R studio script
1) Data exploration
hist(data$CHN., main = "Histogram of OC (%)", xlab = "CHN", col = "lightblue")
qqnorm(data$CHN.)
qqline(data$CHN., col = "red")  
shapiro.test(data$CHN.)
install.packages("car")
library(car)
# Perform Levene's test for homogeneity of variance
leveneTest(CHN.~ zone, data = data)


2) Sedimentation accretion and site development
#Load necessary libraries
library(ggplot2)

edata = read.csv(file.choose(), stringsAsFactors = TRUE)
str(edata)

# Scatter plot with linear regression line
ggplot(edata, aes(x = start.elevation, y = elevation.change)) +
  geom_point(aes(color = zone), size = 3) +  # Scatter points, color by zone
  geom_smooth(method = "lm", se = FALSE, aes(color = "Regression Line")) +  # Linear regression line
  labs(x = "Initial Elevation (m)", y = "Elevation Change (m)", title = "Initial Elevation vs. Elevation Change") +
  theme_minimal() +
  theme(legend.position = "bottom")

sum(is.na(edata$zone))
sum(is.na(edata$start.elevation))
sum(is.na(edata$elevation.change))

# Fit the model again with the cleaned data
lm_model <- lm(elevation.change ~ start.elevation, data = edata)
summary(lm_model)

# Fit a linear model with interaction between initial_elevation and zone
lm_model_interaction <- lm(start.elevation ~ elevation.change * zone, data = edata)

# Display the summary of the model
summary(lm_model_interaction)

# Plot with interaction terms
ggplot(edata, aes(y = start.elevation, x = elevation.change, color = zone)) +
  geom_point(size = 3) +  # Scatter points
  geom_smooth(method = "lm", se = FALSE, aes(group = zone)) +  # Separate regression lines for each zone
  labs(x = "Initial Elevation (m)", y = "Elevation Change (m)") +
  theme_minimal() +
  theme(legend.position = "bottom")

# Residual plot
edata$residuals <- residuals(lm_model)
edata$fitted <- fitted(lm_model)

ggplot(edata, aes(x = fitted, y = residuals)) +
  geom_point() +
  geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
  labs(x = "Fitted Values", y = "Residuals")

# Q-Q plot for residuals
qqnorm(lm_model$residuals)
qqline(lm_model$residuals, col = "red")  

# Leverage vs. residuals plot
plot(lm_model, which = 5)  # Leverage vs. Residuals

# Histogram of residuals
ggplot(edata, aes(x = residuals)) +
  geom_histogram(bins = 30, fill = "blue", color = "black") +
  labs(x = "Residuals", y = "Frequency")

# Cook's Distance plot
plot(lm_model, which = 4) 

# Shapiro-Wilk normality test for residuals
shapiro.test(lm_model$residuals) #residuals not normal

###############################################################################
library(MASS)
model_robust <- rlm(elevation.change ~ start.elevation, data = edata)
summary(model_robust)

#Residuals vs fitted
plot(model_robust, which=1)

qqnorm(residuals(model_robust))
qqline(residuals(model_robust), col = "red")  # Adds a reference line

plot(model_robust, which = 3)  # Scale-Location plot
boxplot(residuals(model_robust), main = "Boxplot of Residuals", ylab = "Residuals")

# Shapiro-Wilk normality test for residuals
shapiro.test(model_robust$residuals) # residuals normal but not showing linearity

###############################################################################
install.packages("mgcv")  # Install mgcv package 
library(mgcv)  # Load the mgcv package
table(edata$zone)
str(edata)

# Ensure 'zone' is treated as a factor
edata$zone <- as.factor(edata$zone)

# Fit the GAM model
# Response: elevation.change
# Predictors: zone (categorical), start.elevation (continuous, smoothed per zone)

gam_model1 <- gam(
  elevation.change ~ s(start.elevation, by = izone) + izone,
  data = edata,
  method = "REML"
)

# Step 3: View summary of the model
summary(gam_model1)

Family: gaussian 
Link function: identity 

Formula:
elevation.change ~ s(start.elevation, by = izone) + izone

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.6321     0.1329   4.758 3.73e-06 ***
izoneL        0.1529     0.2343   0.653    0.515    
izoneM        0.1101     0.1570   0.701    0.484    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
                            edf Ref.df      F p-value    
s(start.elevation):izoneH 1.000  1.000  8.708 0.00354 ** 
s(start.elevation):izoneL 6.167  6.682 40.501 < 2e-16 ***
s(start.elevation):izoneM 1.000  1.000  3.715 0.05531 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =  0.813   Deviance explained = 82.2%
-REML = -9.4334  Scale est. = 0.044524  n = 234

# Step 4: Plot the model
plot(gam_model1, pages = 1, scheme = 1, se = TRUE)

  stat_smooth(method = "gam", formula = y ~ s(x), 
              method.args = list(family = gaussian()), 
              se = TRUE, color = "black", size = 1.2) +
  
gam_model2 <- gam(elevation.change ~ s(start.elevation), data = edata)

summary(gam_model2)

# Plot the smooth effect of 'start.elevation' on 'elevation.change'
plot(gam_model, select = 1, 
     xlab = "Initial elevation (mCD)", 
     ylab = "Smooth effect of elevation change (mCD)",
     font.lab = 2, 
     cex.axis = 1.5)

# Generate predictions
predictions <- predict(gam_model1)

# Plot predicted vs actual
ggplot(edata, aes(x = predictions, y = elevation.change)) +
  geom_point() +
  geom_abline(slope = 1, intercept = 0, color = "red") + # 45-degree line
  labs(x = "Predicted Elevation Change (mCD)", y = "Actual Elevation Change (mCD)") +
  theme(
    axis.title.x = element_text(size = 14, face = "bold"),  # Bold and larger x-axis title
    axis.title.y = element_text(size = 14, face = "bold"),  # Bold and larger y-axis title
    axis.text.x = element_text(size = 12),  # Larger x-axis tick labels
    axis.text.y = element_text(size = 12),  # Larger y-axis tick labels
    plot.title = element_text(size = 16, face = "bold")  # Bold and larger plot title
  )

# Plot the effect of the 'zone' variable
plot(gam_model1, select = 2, main = "Effect of Zone on Elevation Change")

# Check model diagnostics
gam.check(gam_model1)

###residuals vs fitted
residuals_gam <- residuals(gam_model)
fitted_gam <- fitted(gam_model)
# Plot residuals vs fitted values
plot(fitted_gam, residuals_gam,
     xlab = "Fitted Values",
     ylab = "Residuals",
     pch = 16, col = "black", 
     cex.lab = 1.5,
     font.lab = 2)

# Add a horizontal line at 0 (this helps assess random scatter around 0)
abline(h = 0, col = "red", lwd = 2)

3) Organic carbon stock and accumulation rates
soil <- read.csv(file.choose(), stringsAsFactors = TRUE)
str(soil)
library(dplyr)
soil <- soil %>%
  mutate(
    thickness = bottom - top,
    OC_g_cm2 = Bulk.density * (CHN. / 100) * thickness
  )

OC_core <- soil %>%
  group_by(core_id, zone) %>%
  summarise(
    OC_stock_g_cm2 = sum(OC_g_cm2),
    .groups = "drop"
  ) %>%
  mutate(
    OC_stock_t_ha = OC_stock_g_cm2 * 10  # convert g/cm2 to t/ha
  )

# To get average per zone:
zone_avg_OC <- OC_core %>%
  group_by(zone) %>%
  summarise(
    mean_OC_t_ha = mean(OC_stock_t_ha, na.rm = TRUE),
    sd_OC_t_ha = sd(OC_stock_t_ha, na.rm = TRUE),
    n = n(),
    .groups = "drop"
  )

print(zone_avg_OC)

site_area_ha <- 798000 / 10000  # Convert m² to ha (1 ha = 10,000 m²)

# Use mean OC per ha across all cores
mean_OC_t_ha <- mean(OC_core$OC_stock_t_ha, na.rm = TRUE)

# Total OC stock across the site (in tonnes)
total_OC_site_tonnes <- mean_OC_t_ha * site_area_ha

print(total_OC_site_tonnes) <- 2976.739

OC_accumulation_rate_t_ha_yr <- mean_OC_t_ha / 19 <- 1.963289

###############################################################################
#BOOTSTRAP to estimate uncertainty
###############################################################################
## core based method boot strap
library(boot)
library(dplyr)
str(soil)
# Summarize per core
core_summaries <- soil %>%
  group_by(core_id) %>%
  summarise(
    total_stock_tCha = sum(Bulk.density * (CHN. / 100) * thickness) * 10,  # <- multiply by 10 to get t/ha!
    .groups = "drop"
  ) %>%
  mutate(accumulation_tChaYr = total_stock_tCha / 19)

# Calculate carbon stock per core in t C/ha
soil$carbon_density <- soil$Bulk.density * (soil$CHN. / 100)         # g C/cm³
soil$carbon_stock_gcm2 <- soil$carbon_density * soil$thickness           # g C/cm²
soil$carbon_stock_tCha <- soil$carbon_stock_gcm2                     # 1 g/cm² = 1 t/ha
soil$carbon_accumulation_tChaYr <- soil$carbon_stock_tCha / 19       # divide by 19 years

# Bootstrap function to resample from the core-level accumulation values
bootstrap_mean <- function(data, indices) {
  sampled_data <- data[indices]
  return(mean(sampled_data, na.rm = TRUE))
}

# Run the bootstrap on core_summaries
set.seed(123)
boot_result <- boot(data = core_summaries$accumulation_tChaYr, 
                    statistic = bootstrap_mean,
                    R = 10000)

# 95% confidence interval from bootstrap distribution
ci <- boot.ci(boot_result, type = "perc")$percent[4:5]

# Calculate mean and total site OC accumulation
mean_accumulation <- mean(core_summaries$accumulation_tChaYr)
site_area_ha <- 78.9
total_OC_per_year <- mean_accumulation * site_area_ha
ci_total <- ci * site_area_ha

# Output
cat("Mean OC accumulation rate (t C/ha/yr):", round(mean_accumulation, 2), "\n")
cat("95% CI (t C/ha/yr):", round(ci, 2), "\n")
cat("Total site OC accumulation (t C/yr):", round(total_OC_per_year, 2), "\n")
cat("95% CI for total site OC (t C/yr):", round(ci_total, 2), "\n")
# Output
> cat("Mean OC accumulation rate (t C/ha/yr):", round(mean_accumulation, 2), "\n")
Mean OC accumulation rate (t C/ha/yr): 1.96 
> cat("95% CI (t C/ha/yr):", round(ci, 2), "\n")
95% CI (t C/ha/yr): 1.67 2.3 
> cat("Total site OC accumulation (t C/yr):", round(total_OC_per_year, 2), "\n")
Total site OC accumulation (t C/yr): 154.9 
> cat("95% CI for total site OC (t C/yr):", round(ci_total, 2), "\n")
95% CI for total site OC (t C/yr): 131.75 181.29 
> summary(soil$carbon_accumulation_tChaYr)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
0.003993 0.006657 0.007572 0.007699 0.008637 0.012983 
> sd(soil$carbon_accumulation_tChaYr)
[1] 0.001464428

#distribution of OC accumulation plot
library(ggplot2)
ggplot(data.frame(bootstrap = boot_result$t), aes(x = bootstrap)) +
  geom_density(fill = "lightblue") +
  labs(x = "OC Accumulation (t C/ha/yr)", title = "Bootstrap Distribution of OC Accumulation") +
  theme_minimal()

4) Temporal and Spatial Patterns of Sediment Properties and OC 
#GAMM to model non-linear changes in organic carbon with depth while accounting 
#for repeated measures within sediment cores. Depth (top) was included as a smooth term, 
#elevation zone as a fixed effect, and core ID (station) as a random intercept.”
################################################################################

##### depth variation analysis
###cant use this as the data is not linear
library(lme4)

# linear mixed-effects model
model <- lmer(CHN. ~ top + zone + (1 | station), data = data)
model2 <- lmer(CHN. ~ top * zone + (1 | station), data = data)

# Summarise the model
summary(model)
summary(model2)
# 1. Check residuals
residuals <- residuals(model)
shapiro.test(residuals(model))
shapiro.test(residuals(model2))
# Standardised (Pearson) residuals for mixed model
standardised_residuals <- residuals(model, type = "pearson")

# Plot histogram of residuals
hist(standardised_residuals)

# Plot residuals vs fitted values to check for patterns
fitted_values <- fitted(model)
plot(fitted_values, standardised_residuals)
abline(h = 0, col = "red")

# 2. Cook's Distance
cooks_dist <- cooks.distance(model)
# Plot Cook's Distance
plot(cooks_dist, type = "h", main = "Cook's Distance", ylab = "Cook's Distance")

# Identify influential points
influential_points <- which(cooks_dist > 1)  # or use a threshold of your choice

# 3. Leverage
leverage <- hatvalues(model)
plot(leverage)

# 4. DFBETAs
dfbetas <- dfbetas(model)
summary(dfbetas)

# 5. Influence Plot
library(car)
influencePlot(model)  # requires car package
str(data)

data$zone <- relevel(data$zone, ref = "R") #makes r zone the reference for the model
# Fit a mixed-effects model with an interaction term between Depth and Zone
model_interaction <- lmer(CHN. ~ top * zone + (1 | station), data = data)

# Summarize the model
summary(model_interaction)
shapiro.test(residuals(model_interaction)) # still not normal
# Using mgcv's gamm function
library(mgcv)
model_gamm <- gamm(CHN. ~ zone + s(top, by = zone, k = 30), random = list(station = ~1), data = data)
#check diagnostics
plot(model_gamm$gam, pages = 1)
gam.check(model_gamm$gam)
###The estimated degrees of freedom (edf) are still well below k':edfs: ~1 to ~6
#k': 29 → This means the smoothers are not hitting the complexity limit.
#The k-index is stable (0.92) and hasn't changed from previous models.
#P-values are very low, but that’s not necessarily a problem when edf << k'. 

# Check model summary
summary(model_gamm$lme)
ranef(model_gamm$lme)
# Check model summary
summary(model_gamm3$lme)

################################################################################
### Visualize the correlation between OC and other variables
###exploratory analysis
str(data)
library(corrplot)
# Create a correlation matrix for OC and other variables

# Calculate the correlation matrix
corr_matrix <- cor(data[, c("CHN.", "Bulk.density", "Grain.size", "sand", "silt", "clay")], 
                   use = "pairwise.complete.obs", method = "spearman")

# Define custom labels
custom_labels <- c("OC %", "Dry Bulk Density g cm\u00b3", "Grain size µg", "sand %", "silt%", "clay%")

# Set the colnames of the correlation matrix to the custom labels
colnames(corr_matrix) <- custom_labels
rownames(corr_matrix) <- custom_labels  

# Create the correlation plot with custom labels
corrplot(corr_matrix, 
         method = "circle", 
         type = "upper", 
         tl.cex = 0.8, 
         tl.col = "black",  
         tl.srt = 45)  

############################################################################
#### calculating surface sediments
library(dplyr)
library(ggplot2)
library(tidyr)


# List of sediment properties
props <- c("Bulk.density", "Grain.size", "sand", "silt", "clay", "OC%")

# Compute variance and SD for each 5 cm segment
variance_table <- data %>%
  group_by(depth) %>%  
  summarise(across(all_of(props),
                   list(var = ~var(.x, na.rm = TRUE),
                        sd  = ~sd(.x, na.rm = TRUE)),
                   .names = "{col}_{fn}"),
            n = n(),
            .groups = "drop")

print(variance_table)

# Optional: reshape for plotting
variance_long <- variance_table %>%
  pivot_longer(cols = -c(depth, n), 
               names_to = c("variable", "stat"), 
               names_sep = "_") %>%
  filter(stat == "var")  # or "sd" if you prefer

# Plot variance vs depth
ggplot(variance_long, aes(x = depth, y = value, color = variable)) +
  geom_line(size = 1) +
  geom_point(size = 2) +
  labs(x = "Depth (cm)", y = "Variance", color = "Property") +
  theme_minimal()

# View variance for OC
variance_table %>%
  select(depth, OC%_var, OC%_sd) %>%
  print(n = 20)  # show first 20 rows

#####descriptive

#Filter only top 40 cm 
surface_summary <- data %>%
  filter(top <= 40) %>% 
  group_by(zone) %>%
  summarise(
    # Bulk density
    bd_median = median(Bulk.density, na.rm = TRUE),
    bd_se = sd(Bulk.density, na.rm = TRUE) / sqrt(sum(!is.na(Bulk.density))),
    
    # Grain size
    gs_median = median(Grain.size, na.rm = TRUE),
    gs_se = sd(Grain.size, na.rm = TRUE) / sqrt(sum(!is.na(Grain.size))),
    
    # Sand
    sand_median = median(sand, na.rm = TRUE),
    sand_se = sd(sand, na.rm = TRUE) / sqrt(sum(!is.na(sand))),
    
    # Silt
    silt_median = median(silt, na.rm = TRUE),
    silt_se = sd(silt, na.rm = TRUE) / sqrt(sum(!is.na(silt))),
    
    # Clay
    clay_median = median(clay, na.rm = TRUE),
    clay_se = sd(clay, na.rm = TRUE) / sqrt(sum(!is.na(clay))),
    
    # Organic carbon 
    chn_median = median(OC%, na.rm = TRUE),
    chn_se = sd(OC%, na.rm = TRUE) / sqrt(sum(!is.na(CHN.))),
    
    .groups = "drop"
  )

print(surface_summary)
############################################################################

Variation in environmental variables
##BD

library(mgcv)
gam_BD <- gam(
  Bulk.density ~ zone + s(depth, by = zone, k = 10) + s(station, bs = "re"),
  method = "REML", 
  data = data
)

# Make sure data is ordered
data <- data[order(data$station, data$top), ]

# Get model residuals in matching order
res <- residuals(gam_BD)

# Core (station) IDs
core_ids <- data$station

rho_vals <- numeric()

for (core in unique(core_ids)) {
  core_res <- res[core_ids == core]
  if (length(core_res) > 1) {
    rho_vals <- c(rho_vals, cor(core_res[-1], core_res[-length(core_res)]))
  }
}

rho_est <- mean(rho_vals, na.rm = TRUE)
rho_est #tells the model that each 5 cm section is positively correlated with the previous section in the same core.


# Create AR.start flag for each core
data$AR.start <- c(TRUE, diff(as.numeric(data$station)) != 0)

# Fit BAM with AR(1) correlation
#refit bulk density model in bam() using this rho value:
bam_BD <- bam(
  Bulk.density ~ zone + s(depth, by = zone, k = 15) + s(station, bs = "re"),
  data = data,
  method = "REML",
  rho = 0.434,       # your estimated AR(1) correlation
  AR.start = data$AR.start
)

# Fit BAM with AR(1) correlation and factor-smooth interaction
bam_BD2 <- bam(
  Bulk.density ~ zone + 
    s(depth, by = zone, k = 15) +           # more flexible depth smooth per zone
    s(station, bs = "re") +               # random intercept for cores
    s(depth, station, bs = "fs", k = 5),    # core-specific depth profiles (factor-smooth interaction)
  data = data,
  method = "fREML",
  rho = 0.434,                             # AR(1) from residuals
  AR.start = data$AR.start,
  family = gaussian()
)

# Check diagnostics
gam.check(bam_BD2)

gam.check(bam_BD) # check diagnostics

plot(bam_BD, pages=1, rug=TRUE) # plot smooths per zone 

preds <- predict(bam_BD, type="response", se.fit=TRUE) # extract predictions for reporting

summary(bam_BD)
summary(bam_BD2)

###############################################################################
###OC variation
Justification why bam not gamm
gamm()
· Uses lme() from nlme internally for random effects.
· Handles nested/hierarchical data well but is slower with large datasets.
· Random effects are fit using REML via mixed model machinery, which can be less efficient with many levels (e.g., many cores).
· Limited in handling factor-smooth interactions efficiently for large datasets.

2. bam()
· Stands for “Big Additive Model”; optimized version of gam() for large datasets.
· Can handle thousands of observations quickly.
· Supports complex smooths, factor-smooth interactions, and random effects via s(core, bs="re").
· Uses fREML for fast, stable estimation.
· Optional discretization (discrete=TRUE) speeds up computation for large data without losing accuracy.

gam_OC <- gam(
  OC% ~ zone + s(depth, by = zone, k = 10) + s(station, bs = "re"),
  method = "REML", 
  data = data
)

# Make sure data is ordered
data <- data[order(data$station, data$top), ]


# Get model residuals in matching order
res <- residuals(gam_OC)

# Core (station) IDs
core_ids <- data$station

rho_vals <- numeric()

for (core in unique(core_ids)) {
  core_res <- res[core_ids == core]
  if (length(core_res) > 1) {
    rho_vals <- c(rho_vals, cor(core_res[-1], core_res[-length(core_res)]))
  }
}

rho_est <- mean(rho_vals, na.rm = TRUE)
rho_est #tells the model that each 5 cm section is positively correlated with the previous section in the same core.


# Create AR.start flag for each core
data$AR.start <- c(TRUE, diff(as.numeric(data$station)) != 0)

# Fit BAM with AR(1) correlation
#refit OC model in bam() using this rho value:
bam_OC <- bam(
OC% ~ zone + s(depth, by = zone, k = 10) + s(station, bs = "re"),
  data = data,
  method = "REML",
  rho = 0.363,       # your estimated AR(1) correlation
  AR.start = data$AR.start
)

gam.check(bam_OC) # check diagnotics

plot(bam_OC, pages=1, rug=TRUE) # plot smooths per zone 

summary(bam_OC) 



###############################################################################
#############grain size variation

gam_GS <- gam(
  Grain.size ~ zone + s(depth, by = zone, k = 10) + s(station, bs = "re"),
  method = "REML", 
  data = data
)

# Make sure data is ordered
data <- data[order(data$station, data$top), ]

# Get model residuals in matching order
res <- residuals(gam_GS)

# Core (station) IDs
core_ids <- data$station

rho_vals <- numeric()

for (core in unique(core_ids)) {
  core_res <- res[core_ids == core]
  if (length(core_res) > 1) {
    rho_vals <- c(rho_vals, cor(core_res[-1], core_res[-length(core_res)]))
  }
}

rho_est <- mean(rho_vals, na.rm = TRUE)
rho_est #tells the model that each 5 cm section is positively correlated with the previous section in the same core.


# Create AR.start flag for each core
data$AR.start <- c(TRUE, diff(as.numeric(data$station)) != 0)

# Fit BAM with AR(1) correlation
#refit grain size model in bam() using this rho value:
bam_GS <- bam(
  Grain.size ~ zone + s(depth, by = zone, k = 10) + s(station, bs = "re"),
  data = data,
  method = "REML",
  rho = 0.17,       # your estimated AR(1) correlation
  AR.start = data$AR.start
)


gam.check(bam_GS) # check diagnotics

plot(bam_GS, pages=1, rug=TRUE) # plot smooths per zone 

summary(bam_GS) 

##############################################################################
#####sediment composition
summary_table <- data %>%
  group_by(zone) %>%
  summarise(
    # Bulk density
    bd_median = median(Bulk.density, na.rm = TRUE),
    bd_se = sd(Bulk.density, na.rm = TRUE) / sqrt(sum(!is.na(Bulk.density))),
    
    # Grain size
    gs_median = median(Grain.size, na.rm = TRUE),
    gs_se = sd(Grain.size, na.rm = TRUE) / sqrt(sum(!is.na(Grain.size))),
    
    # Sand
    sand_median = median(sand, na.rm = TRUE),
    sand_se = sd(sand, na.rm = TRUE) / sqrt(sum(!is.na(sand))),
    
    # Silt
    silt_median = median(silt, na.rm = TRUE),
    silt_se = sd(silt, na.rm = TRUE) / sqrt(sum(!is.na(silt))),
    
    # Clay
    clay_median = median(clay, na.rm = TRUE),
    clay_se = sd(clay, na.rm = TRUE) / sqrt(sum(!is.na(clay))),
    
    .groups = "drop"
  )

print(summary_table)

# Ensure data is ordered by core and depth
data <- data[order(data$station, data$top), ]

# AR.start flag for first subsection in each core
data$AR.start <- c(TRUE, diff(as.numeric(data$station)) != 0)

estimate_rho <- function(response) {
  res <- residuals(gam(response ~ s(depth) + s(station, bs="re"), data=data, method="REML"))
  rho_vals <- numeric()
  for(core in unique(data$station)) {
    core_res <- res[data$station == core]
    if(length(core_res) > 1) {
      rho_vals <- c(rho_vals, cor(core_res[-1], core_res[-length(core_res)]))
    }
  }
  mean(rho_vals, na.rm=TRUE)
}

rho_sand <- estimate_rho(data$sand)
rho_silt <- estimate_rho(data$silt)
rho_clay <- estimate_rho(data$clay)

# mvbind combines the response variables
bam_sand <- bam(sand ~ zone + s(depth, by=zone, k=15) + s(station, bs="re"),
                data = data,
                method = "fREML",
                rho = rho_sand,
                AR.start = data$AR.start)

bam_silt <- bam(silt ~ zone + s(depth, by=zone, k=15) + s(station, bs="re"),
                data = data,
                method = "fREML",
                rho = rho_silt,
                AR.start = data$AR.start)

bam_clay <- bam(clay ~ zone + s(depth, by=zone, k=15) + s(station, bs="re"),
                data = data,
                method = "fREML",
                rho = rho_clay,
                AR.start = data$AR.start)

# Check residuals and smooths
gam.check(bam_sand)
gam.check(bam_silt)
gam.check(bam_clay)

# Plot smooths for each zone
plot(bam_sand, pages = 1, rug = TRUE)
plot(bam_silt, pages = 1, rug = TRUE)
plot(bam_clay, pages = 1, rug = TRUE)

summary(bam_sand)
summary(bam_silt)
summary(bam_clay)

######################################################################

