

Supplemental Materials

2

3 Poxvirus Replication Remodels Host m⁶A Epitranscriptome to Advance

4 Infection

5 Taehyung Kwon¹, Demosthenes P. Morales², Abigale S. Mikolitis¹, Phillip M. Mach¹, Cheryl D.
6 Gleasner³, Sofiya N. Micheva-Viteva^{1*}

7

⁸ ¹ Biochemistry and Biotechnology Group (B-TEK), Bioscience Division, Los Alamos National
⁹ Laboratory, New Mexico, USA

10 ² Center for Integrated Nanotechnologies (MPA-CINT), Los Alamos National Laboratory, New Mexico,
11 USA.

12 ³ Genomics and Bioanalytics Group (B-GEN), Bioscience Division, Los Alamos National Laboratory,
13 New Mexico, USA

14

15 * Corresponding author

16 E-mail address: sviteva@lanl.gov

17 **Supplemental Texts: Text S1 – S3**

18 Text S1. Motif analysis of m⁶A sites across differentially m6A-modified regions.
19 Text S2. Persistent differentially m6A-modified regions associated with host-virus interaction.
20 Text S3. Gene set enrichment analysis of GO terms for differentially m6A-modified genes.

21 **Supplemental Figures: Figures S1 – S11**

22 Figure S1. Summary of host differentially m⁶A-modified regions by locus type.
23 Figure S2. Summary of the motif analysis of host differentially m⁶A-modified regions.
24 Figure S3. Dynamics of m⁶A-modified transcripts in VV-infected Vero cells.
25 Figure S4. Dispersion plot of host differential gene expressions and host differential m⁶A modifications.
26 Figure S5. Changes in m⁶A-modifications detected in *YTHDF1* 5'UTR region.
27 Figure S6. RT-qPCR analysis for *YTHDF1* transcripts in VV-infected Vero cells.
28 Figure S7. Fluctuations of *YTHDF1* transcripts in VV-infected cells detected by single molecule RNA
29 fluorescence *in situ* hybridization (smRNA-FISH).
30 Figure S8. Vaccinia virus spread within monolayers of Vero cells.
31 Figure S9. Label-free MS/MS proteomics analysis of VV-infected human skin endothelial cells (HMEC-
32 1) reveal co-expression of YTHDF1 and ARHGEF2.
33 Figure S10. RNAi knockdown of *YTHDF1* restricts Vaccinia virus replication in human skin endothelial
34 cells.
35 Figure S11. Real-Time quantitative PCR evaluation of FBXO31 transcript knockdown by RNAi.
36
37

38 **Text S1. Motif analysis of m⁶A sites across differentially m6A-modified regions.**

39 Motif enrichment analysis identified GACGA as the most enriched 5-mer motif at predicted m⁶A
40 modification sites across all three time points (**Figure S2**). This motif contains the canonical RA*C
41 sequence (R=A or G; A*=m⁶A modification site), which partially overlaps with the previously reported
42 DRA*CH motif (D=A, G, or U; H=A, C, or U) (Ke et al. 2015).

43

44

45 **Text S2. Persistent differentially m6A-modified regions associated with host-virus interaction.**

46 *Early infection phase:* We found *HYAL2*, a known surface receptor for the Jaagsiekte sheep
47 retrovirus (Rai et al. 2001); *HRAS*, which encodes a GTPase that facilitates viral entry for hepatitis C and
48 influenza viruses (Zona et al. 2013); and *EPHA2*, which promotes entry of various viruses (Lupberger et al.
49 2011; Chen et al. 2018). Additionally, two hypo-methylated DMGs—*ILF3*, encoding interleukin enhancer-
50 binding factor 3, and *IRF3*, encoding interferon regulatory factor 3—are known to mediate host immune
51 responses that restrict viral replication (Collins et al. 2004; Watson et al. 2020; Nazitto et al. 2021).
52 Although *ILF3* overexpression has been reported to suppress innate immune responses in some contexts
53 (Nazitto et al. 2021), its transcript level was not significantly altered in our study. Lastly, *CTBP1*, a
54 transcriptional co-repressor known to inhibit viral replication (Chinnadurai et al. 2007; Subramanian et al.
55 2013), was hypo-methylated during the early phase of infection.

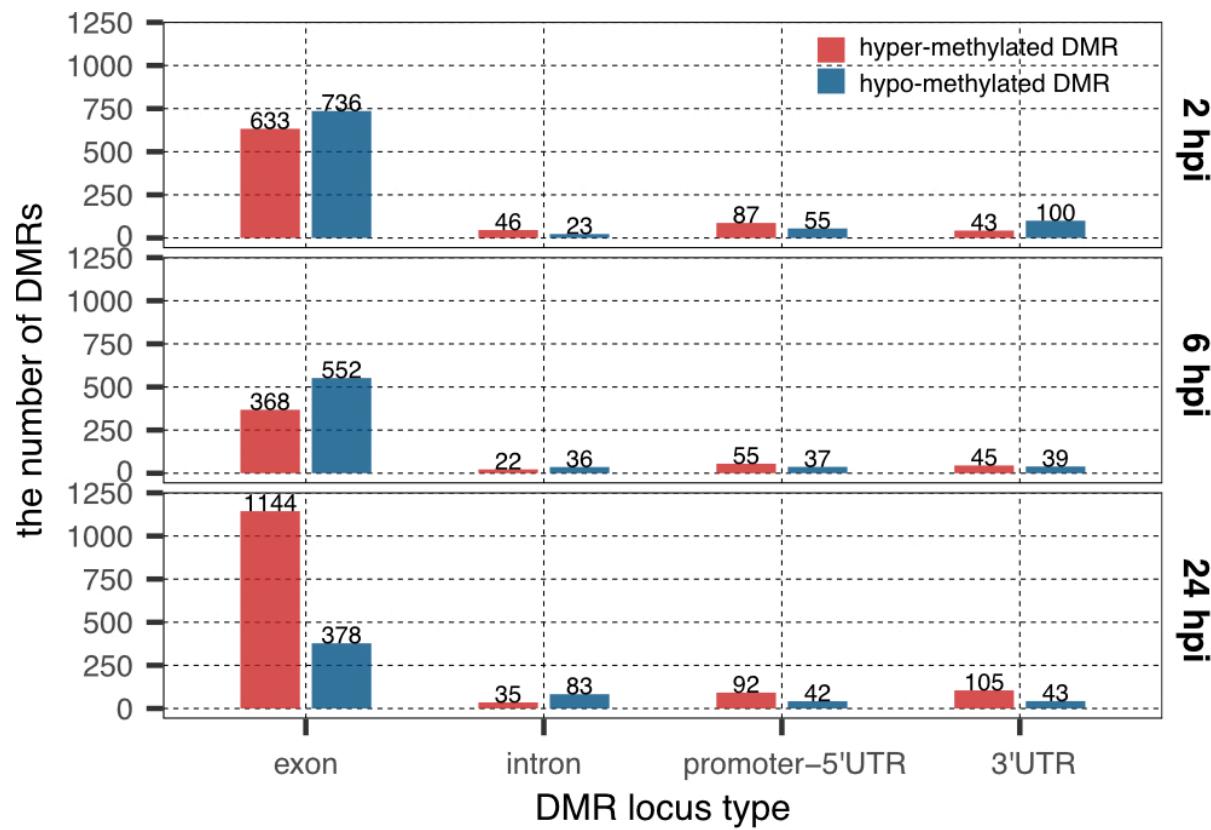
56 *Late infection phase:* *UBE2M*, known to enhance antiviral activity against RNA viruses (Kong et
57 al. 2023), displayed hyper-methylation during the late infection phase. In contrast, *AKT1*, which participates
58 in host responses to viral replication (Sun et al. 2008; Ezell et al. 2012), and *TRIM26*, which facilitates the
59 replication of hepatitis and herpes simplex viruses (Dhawan et al. 2021; Liang et al. 2021), were both
60 consistently hypo-methylated.

61 *Persistent throughout infection:* Three genes showed consistent hypo-methylation: *RANGAP1*,
62 which is essential for influenza virus replication (Munier et al. 2013); *BSDC1*, which contains bipartite
63 tryptophan motifs and contributes to VV virion transport (Dodding et al. 2011); and *CCNF* (also known as
64 *FBXO1*), which restricts virion infectivity through ubiquitination of HIV virulence factors (Augustine et al.
65 2017). Two genes were consistently hyper-methylated across the infection period. These included *CREB1*,
66 which regulates host antiviral responses against various viruses (Tomalka et al. 2021; Zhao et al. 2021; Zhu
67 et al. 2022) and *HDAC4*, a key component of type I interferon (IFN) signaling and a known restriction
68 factor for VV infection (Lu et al. 2019; Yang et al. 2019).

69

70

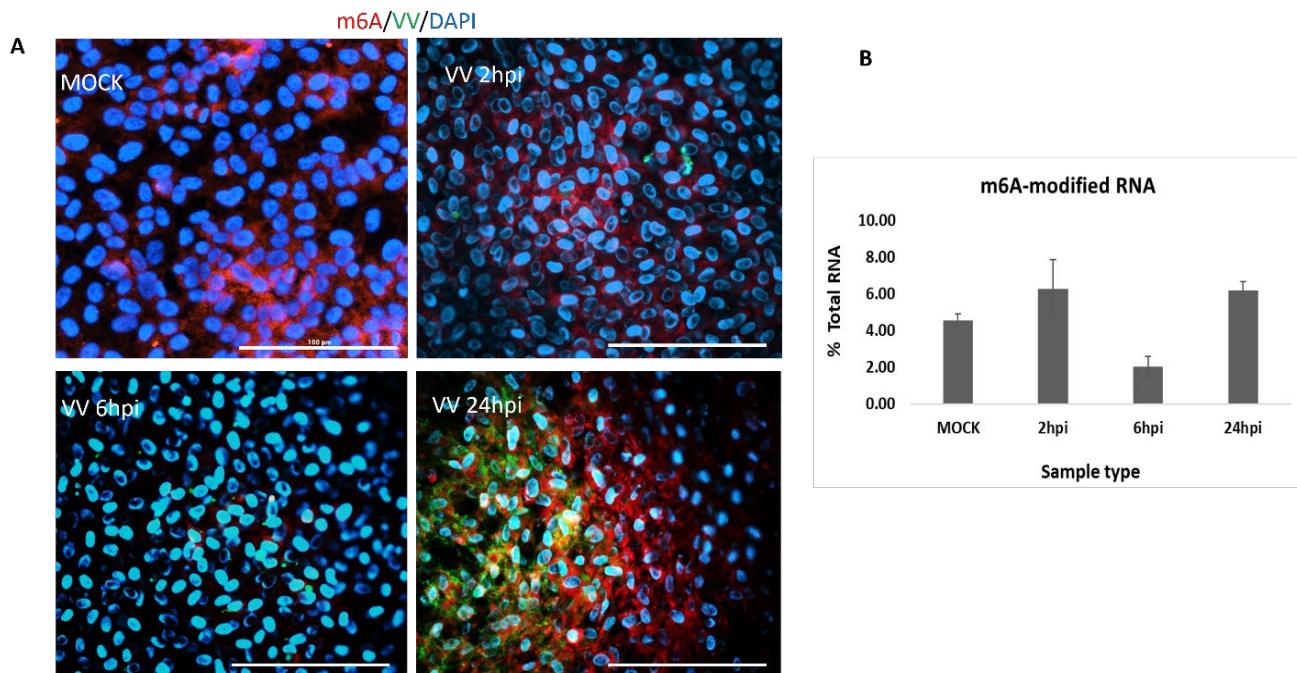
71 **Text S3. Gene set enrichment analysis of GO terms for differentially m6A-modified genes.**


72 GSEA of GO terms revealed that hyper-methylated DMGs at 2 hpi were enriched in genes
73 involved in apoptotic signaling regulation (GO:2001242; FDR-adjusted *P*-value=0.12), as well as genes
74 associated with cell growth and response to growth factor stimulus (GO:0070848 and GO:0071363; FDR-
75 adjusted *P*-value > 0.25) (**Figure S9**). These results suggest that the early stage of VV infection may
76 activate innate immune responses and cell cycle regulatory pathways. In contrast, DMRs identified at 6
77 hpi and 24 hpi did not show significant enrichment in GO terms or KEGG pathways (**Figures S9** and
78 **S10**), and overall GSEA results for these time points yielded low statistical significance (**Figure S9**).

79 The DMGs detected in the early infection phase were enriched in negative of DNA transcription
80 and RNA biosynthesis (GO:0045892 and GO:1902679; FDR-adjusted *P*-value=0.14). Consistently hypo-
81 methylated genes detected in the early infection phase (*BRMS1*, *ILF3*, *HRAS*, *KLF1*, *SRA1*, and *ZNF516*)
82 and across all time points (*ZNF133*, *ZNF496*, and *ZNF671*) were associated with RNA biosynthesis
83 regulation process (GO:2001141) (**Figure 2**).

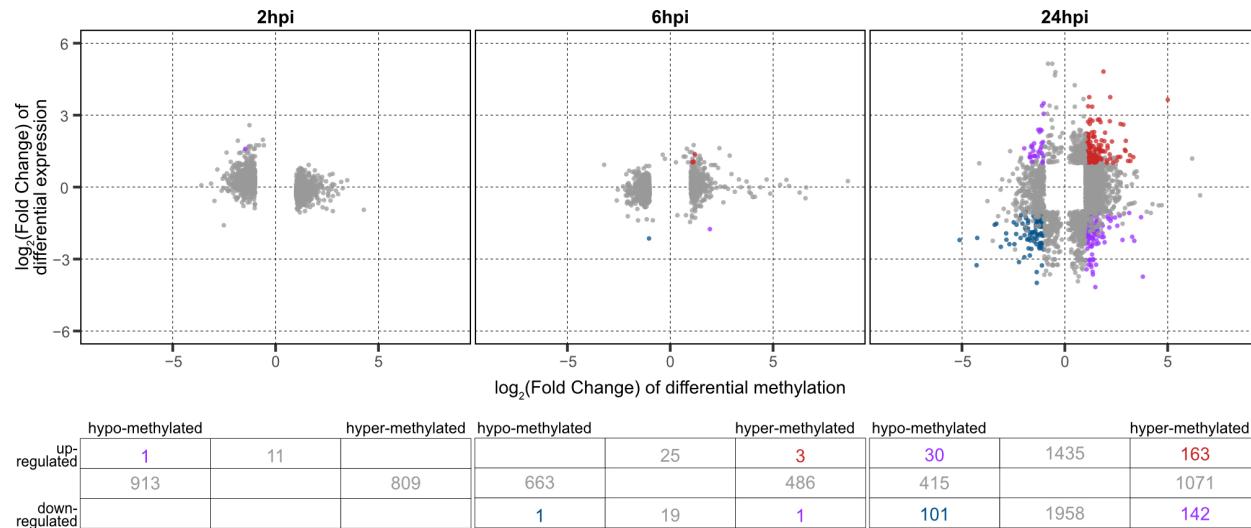
84 Several DMGs associated with protein modification process (GO:0036211; FDR-adjusted *P*-
85 value > 0.25) and ubiquitin-dependent protein catabolic process (GO:0006511; FDR-adjusted *P*-value >
86 0.25). These included 11 DMGs observed during the early infection phase (*B4GAT1*, *BRMS1*, *CSNK1G3*,
87 *CTCF*, *HMG20B*, *HRAS*, *HYAL2*, *ILF3*, *STK25*, *TADA3*, and *TNFSF15*), two DMGs during the late
88 infection phase (*GATAD2A* and *UBE2M*), and six persistent DMGs (*ATXN7L3*, *CREB1*, *FBXO31*,
89 *HDAC4*, *IRF2BP1*, and *RANGAPI*) (**Table S1**). Additionally, we identified five DMGs during the late
90 phase of infection that were associated with the ubiquitin-dependent protein catabolic process
91 (GO:0006511; FDR-adjusted *P*-value > 0.25): *AKT1*, *ERCC8*, *FBXO38*, *LOC103223312*, and *STUB1*
92 (**Table S1**).

93

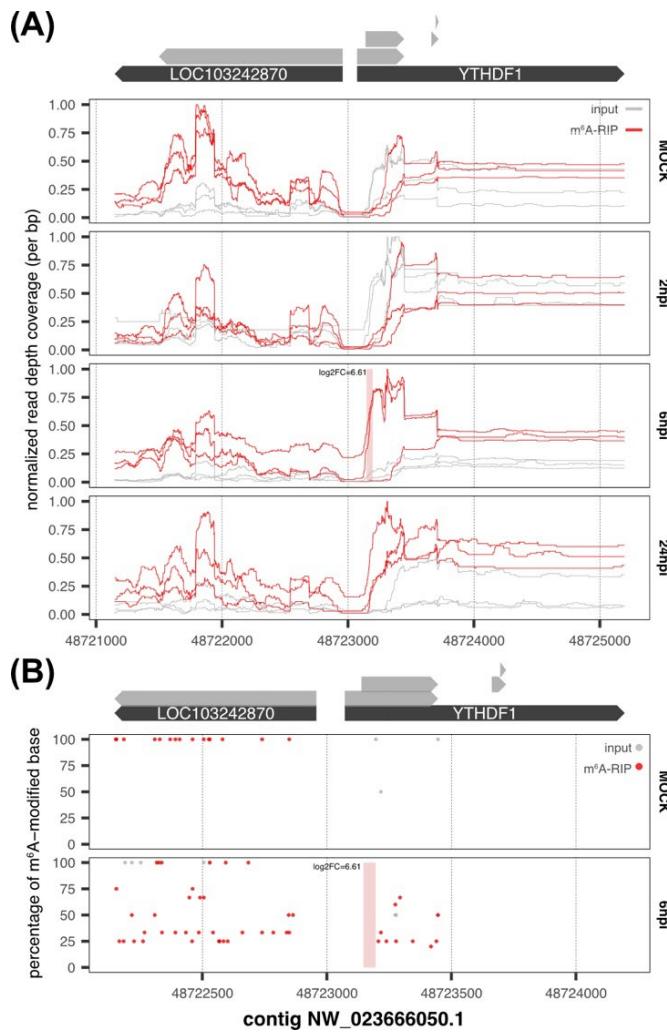

94 Figure S1. Summary of host differentially m⁶A-modified regions by locus type.

97 **Figure S2. Summary of the motif analysis of host differentially m⁶A-modified regions.**

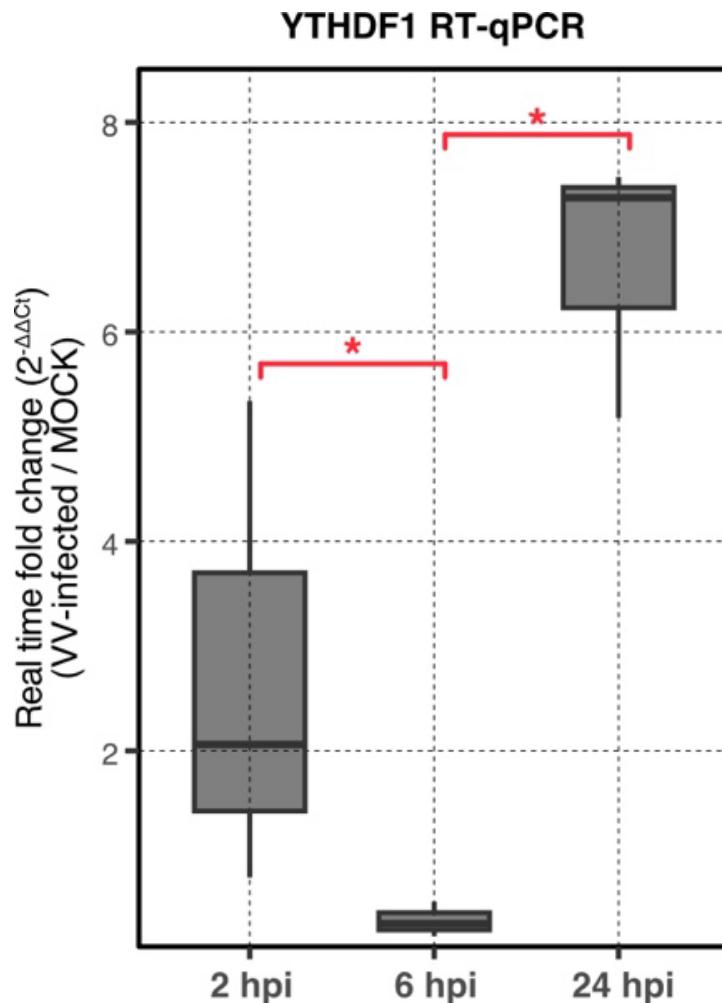
98


99 **Figure S3. Dynamics of m⁶A-modified transcripts in VV-infected Vero cells. (A)** *In situ* fluorescence
100 immunocytochemistry imaging of m⁶A-modifications on global transcriptome (left) and its quantitative
101 analysis (right) The m⁶A-modified transcripts (red) are detected with consecutive binding of primary N6-
102 methyladenosine mAb (CST, D9D9W) and secondary anti-rabbit AlexaFluor 555 Ab. VV proteins are
103 labeled with primary anti-VV antibody (LSBio, LS-C103107) and secondary anti-mouse AlexaFluor 488
104 Ab. Cell nuclei (blue) are labeled with DAPI. The white scale bar on each image corresponds to 100 μ m.
105 **(B)** Quantitative analysis of m⁶A-RNA modifications was performed on purified total RNA isolated from
106 MOCK-treated and VV-infected cells utilizing Fluorimetric m6A Methylation Kit (ab23349). The relative
107 m⁶A RNA methylation status was calculated as percentage of total input RNA. Shown are the average
108 and sdev from four independent infection experiments.

109

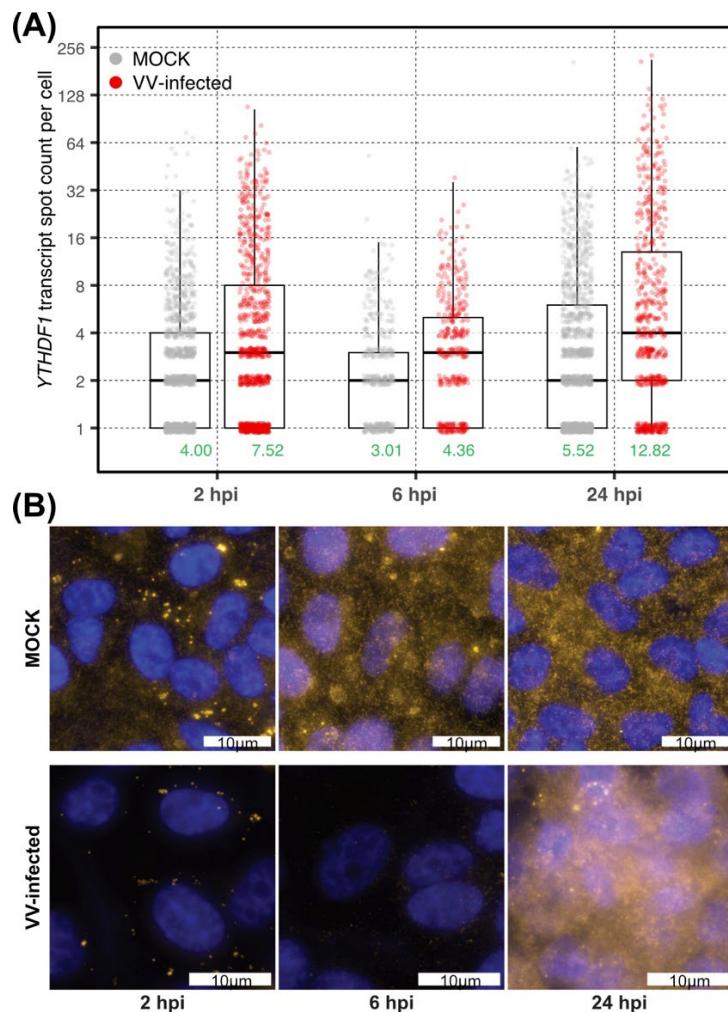

110

111 **Figure S4. Dispersion plot of host differential gene expressions and host differential m⁶A
112 modifications.** Top panel indicates the overlapping features between the results of RNA-seq and MeRIP-
113 seq analyses. Bottom panel indicates the numbers of loci in each category. Grey colored features indicate
114 non-significant features.



115

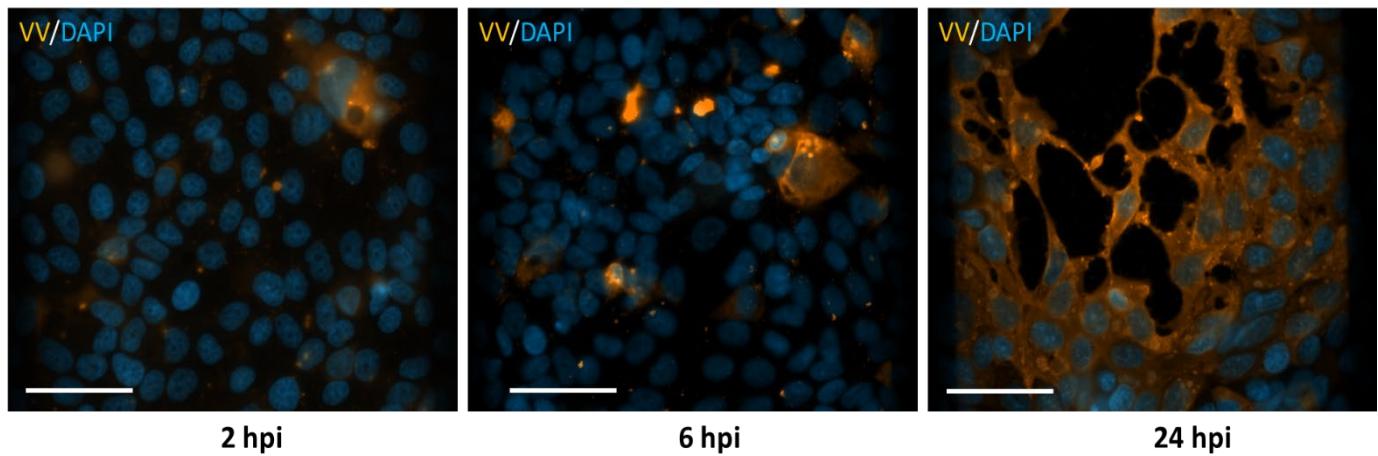
116 **Figure S5. Changes in m⁶A-modifications detected in *YTHDF1* 5'UTR region.** The pink rectangle
 117 indicates the differentially m⁶A-modified region detected in MeRIP-seq analysis. **(A)** Graph of normalized
 118 read depth coverage from MeRIP-seq analysis of input and m⁶A-RIP fractions. The top panel illustrates
 119 corresponding genomic positions on genic (black) and exonic (grey) regions on the contig
 120 NW_023666050.1. The bottom panel illustrates normalized read depth coverages for each biological
 121 replicate of either m⁶A-RIP (red) and input (grey) samples across different treatments. **(B)** Graph of the
 122 percentage of m⁶A-modified bases from Oxford Nanopore Direct RNA sequencing data. The top panel
 123 illustrates corresponding genomic positions on genic (black) and exonic (grey) regions on the contig
 124 NW_023666050.1. The bottom panel illustrates the percentage of m⁶A-modified bases over 0% for each
 125 genomic location in either m⁶A-RIP (red) and input (grey) samples across different treatments.



127 **Figure S6. RT-qPCR analysis for *YTHDF1* transcripts in VV-infected Vero cells.** The *YTHDF1* and
128 *Actin-beta* transcript abundance was calculated in total (input RNA) samples with real-time quantitative
129 PCR. For each sample, *YTHDF1* transcript levels were normalized to *Actin-beta* transcript and fold
130 change was calculated as ratio between VV-infected to MOCK-treated samples. The bar graph presents
131 the average and standard deviations calculated from four independent infection experiments. Red
132 asterisks indicate statistical significance (Wilcoxon rank-sum test P -value ≤ 0.05).
133

134

135 **Figure S7. Fluctuations of *YTHDF1* transcripts in VV-infected cells detected by single molecule RNA**
 136 **fluorescence *in situ* hybridization (smRNA-FISH).** (A) Quantitative smRNA-FISH analysis of *YTHDF1*
 137 transcripts in Vero cells. Spot counts per cell were calculated from 3,000 image areas of interest that are
 138 pooled together from three independent experiments. Each dot indicates *YTHDF1* transcript spot count per
 139 cell measured in each image. Color codes MOCK-treated (grey) or VV-infected cells (red). For
 140 distinguishable visualization, dots are randomly scattered with $\pm 10\%$ noise. (B) Representative
 141 fluorescence images of MOCK and VV-infected Vero cells labeled with *YTHDF1* -specific nucleotide
 142 probes RNA-FISH detection of *YTHDF1* transcripts (yellow) were performed using 40 RNA probes. Cell
 143 nuclei (blue) are labeled with DAPI. The white scale bar on each image corresponds to 10 μ m.



144

145 **Figure S8. Vaccinia virus spread within monolayers of Vero cells.**

146 Fluorescence immunocytochemistry time-course analysis of VV replication in Vero cells was performed
147 with rabbit polyclonal anti-VV antibody (ab35219) detecting several viral proteins (shown in orange). Cell
148 nuclei are labeled with DAPI (shown in blue). The white scale bar corresponds to 50 μ m. Shown are
149 representative of four independent infection experiments images for early (two hours post-infection, 2 hpi),
150 mid (6 hpi) and late (24 hpi) stages of virus replication.

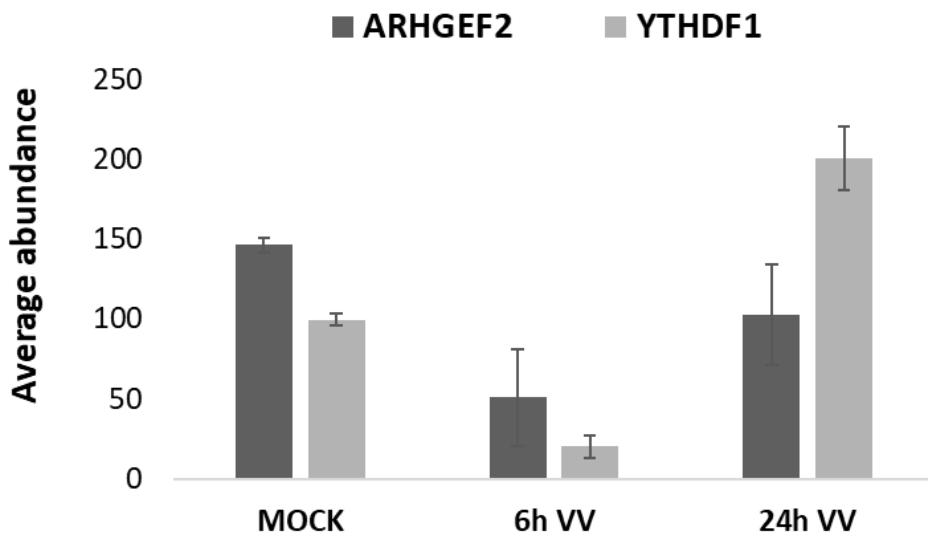
151

152

153

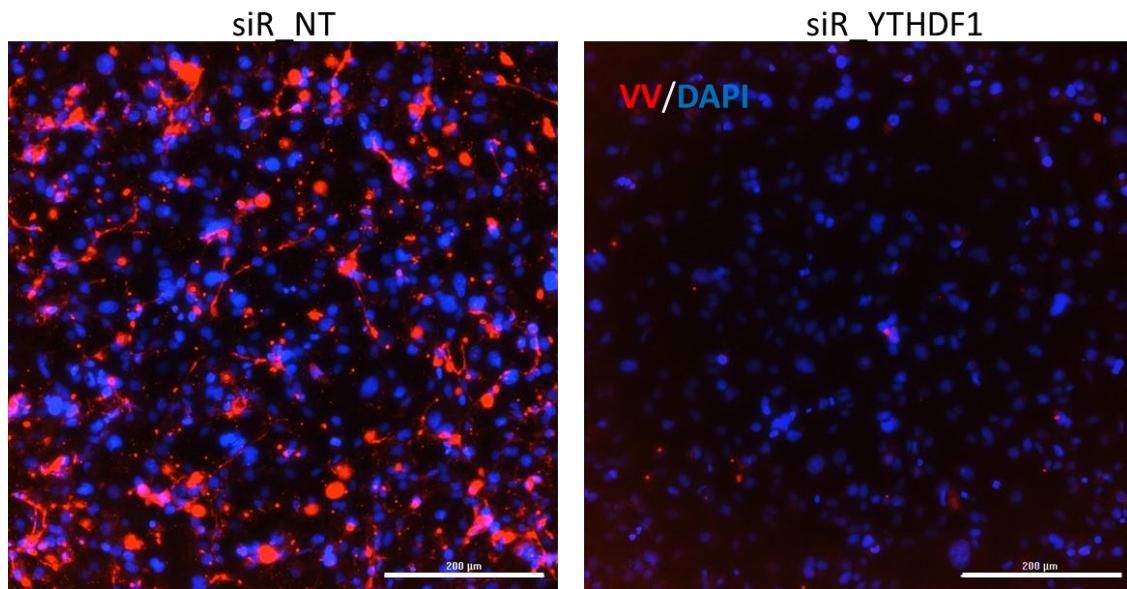
154 **Figure S9. Label-free MS/MS proteomics analysis of VV-infected human skin endothelial cells**

155 **(HMEC-1) reveal co-expression of YTHDF1 and ARHGEF2.** Average protein abundances determined


156 with Sequest HQ and Percolator using default settings and a precursor mass error tolerance of 15 ppm.

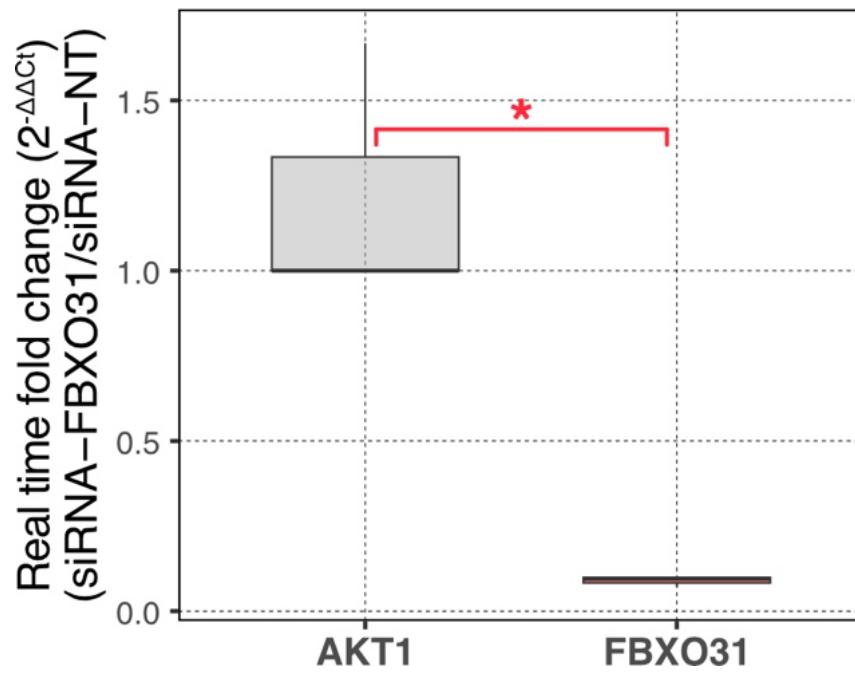
157 Statistics were derived from three independent experimental samples for peptides mapped to UniprotIDs

158 ARHGEF2 (Q92974) and YTHDF1 (Q9BYJ9). FDR-adjusted *P*-values for ARHGEF2 and YTHDF1


159 peptide abundance ratios were determined as high confidence ranging from less than 0.01 to 1.07E-16,

160 respectively.

161


162 **Figure S10. RNAi knockdown of *YTHDF1* restricts Vaccinia virus replication in human skin**
 163 **endothelial cells.** HMEC-1 monolayer cultures, treated with siRNA (20 nM) targeting YTHDF1 transcripts
 164 (siR_YTHDF1) or non-targeting siRNA duplexes (siR_NT), were infected with VV (MOI 1) for 24 hours.
 165 Fluorescence immunocytochemistry imaging with rabbit polyclonal anti-VV antibody (ab35219) shows
 166 significant reduction in virus replication within HMEC-1 cultures with RNAi-depleted YTHDF1. VV-
 167 infected cells are depicted in red with nuclei labeled with DAPI (blue). The white scale bars correspond to
 168 200 μ m.

169 **Figure S11. Real-Time quantitative PCR evaluation of *FBXO31* transcript knockdown by RNAi.**

170 Successful reduction of *FBXO31* transcripts at 24 hours post-delivery of siRNA targeting *FBXO31*
171 transcripts (siRNA-FBXO31) in HMEC-1 cells was determined with reverse transcription-quantitative PCR
172 using TaqMan probes to human *FBXO31* and *AKT1* transcripts. *AKT1* was used as a negative control for
173 siR-*FBXO31* target specificity. Fold changes were measured from three independent experiments,
174 normalized to *beta-Actin*, then calculated relative to control cells treated with non-targeting scramble
175 siRNA (siRNA-NT). When normalized to siRNA-NT controls, expression of *FBXO31* was significantly
176 reduced to 8.96E-02 in siRNA-FBXO31-treated cells, while expression of an off-target gene *AKT1*
177 remained unchanged at 1.22 (Wilcoxon rank-sum test P-value=4.00E-02).

178

179

180

181

182

183 **Supplemental References**

184 Augustine T, Chaudhary P, Gupta K, Islam S, Ghosh P, Santra MK, Mitra D. 2017. Cyclin F/FBXO1
185 interacts with HIV-1 viral infectivity factor (Vif) and restricts progeny virion infectivity by
186 ubiquitination and proteasomal degradation of Vif protein through SCFcyclin F E3 ligase
187 machinery. *Journal of Biological Chemistry* **292**: 5349-5363.

188 Chen J, Sathiyamoorthy K, Zhang X, Schaller S, Perez White BE, Jardetzky TS, Longnecker R. 2018.
189 Ephrin receptor A2 is a functional entry receptor for Epstein–Barr virus. *Nature microbiology* **3**:
190 172-180.

191 Chinnadurai G, Grand RJ, Baker C, Barral PM, Bruton RK, Parkhill J, Szestak T, Gallimore PH. 2007.
192 The Significance of the CtBP—AdE1A Interaction during Viral Infection and Transformation.
193 *GtBP Family Proteins*: 44-60.

194 Collins SE, Noyce RS, Mossman KL. 2004. Innate cellular response to virus particle entry requires IRF3
195 but not virus replication. *Journal of virology* **78**: 1706-1717.

196 Dhawan T, Zahoor MA, Heryani N, Workenhe ST, Nazli A, Kaushic C. 2021. TRIM26 facilitates HSV-2
197 infection by downregulating antiviral responses through the IRF3 pathway. *Viruses* **13**: 70.

198 Dodding MP, Mitter R, Humphries AC, Way M. 2011. A kinesin-1 binding motif in vaccinia virus that is
199 widespread throughout the human genome. *The EMBO journal* **30**: 4523-4538.

200 Ezell SA, Polytarchou C, Hatziapostolou M, Guo A, Sanidas I, Bihani T, Comb MJ, Sourvinos G,
201 Tsichlis PN. 2012. The protein kinase Akt1 regulates the interferon response through
202 phosphorylation of the transcriptional repressor EMSY. *Proceedings of the National Academy of
203 Sciences* **109**: E613-E621.

204 Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park
205 CY. 2015. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR
206 regulation. *Genes & development* **29**: 2037-2053.

207 Kong X, Lu X, Wang S, Hao J, Guo D, Wu H, Jiang Y, Sun Y, Wang J, Zhang G. 2023. Type I
208 interferon/STAT1 signaling regulates UBE2M-mediated antiviral innate immunity in a negative
209 feedback manner. *Cell Reports* **42**.

210 Liang Y, Zhang G, Li Q, Han L, Hu X, Guo Y, Tao W, Zhao X, Guo M, Gan T. 2021. TRIM26 is a
211 critical host factor for HCV replication and contributes to host tropism. *Science advances* **7**:
212 eabd9732.

213 Lu Y, Stuart JH, Talbot-Cooper C, Agrawal-Singh S, Huntly B, Smid AI, Snowden JS, Dupont L, Smith
214 GL. 2019. Histone deacetylase 4 promotes type I interferon signaling, restricts DNA viruses, and
215 is degraded via vaccinia virus protein C6. *Proceedings of the National Academy of Sciences* **116**:
216 11997-12006.

217 Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S.
218 2011. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for
219 antiviral therapy. *Nature medicine* **17**: 589-595.

220 Munier S, Rolland T, Diot C, Jacob Y, Naffakh N. 2013. Exploration of binary virus–host interactions
221 using an infectious protein complementation assay. *Molecular & Cellular Proteomics* **12**: 2845-
222 2855.

223 Nazitto R, Amon LM, Mast FD, Aitchison JD, Aderem A, Johnson JS, Diercks AH. 2021. ILF3 is a
224 negative transcriptional regulator of innate immune responses and myeloid dendritic cell
225 maturation. *The Journal of Immunology* **206**: 2949-2965.

226 Rai SK, Duh F-M, Vigdorovich V, Danilkovitch-Miagkova A, Lerman MI, Miller AD. 2001. Candidate
227 tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor
228 for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation.
229 *Proceedings of the National Academy of Sciences* **98**: 4443-4448.

230 Subramanian T, Zhao L-j, Chinnadurai G. 2013. Interaction of CtBP with adenovirus E1A suppresses
231 immortalization of primary epithelial cells and enhances virus replication during productive
232 infection. *Virology* **443**: 313-320.

233 Sun M, Fuentes SM, Timani K, Sun D, Murphy C, Lin Y, August A, Teng MN, He B. 2008. Akt plays a
234 critical role in replication of nonsegmented negative-stranded RNA viruses. *Journal of virology*
235 **82**: 105-114.

236 Tomalka JA, Pelletier AN, Fourati S, Latif MB, Sharma A, Furr K, Carlson K, Lifton M, Gonzalez A,
237 Wilkinson P. 2021. The transcription factor CREB1 is a mechanistic driver of immunogenicity
238 and reduced HIV-1 acquisition following ALVAC vaccination. *Nature immunology* **22**: 1294-
239 1305.

240 Watson SF, Bellora N, Macias S. 2020. ILF3 contributes to the establishment of the antiviral type I
241 interferon program. *Nucleic acids research* **48**: 116-129.

242 Yang Q, Tang J, Pei R, Gao X, Guo J, Xu C, Wang Y, Wang Q, Wu C, Zhou Y. 2019. Host HDAC4
243 regulates the antiviral response by inhibiting the phosphorylation of IRF3. *Journal of Molecular*
244 *Cell Biology* **11**: 158-169.

245 Zhao X, Fan H, Chen X, Zhao X, Wang X, Feng Y, Liu M, Li S, Tang H. 2021. Hepatitis B virus DNA
246 polymerase restrains viral replication through the CREB1/HOXA distal transcript antisense RNA
247 homeobox A13 axis. *Hepatology* **73**: 503-519.

248 Zhu L, Gao T, Huang Y, Jin J, Wang D, Zhang L, Jin Y, Li P, Hu Y, Wu Y. 2022. Ebola virus VP35
249 hijacks the PKA-CREB1 pathway for replication and pathogenesis by AKIP1 association. *Nature*
250 *Communications* **13**: 2256.

251 Zona L, Lupberger J, Sidahmed-Adrar N, Thumann C, Harris HJ, Barnes A, Florentin J, Tawar RG, Xiao
252 F, Turek M. 2013. HRas signal transduction promotes hepatitis C virus cell entry by triggering
253 assembly of the host tetraspanin receptor complex. *Cell host & microbe* **13**: 302-313.

254