 msec 

𝐷𝑑,𝑐𝑦 = .149 msec 

 

We included the calcium-pump flux as 𝐽𝑃. Calcium pumps are responsible for transporting 
calcium ions from the cytosol to the extracellular space and were modeled as a linear process. 



Here we model the somatic (𝐽𝑃,𝑠ℎ) and dendritic (𝐽𝑃,𝑑) calcium pumps as separate processes. 
Similarly, 𝐽𝐿,𝑠ℎ 𝑎𝑛𝑑 𝐽𝐿,𝑑  represented the linear calcium leak from the somatic and dendritic 
extracellular spaces into the cytosol. We balanced these two fluxes to maintain an internal 
calcium concentration of 0.08𝜇 𝑚𝑜𝑙 at rest, when the P/Q channels were closed. 

The two pump terms are described by the following equations: 

𝐽𝑃,𝑠ℎ = 𝑘𝑝,𝑠ℎ𝐶𝑎𝑠ℎ

𝐽𝑃,𝑑 = 𝑘𝑝,𝑑𝐶𝑎𝑑  

With pump strengths 𝑘𝑝,𝑠ℎ = 19.2 msec−1 and 𝑘𝑝,𝑑 = .68 msec−1 . Likewise, the two leak 

terms are given by 

𝐽𝐿,𝑠ℎ = 𝑘𝑙,𝑠ℎ(𝐶𝑎𝑜 − 𝐶𝑎𝑠ℎ)

𝐽𝐿,𝑑 = 𝑘𝑙,𝑑(𝐶𝑎0 − 𝐶𝑎𝑑)  

Likewise, we set the leak strengths as 𝑘𝑙,𝑠ℎ = 1.67 msec−1 and 𝑘𝑙,𝑑 = .05 msec−1. With 𝐶𝑎𝑜 
representing the external calcium concentration and set at 𝐶𝑎𝑜 = 1000 𝜇𝑀 

The flux from the PQ calcium channel is denoted as 𝐽𝑃𝑞, and is given by the following equations:  

𝐽𝑃𝑞,𝑠ℎ =
𝑔𝑝𝑞,𝑠𝑚𝑝𝑞,𝑠(𝑉𝑠 − 𝐸𝐶𝑎)

2𝐹

𝐽𝑃𝑞,𝑑 =
𝑔𝑝𝑞,𝑑𝑚𝑝𝑞,𝑑(𝑉𝑑 − 𝐸𝐶𝑎)

2𝐹

 

where 𝐹 = 9.648846 
𝐶

mmol
 is Faraday’s constant. Recall because calcium is a divalent ion, we 

included a factor of 2. Here, 𝑔𝑝𝑞 is the maximal conductance listed above, and 𝑚𝑝𝑞  is the 

gating variable described above. 

Synaptic gate 

The gating variable for the PC synapse is given by 𝑠𝑃𝐶, with its dynamics described by the 
following equation:  

𝑑𝑠𝑃𝐶

𝑑𝑡
=

1 + tanh(𝑉𝑠 + 10) − 𝑠𝑃𝐶

𝜏𝑃𝐶
 

The time constant 𝜏𝑃𝐶  was set at 10𝑚𝑠𝑒𝑐. As before, 1 + tanh represents a continuous version 
of a delta spike. If the voltage passes above −10 𝑚𝑉, the PC is considered to have fired a spike. 



Our investigation revealed that applying these currents resulted in a Purkinje cell model that 
exhibited a high degree of physiological accuracy while remaining computationally tractable. 
This simplified computational representation enabled rapid, sufficiently precise simulations and 
facilitated the implementation of moderately sized neural circuits on standard laptop hardware. 

Deep Cerebellar Nuclei 

In our study, we classified Deep Cerebellar Nuclei (DCN) neurons as relatively straightforward 
units responsible for relaying information back to the IO. Notably, DCN neurons projecting to 
the IO are GABAergic, primarily influencing the effective gap-junction dynamics among IO 
neurons. We modeled Purkinje cells as the exclusive input source to the DCN. In the absence of 
PC input, DCN neurons tonically spiked; when exposed to weak PC input, their firing rate 
diminished, whereas strong input rendered them silent. To implement this model, we 
employed a Morris–Lecar neuron framework, qualitatively aligning its input–frequency 
response curve to replicate established DCN behavior. The resultant DCN neuron model was 
characterized by the following equations: 

𝑑𝑉

𝑑𝑡
= −𝑔𝑃𝐶,𝑑𝑠𝑃𝐶,𝑖(𝑉 − 𝐸𝐺𝐴𝐵𝐴) − 𝑔𝐿(𝑉 − 𝐸𝐿)

−𝑔𝐾𝑤(𝑉 − 𝐸𝐾) − 𝑔𝐶𝑎𝑚∞(𝑉)(𝑉 − 𝐸𝐶𝑎) + 𝑖𝑎𝑝𝑝

𝑑𝑤

𝑑𝑡
=

𝑤∞(𝑉) − 𝑤

𝜏𝑤(𝑉)

𝑑𝑠𝐷𝐶𝑁

𝑑𝑡
=

1 + tanh(𝑉) − 𝑠𝐷

𝜏𝐷𝐶𝑁

 

We set the conductances and driving potentials to be: 

𝐸𝐶𝑎 = 100 mV
𝐸𝐾 = −70 mV
𝐸𝐿 = −50 mV

𝐸𝐺𝐴𝐵𝐴 = −100 mV
𝑔𝐶𝑎 = 1 𝜇S 
𝑔𝐾 = 2 𝜇S 
𝑔𝐿 = .5 𝜇S 

𝑖𝑎𝑝𝑝 = .17nA

 

The instantaneous functions are described by the following equations: 

𝑚∞(𝑉) =
1 + tanh (

𝑣 − 1
14.5

)

2

𝑤∞(𝑉) =
1 + tanh (

𝑣 − 10
15

)

2

𝜏𝑤(𝑉) =
cosh (

𝑉 − 10
30 )

3

 



Finally, the synaptic variable 𝜏𝐷𝐶𝑁 was set to 10 𝑚𝑠𝑒𝑐. 
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