

Supplementary materials

2 Stocking density-driven shift of atmospheric carbon dioxide

3 source-sink functions in mussel culture systems

4

5 Miao-Jun Pan¹, Yu-Xi Zhao¹, Sheng-Jie Xu¹, Chang-Lin Li^{1,2}, Zhou Zhang¹, Shuang-
6 Jie Tian¹, Xiang-Li Tian¹, Yan-Gen Zhou¹, Yun-Wei Dong¹, Li Li^{1*}, Shuang-Lin Dong^{1*}

7 ¹Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean
8 University of China, Qingdao 266003, China;

⁹ ²South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,
¹⁰ Guangzhou 510300, PR China;

11

12 *Corresponding author: Shuang-Jin Dong and Li Li

13 E-Mail address: dongsj@ouc.edu.cn; li@ouc.edu.cn

14

15 **Running Title:** Stocking density-driven shift in CO₂ removal of mussel culture
16 ecosystems

17 **Contents**

18 **Supplementary Methods**

19 Supplementary Method 1 | Calculation of CO₂ flux at the water-air interface.

20 Supplementary Method 2 | Determination of CO₂ concentration in overlying water and
21 porewater and calculation of CO₂ flux at the sediment-water interface.

22 Supplementary Method 3 | Calculation of mussel metabolic activity rates.

23 Supplementary Method 4 | Quantify the contributions of different biogeochemical
24 processes to changes in carbonate parameters.

25 **Supplementary Figures**

26 Supplementary Figure 1 | Experimental mesocosms and sampling campaign.

27 Supplementary Figure 2 | The metabolic activity rates of mussels.

28 Supplementary Figure 3 | Environmental parameters of mussel culture systems during
29 the experiment.

30 Supplementary Figure 4 | Proportion of different ecological processes in the total
31 absolute contributions to changes in carbonate parameters.

32 **Supplementary Tables**

33 Supplementary Table 1 | Stocking densities in coastal bivalve culture farms worldwide.

34 **Supplementary Methods**

35 **Supplementary Method 1 | Calculation of CO₂ flux at the water-air interface**

36 Then, CO₂ flux at the air-water interface (FCO_{2-aw}) was estimated using the thin
37 boundary layer model:

38
$$FCO_{2-aw} = k \times K_0 \times (pCO_{2w} - pCO_{2A})$$

39 Where K_0 is the solubility coefficient of CO₂ in water, which depends on
40 temperature and salinity¹. pCO_{2w} and pCO_{2A} denote the pCO_2 in surface water and in
41 the atmosphere. pCO_{2A} was determined from air samples collected above the
42 mesocosms. k is the gas transfer velocity of CO₂ (cm h⁻¹), expressed as²:

43
$$k = 0.251 \times U^2 \times \left(\frac{Sc}{660}\right)^{-0.5}$$

44 where U (m s⁻¹) is the wind speed at 10 m above ground; Sc denotes the Schmidt
45 number (dimensionless), which varies with temperature (T, °C) and can be calculated
46 as follows²:

47
$$Sc = 2116.8 - 136.25T + 4.7353T^2 - 0.092307T^3 + 0.0007555T^4$$

48 **Supplementary Method 2 | Determination of CO₂ concentration in overlying water
49 and porewater and calculation of CO₂ flux at the sediment-water interface**

50 Dissolved CO₂ concentrations in the overlying water were determined using the
51 headspace gas chromatography method^{3,4}. Specifically, 100 mL overlying water sample
52 was collected using a 200-mL syringe equipped with a three-way valve and connected
53 to a long silicone tube. Immediately, 100 mL of high-purity N₂ (> 99.99%) was injected
54 into the syringe. Then, the mixture was vigorously shaken for 10 minutes and then

55 allowed to stand for 20 minutes. The headspace gas was subsequently transferred into
56 a pre-evacuated gas sampling bag and analyzed for CO₂ concentration using a gas
57 chromatograph (8860GC, Agilent Technologies, USA) equipped with a thermal
58 conductivity detector (TCD). Dissolved CO₂ concentrations were calculated according
59 to Henry's law, accounting for water temperature, salinity and headspace ratio^{1,5}.

60 Porewater CO₂ concentrations were determined following a similar procedure^{6,7}.
61 Surface sediments were collected with a gravity corer, and the top 4 cm of each core
62 was subdivided into 2-cm intervals. From each interval, 50 mL of sediment was
63 collected using a syringe with a cut tip (2 cm in diameter) and transfer into a 250 mL
64 glass bottle containing 100 mL of mesocosm surface water. The bottle was immediately
65 sealed with a butyl rubber stopper. After shaking for 10 minutes and settling for 20
66 minutes, the headspace gas was displaced by injecting an equal volume of water and
67 then collected in pre-evacuated gas sampling bags. The CO₂ concentration in the
68 headspace was measured via gas chromatography with a TCD and converted to
69 dissolved CO₂ concentration in porewater following established methods⁸.

70 The CO₂ flux at the sediment-water interface (FCO_{2-sw}) was estimated using Fick's
71 first law, which models molecular diffusion based on the concentration gradient
72 between porewater and overlying water^{9,10}:

$$73 \quad FCO_{2-sw} = -\phi \times \frac{D_s}{\theta^2} \times \frac{d_c}{d_z}$$

74 Where ϕ is the sediment porosity, determined from cutting-ring samples and
75 calculated from the weight loss after drying at 105°C for 24 h¹¹; θ^2 is the corrected
76 curvature, calculated by the formula $\theta^2 = 1 - \ln(\phi)$ ¹²; D_s (m² s⁻¹) is the diffusion

77 coefficient of CO₂ in water and varies with temperature¹³; d_c/d_z (mmol m⁻⁴) is the
78 vertical gradient of dissolved CO₂ concentration at the sediment-water interface.

79 **Supplementary Method 3 | Calculation of mussel metabolic activity rates**

80 The DO consumption rate (R_{DO}, µmol O₂ g⁻¹ h⁻¹) and TAN excretion rate (R_{TAN},
81 µmol N g⁻¹ h⁻¹) of mussels are calculated based on the following formula:

$$82 R_{DO} \text{ or } R_{TAN} = \frac{(C_f - C_i - \Delta C_0) \times V}{T \times M}$$

83 In the formula, C_i and C_f denote the initial and final DO or TAN concentrations
84 (µmol O₂ L⁻¹ or µmol N L⁻¹) in the incubation water, respectively; ΔC₀ denote the
85 change in DO or TAN concentration in the control chambers over the incubation period;
86 V is the volume of incubation water (L); T is the experimental duration (h), and M is
87 the dry weight of mussel soft tissue (g).

88 Calcification rate (R_{cal}, µmol CaCO₃ g⁻¹ h⁻¹) was determined using the alkalinity
89 anomaly technique¹⁴, with a correction for changes in TA due to ammonia excretion¹⁵.

90 The rate was calculated as follows:

$$91 R_{cal} = \frac{[- (TA_f - TA_i - \Delta TA_0) + \Delta TAN] \times V}{2 \times T \times M}$$

92 In the formula, TA_i and TA_f represent the TA of the incubation water before and
93 after incubation, respectively; ΔTA₀ indicates the change in TA observed in the control
94 chambers; ΔTAN denotes the change in TAN concentration during the incubation. It is
95 assumed that for every 1mol of ammonia nitrogen produced, the total alkalinity will
96 decrease by 1mol.

97 The calculation formula for the respiration rates (R_{res}, µmol CO₂ g⁻¹ h⁻¹) of mussels
98 is as follows:

99
$$R_{\text{res}} = \frac{[(\Delta\text{TA}) / 2 + (\text{DIC}_f - \text{DIC}_i - \Delta\text{DIC}_0)] \times V}{T \times M}$$

100 In the formula, ΔTA represents the change in TA during the incubation; DIC_i and
 101 DIC_f represent the DIC concentrations in the water before and after incubation,
 102 respectively; ΔDIC_0 indicates the change in DIC observed in the control chambers.

103 **Supplementary Method 4 | Quantify the contributions of different biogeochemical
 104 processes to changes in carbonate parameters**

105 Following the method proposed by previous studies¹⁶⁻¹⁸, a mass balance model
 106 was employed to quantify the contributions of different biogeochemical processes to
 107 net changes in carbonate parameters (TA, DIC and $p\text{CO}_2$) at 10-day intervals, in order
 108 to identify the key processes that control CO_2 source-sink function of bivalve culture
 109 systems. Suppose that the initial values of water temperature, salinity and carbonate
 110 parameters are defined as T_1 , S_1 , TA_1 , DIC_1 and $(p\text{CO}_2)_1$, respectively. After 10 days,
 111 these values become T_2 , S_2 , TA_2 , DIC_2 and $(p\text{CO}_2)_2$.

112 **The primary processes controlling changes in TA**

113 In this study, the effects of net primary production (NPP) and bivalve calcification
 114 on TA are taken into account.

115
$$\Delta\text{TA} = \text{TA}_2 - \text{TA}_1 = \Delta\text{TA}_{\text{NPP}} + \Delta\text{TA}_{\text{cal}} + \Delta\text{TA}_{\text{others}}$$

116 In the formulation, $\Delta\text{TA}_{\text{NPP}}$ denotes the contribution of the water column NPP to
 117 net changes in TA, and it is estimated based on the relationship between the net oxygen
 118 production and the net change in TA during photosynthesis¹⁹. $\Delta\text{TA}_{\text{cal}}$ denotes the
 119 contribution of calcification to net changes in TA, estimated from the calcification rate

120 measured in the mussel incubation experiment. ΔTA_{others} denotes the contribution of
121 other processes to net changes in TA, calculated as ΔTA minus ΔTA_{NPP} and ΔTA_{cal} .

122 **The primary processes controlling changes in DIC**

123 In this study, the effects of CO_2 fluxes at the air-water interface (FCO_{2-aw}), CO_2
124 fluxes at the sediment-water interface (FCO_{2-sw}), NPP, calcification and respiration on
125 DIC were considered.

126
$$\Delta DIC = DIC_2 - DIC_1 = \Delta DIC_{FCO_{2-aw}} + \Delta DIC_{FCO_{2-sw}} + \Delta DIC_{NPP} + \Delta DIC_{res} +$$

127
$$+ \Delta DIC_{cal} + \Delta DIC_{others}$$

128 In the formulation, $\Delta DIC_{FCO_{2-aw}}$ and $\Delta DIC_{FCO_{2-sw}}$ represent the contributions of
129 FCO_{2-aw} and FCO_{2-sw} to the net change in DIC, respectively. ΔDIC_{NPP} represents the
130 contribution of the water column NPP to the net change in DIC, estimated from the
131 relationship between the net oxygen production and net CO_2 consumption during
132 photosynthesis¹⁹. ΔDIC_{res} and ΔDIC_{cal} represent the contributions of bivalve respiration
133 and calcification to the net change in DIC, estimated from the respiration rates and
134 calcification rates measured in the mussel incubation experiment, respectively.
135 ΔDIC_{others} represents the contribution of other processes to the net change in DIC, the
136 residual after subtracting the contributions of the known processes from ΔDIC .

137 **The primary processes controlling changes in pCO_2**

138 In this study, the effects of temperature, salinity, FCO_{2-aw} , FCO_{2-sw} , NPP,
139 respiration and calcification on pCO_2 were considered.

140
$$\Delta pCO_2 = (pCO_2)_2 - (pCO_2)_1 = \Delta(pCO_2)_{tem} + \Delta(pCO_2)_{sal} + \Delta(pCO_2)_{FCO_{2-aw}} +$$

141
$$+ \Delta(pCO_2)_{FCO_{2-sw}} + \Delta(pCO_2)_{NPP} + \Delta(pCO_2)_{res} + \Delta(pCO_2)_{cal} + \Delta(pCO_2)_{others}$$

142 $\Delta(p\text{CO}_2)_{\text{tem}} = f(T_2, S_1, \text{TA}_1, \text{DIC}_1) - (p\text{CO}_2)_1$

143 $\Delta(p\text{CO}_2)_{\text{sal}} = f(T_1, S_2, \text{TA}_1, \text{DIC}_1) - (p\text{CO}_2)_1$

144 $\Delta(p\text{CO}_2)_{\text{FCO2-aw}} = f(T_1, S_1, \text{TA}_1, (\text{DIC}_2)_{\text{FCO2-aw}}) - (p\text{CO}_2)_1$

145 $\Delta(p\text{CO}_2)_{\text{FCO2-sw}} = f(T_1, S_1, \text{TA}_1, (\text{DIC}_2)_{\text{FCO2-sw}}) - (p\text{CO}_2)_1$

146 $\Delta(p\text{CO}_2)_{\text{NPP}} = f(T_1, S_1, (\text{TA}_2)_{\text{NPP}}, (\text{DIC}_2)_{\text{NPP}}) - (p\text{CO}_2)_1$

147 $\Delta(p\text{CO}_2)_{\text{res}} = f(T_1, S_1, (\text{TA}_2)_{\text{res}}, (\text{DIC}_2)_{\text{res}}) - (p\text{CO}_2)_1$

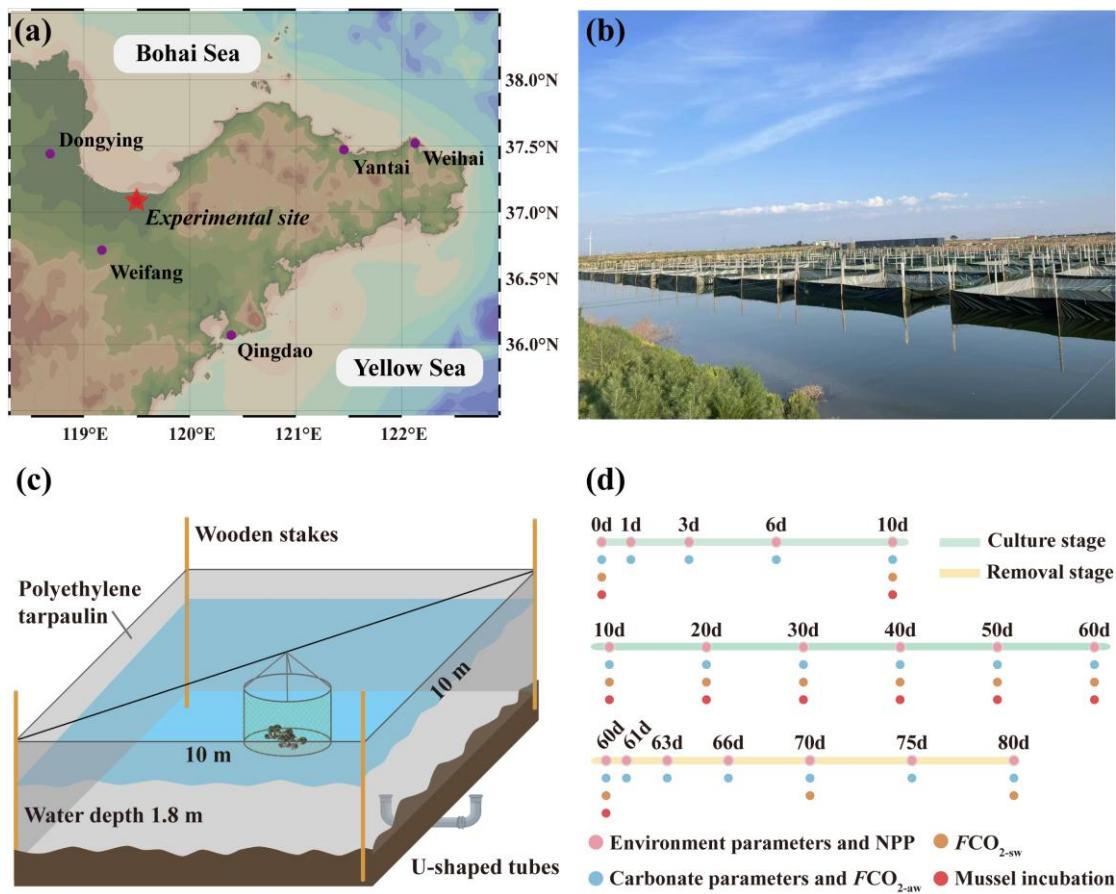
148 $\Delta(p\text{CO}_2)_{\text{cal}} = f(T_1, S_1, (\text{TA}_2)_{\text{cal}}, (\text{DIC}_2)_{\text{cal}}) - (p\text{CO}_2)_1$

149 In the formulation, $(\Delta p\text{CO}_2)_{\text{tem}}$, $(\Delta p\text{CO}_2)_{\text{sal}}$, $(\Delta p\text{CO}_2)_{\text{FCO2-aw}}$, $(\Delta p\text{CO}_2)_{\text{FCO2-sw}}$,

150 $(\Delta p\text{CO}_2)_{\text{NPP}}$, $(\Delta p\text{CO}_2)_{\text{res}}$, $(\Delta p\text{CO}_2)_{\text{cal}}$ and $(\Delta p\text{CO}_2)_{\text{others}}$ denote the contributions of

151 temperature, salinity, FCO2-aw , FCO2-sw , NPP, calcification, respiration and other

152 processes to the net change in $p\text{CO}_2$, respectively. $(\text{DIC}_2)_{\text{FCO2-aw}}$, $(\text{DIC}_2)_{\text{FCO2-sw}}$,

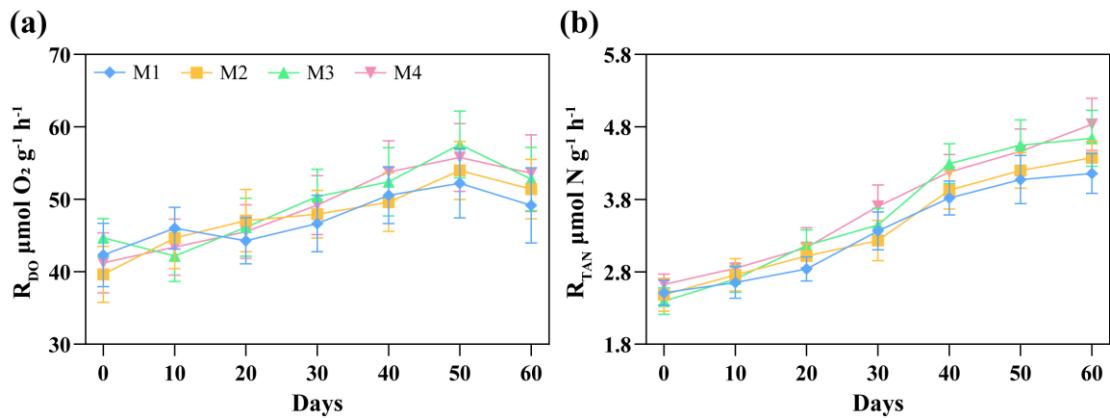

153 $(\text{TA}_2)_{\text{NPP}}$, $(\text{DIC}_2)_{\text{NPP}}$, $(\text{TA}_2)_{\text{res}}$, $(\text{DIC}_2)_{\text{res}}$, $(\text{TA}_2)_{\text{cal}}$, $(\text{DIC}_2)_{\text{cal}}$ denote the TA or DIC values

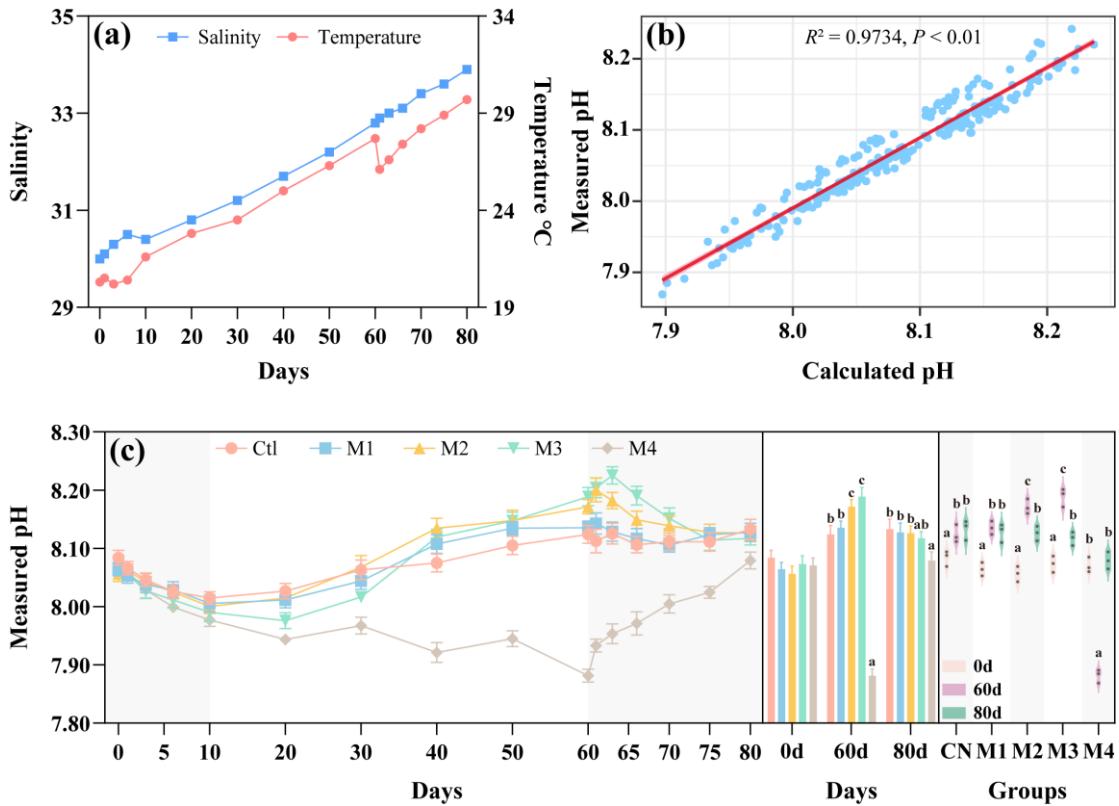
154 at T_2 when the corresponding process works alone. $f()$ denotes the $p\text{CO}_2$ under the

155 given environmental and carbonate parameters, calculated using the CO2SYS

156 program²⁰.

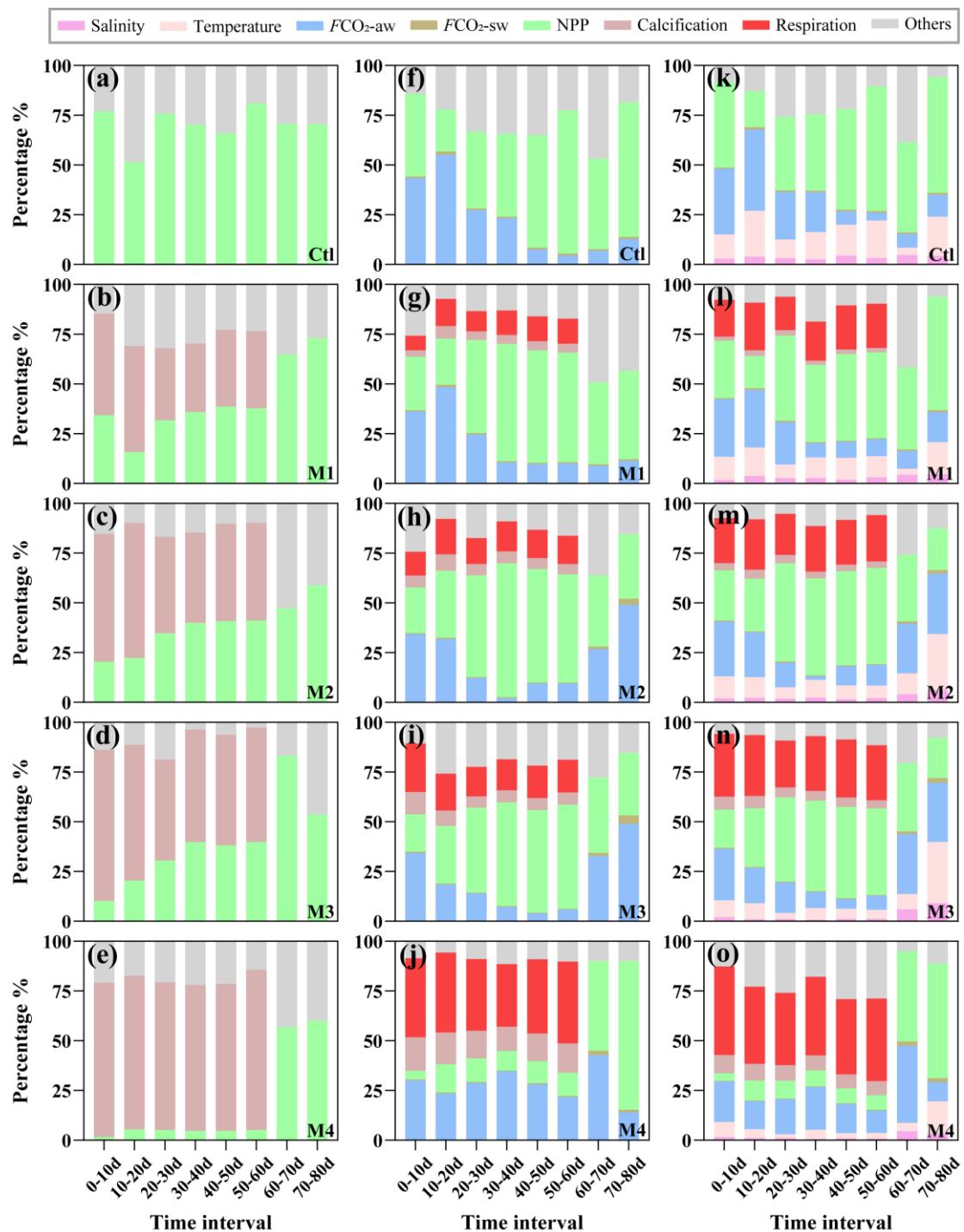
157 **Supplementary Figures**




158

159 Supplementary Figure 1 | Experimental mesocosms and sampling campaign. (a) Location of the
 160 experimental site. (b) Field photograph of the mesocosms. (c) Schematic diagram of the mesocosms.
 161 (d) Sampling schedule and measured indicators.

162


163 Supplementary Figure 2 | The metabolic activity rates of mussels. (a) The dissolved oxygen
164 consumption rate (R_{DO}) of mussels at different culture period. (b) The total ammonia nitrogen
165 (R_{TAN}) excretion rate of mussels at different culture period. The error bars represent the standard
166 deviation.

167

168 Supplementary Figure 3 | Environmental parameters of mussel culture systems during the
 169 experiment. (a) Variations in salinity and temperature of the surface water. (b) Correlation between
 170 measured pH and calculated pH. (c) Variations in pH of the surface water. The error bars represent
 171 the standard deviation. Different letters indicate significant differences between data from different
 172 groups ($P < 0.05$).

173

174 Supplementary Figure 4 | Proportion of different ecological processes in the total absolute
 175 contributions to changes in carbonate parameters. (a-e) Proportion of different ecological processes
 176 in the total absolute contributions to TA change. (f-j) Proportion of different ecological processes in
 177 the total absolute contributions to DIC change. (k-o) Proportion of different ecological processes in
 178 the total absolute contributions to $p\text{CO}_2$ change.

179 **Supplementary Tables**

180

Supplementary Table 1 | Stocking densities in coastal bivalve culture farms worldwide

Systems	Country	Area km ²	Water volume m ³	Exchange water volume m ³	Main bivalve species	Stock capacity g (survey year)	Stock density g m ⁻³	Adjusted stock density g m ⁻³	References
Mesocosms	-	100 m ²	180	-	mussel	-	-	6.94 ~ 55.56	This study
Zhangzidao sea area	China	333	1.17×10^{10}	5.03×10^{11}	scallop	124725 (2010)	10.70	0.25	21-23
Oosterschelde estuary	Netherlands	350	$2.48 \sim 3.15 \times 10^9$	$1.20 \sim 1.44 \times 10^{10}$	oyster, mussel, calm	134030 (2009)	42.55 ~ 54.04	9.30 ~ 11.19	24,25
Sacca di Goro lagoon	Italy	26	3.90×10^7	4.75×10^9	calm	11250 (2001)	288.46	2.37	26,27
Ria de Aveiro lagoon	Portugal	74.5	7.45×10^7	$9.85 \times 10^8 \sim 2.80 \times 10^9$	calm	28404 (2012)	381.26	10.13 ~ 28.83	28-30
Thau lagoon	France	68	2.72×10^8	2.03×10^9	oyster, mussel	25433 (2016)	93.50	12.50	31
Sishili Bay	China	133	1.20×10^9	5.75×10^{10}	scallop	30000 (2009)	25.06	0.52	32
Sechura Bay	Peru	400	2.00×10^8	$2.76 \sim 4.14 \times 10^{11}$	scallop	58955 (2010)	9.83	014 ~ 0.21	33
Dapeng Cove	China	14	9.80×10^7	1.49×10^9	oyster	12100 (2012)	61.73	4.06	34-36
Malpeque Bay	Canada	223..6	6.30×10^8	6.38×10^{10}	mussel, oyster	5689 ~ 10169 (2014)	9.04~16.15	0.09 ~ 0.16	37,38
Sanggou Bay	China	144	1.08×10^9	3.27×10^{10}	oyster, scallop	97848 (2016)	90.60	2.99	39-41

181 Note: The water volume of each culture system was obtained from the literature or calculated from area and mean water depth. The Exchange water volume was
182 calculated from the water volume and the annual number of turnovers. Stocking capacity were taken from the literature or calculated from annual production (tons per
183 year) and the culture cycle (year). Stocking density was calculated as the stocking capacity divided by the water volume, and the adjusted stocking density as the
184 stocking capacity divided by the exchange water volume.

Reference

- 1 Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. *Mar. Chem.* **2**, 203–215 (1974).
- 2 Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. *Limnol. Oceanogr. Meth.* **12**, 351–362 (2014).
- 3 Zhang, W. S., Li, H. P., Xiao, Q. T. & Li, X. Y. Urban rivers are hotspots of riverine greenhouse gas (N_2O , CH_4 , CO_2) emissions in the mixed-landscape chaohu lake basin. *Water Res.* **189**, 116624 (2021).
- 4 Yuan, D. N. *et al.* Nitrogen addition effect overrides warming effect on dissolved CO_2 and phytoplankton structure in shallow lakes. *Water Res.* **244**, 120437 (2023).
- 5 Tang, W., Xu, Y. J., Ni, M. F. & Li, S. Y. Land use and hydrological factors control concentrations and diffusive fluxes of riverine dissolved carbon dioxide and methane in low-order streams. *Water Res.* **231**, 119615 (2023).
- 6 Donis, D. *et al.* Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. *Nat. Commun.* **8**, 1661 (2017).
- 7 Tang, L. L. *et al.* Seasonal variations in source-sink balance of CO_2 in subtropical earthen aquaculture ponds: Implications for carbon emission management. *J. Hydrol.* **626**, 130330 (2023).
- 8 Yang, P., Lai, D. Y. F., Yang, H. & Tong, C. Carbon dioxide dynamics from sediment, sediment-water interface and overlying water in the aquaculture shrimp ponds in subtropical estuaries, southeast China. *J. Environ. Manage.* **236**, 224–235 (2019).
- 9 D'Ambrosio, S. L. & Harrison, J. A. Measuring CH_4 fluxes from lake and reservoir sediments: Methodologies and needs. *Front. Environ. Sci.* **10**, 850070 (2022).
- 10 Sun, H. Y. *et al.* Drivers of spatial and seasonal variations of CO_2 and CH_4 fluxes at the sediment water interface in a shallow eutrophic lake. *Water Res.* **222**, 118916 (2022).
- 11 Zhang, L. *et al.* Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China. *Estuar. Coast. Shelf Sci.* **133**, 182–192 (2013).
- 12 Boudreau, B. P. *Diagenetic models and their implementation*. (Springer Berlin, 1997).

13 Broecker, W. S. & Peng, T.-H. Gas exchange rates between air and sea. *Tellus* **26**, 21–35 (1974).

14 Smith, S. & Key, G. Carbon dioxide and metabolism in marine environments. *Limnol. Oceanogr.*, 493–495 (1975).

15 Gazeau, F., Urbini, L., Cox, T. E., Alliouane, S. & Gattuso, J. P. Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification. *Mar. Ecol.-Prog. Ser.* **527**, 1–12 (2015).

16 Xue, L. *et al.* Sea surface carbon dioxide at the Georgia time series site (2006–2007): Air-sea flux and controlling processes. *Prog. Oceanogr.* **140**, 14–26 (2016).

17 Xue, L., Cai, W. J., Sutton, A. J. & Sabine, C. Sea surface aragonite saturation state variations and control mechanisms at the Gray's Reef time-series site off Georgia, USA (2006–2007). *Mar. Chem.* **195**, 27–40 (2017).

18 Yang, B. *et al.* Massive shellfish farming might accelerate coastal acidification: A case study on carbonate system dynamics in a bay scallop (*Argopecten irradians*) farming area, North Yellow Sea. *Sci. Total Environ.* **798**, 149214 (2021).

19 Yin, H., Jin, L. & Hu, X. P. Interpreting biogeochemical processes through the relationship between total alkalinity and dissolved inorganic carbon: Theoretical basis and limitations. *Limnol. Oceanogr. Meth.* **22**, 311–320 (2024).

20 Pierrot, D., Wallace, D. & Lewis, E. *MS Excel program developed for CO₂ system calculations.* (Carbon dioxide information analysis center, 2006).

21 Dong, S. L., Tian, X. L., Gao, Q. F. & Dong, Y. W. *Aquaculture Ecology.* (Springer Nature Singapore, 2023).

22 Yu, Y., Zhang, W., Wang, S. & Xiao, T. Abundance and biomass of planktonic ciliates in the sea area around Zhangzi Island, Northern Yellow Sea. *Acta Ecologica Sinica* **33**, 45–51 (2013).

23 Zhang, J. H., Fang, J. G. & Wang, S. H. Carrying capacity for *Patinopecten yessoensis* in Zhang Zidao Island, China. *Journal of Fisheries of China* **32**, 236–241 (2008).

24 Jiang, L., Soetaert, K. & Gerkema, T. Decomposing the intra-annual variability of flushing characteristics in a tidal bay along the North Sea. *J. Sea Res.* **155**, 101821 (2019).

25 Jiang, L., Gerkema, T., Wijsman, J. W. M. & Soetaert, K. Comparing physical and biological impacts on seston renewal in a tidal bay with extensive shellfish culture. *J. Mar. Syst.* **194**, 102–110 (2019).

26 Zaldívar, J. M. *et al.* Long-term simulation of main biogeochemical events in a coastal lagoon: Sacca Di Goro (Northern Adriatic Coast, Italy). *Cont. Shelf Res.* **23**, 1847–1875 (2003).

27 Turolla, E., Castaldelli, G., Fano, E. A. & Tamburini, E. Life cycle assessment (LCA) proves that Manila clam farming (*Ruditapes philippinarum*) is a fully sustainable aquaculture practice and a carbon sink. *Sustainability-Basel* **12**, 5252 (2020).

28 Jiang, W. W. *et al.* A food-web model as a tool for the ecosystem-level management of bivalves in an Atlantic coastal lagoon. *Mar. Environ. Res.* **190**, 106117 (2023).

29 Velez, C., Figueira, E., Soares, A. & Freitas, R. Spatial distribution and bioaccumulation patterns in three clam populations from a low contaminated ecosystem. *Estuar. Coast. Shelf Sci.* **155**, 114–125 (2015).

30 Vaz, L., Sousa, M. C., Gómez-Gesteira, M. & Dias, J. M. Water renewal estimation for sustainable aquaculture development in Ria de Aveiro and Rias Baixas. *Reg. Stud. Mar. Sci.* **49**, 102098 (2022).

31 Pete, R. *et al.* A box-model of carrying capacity of the Thau lagoon in the context of ecological status regulations and sustainable shellfish cultures. *Ecol. Model.* **426**, 109049 (2020).

32 Wang, Y. J., Liu, D. Y., Dong, Z. J., Di, B. P. & Shen, X. H. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China. *Mar. Pollut. Bull.* **64**, 2708–2719 (2012).

33 Kluger, L. C., Taylor, M. H., Mendo, J., Tam, J. & Wolff, M. Carrying capacity simulations as a tool for ecosystem-based management of a scallop aquaculture system. *Ecol. Model.* **331**, 44–55 (2016).

34 Wang, C., Lin, J., Chen, P. M. & Zhang, S. Y. Numerical simulation of annual average wind's impact on water exchange in Daya Bay. *Journal of Shanghai Ocean University* **18**, 351–358 (2009).

35 Yu, Z. H., Jiang, T., Xia, J. J., Ma, Y. E. & Zhang, T. Ecosystem service value assessment for an oyster farm in Dapeng Cove. *Journal of Fisheries of China* **38**, 853–860 (2014).

36 Xu, Y., Li, S. L., Chen, J. L. & Cui, Z. G. Assessment of mariculture-derived microplastic pollution in Dapeng Cove, China. *Front. Mar. Sci.* **11**, 1382249 (2024).

37 Bacher, C., Filgueira, R. & Guyondet, T. Probabilistic approach of water residence time and connectivity using Markov chains with application to tidal embayments. *J. Mar. Syst.* **153**, 25–41 (2016).

38 Lavaud, R., Guyondet, T., Filgueira, R., Tremblay, R. & Comeau, L. A. Modelling bivalve culture - Eutrophication interactions in shallow coastal ecosystems. *Mar. Pollut. Bull.* **157**, 111282 (2020).

39 Zhang, J. H. *et al.* Sediment-focused environmental impact of long-term large- scale marine bivalve and seaweed farming in Sungo Bay, China. *Aquaculture* **528**, 735561 (2020).

40 He, Y. Q., Xuan, J. L., Ding, R. B., Shen, H. & Zhou, F. Influence of Suspended Aquaculture on Hydrodynamics and Nutrient Supply in the Coastal Yellow Sea. *J. Geophys. Res.-Biogeosci.* **127** (2022).

41 Gao, Y. P. *et al.* Simulation of oyster ecological carrying capacity in Sanggou Bay in the ecosystem context. *Aquac. Int.* **28**, 2059–2079 (2020).