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Supplementary Methods 34 

Supplementary Method 1 | Calculation of CO2 flux at the water-air interface 35 

Then, CO2 flux at the air-water interface (FCO2-aw) was estimated using the thin 36 

boundary layer model:  37 

FCO2-aw = k × K0 × (pCO2w - pCO2A) 38 

Where K0 is the solubility coefficient of CO2 in water, which depends on 39 

temperature and salinity1. pCO2w and pCO2A denote the pCO2 in surface water and in 40 

the atmosphere. pCO2A was determined from air samples collected above the 41 

mesocosms. k is the gas transfer velocity of CO2 (cm h-1), expressed as2: 42 

k = 0.251 × U2 × (
Sc

660
)

-0.5

 43 

where U (m s-1) is the wind speed at 10 m above ground; Sc denotes the Schmidt 44 

number (dimensionless), which varies with temperature (T, ℃) and can be calculated 45 

as follows 2: 46 

Sc = 2116.8 - 136.25T + 4.7353T2 - 0.092307T3 + 0.0007555T4 47 

Supplementary Method 2 | Determination of CO2 concentration in overlying water 48 

and porewater and calculation of CO2 flux at the sediment-water interface 49 

Dissolved CO2 concentrations in the overlying water were determined using the 50 

headspace gas chromatography method3,4. Specifically, 100 mL overlying water sample 51 

was collected using a 200-mL syringe equipped with a three-way valve and connected 52 

to a long silicone tube. Immediately, 100 mL of high-purity N2 (> 99.99%) was injected 53 

into the syringe. Then, the mixture was vigorously shaken for 10 minutes and then 54 
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allowed to stand for 20 minutes. The headspace gas was subsequently transferred into 55 

a pre-evacuated gas sampling bag and analyzed for CO2 concentration using a gas 56 

chromatograph (8860GC, Agilent Technologies, USA) equipped with a thermal 57 

conductivity detector (TCD). Dissolved CO2 concentrations were calculated according 58 

to Henry's law, accounting for water temperature, salinity and headspace ratio1,5. 59 

Porewater CO2 concentrations were determined following a similar procedure6,7. 60 

Surface sediments were collected with a gravity corer, and the top 4 cm of each core 61 

was subdivided into 2-cm intervals. From each interval, 50 mL of sediment was 62 

collected using a syringe with a cut tip (2 cm in diameter) and transfer into a 250 mL 63 

glass bottle containing 100 mL of mesocosm surface water. The bottle was immediately 64 

sealed with a butyl rubber stopper. After shaking for 10 minutes and settling for 20 65 

minutes, the headspace gas was displaced by injecting an equal volume of water and 66 

then collected in pre-evacuated gas sampling bags. The CO2 concentration in the 67 

headspace was measured via gas chromatography with a TCD and converted to 68 

dissolved CO2 concentration in porewater following established methods8.  69 

The CO2 flux at the sediment-water interface (FCO2-sw) was estimated using Fick’s 70 

first law, which models molecular diffusion based on the concentration gradient 71 

between porewater and overlying water9,10: 72 

FCO2-sw = -ϕ × 
DS

θ
2

 × 
dc

dz

 73 

Where ϕ is the sediment porosity, determined from cutting-ring samples and 74 

calculated from the weight loss after drying at 105°C for 24 h11; θ2 is the corrected 75 

curvature, calculated by the formula θ2 = 1 – ln (ϕ)12; DS (m2 s-1) is the diffusion 76 
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coefficient of CO2 in water and varies with temperature13; dc/dz (mmol m-4) is the 77 

vertical gradient of dissolved CO2 concentration at the sediment-water interface. 78 

Supplementary Method 3 | Calculation of mussel metabolic activity rates 79 

The DO consumption rate (RDO, μmol O2 g
-1 h-1) and TAN excretion rate (RTAN, 80 

μmol N g-1 h-1) of mussels are calculated based on the following formula: 81 

RDO or RTAN = 
(Cf - Ci - ΔC0) × V

T × M
 82 

In the formula, Ci and Cf denote the initial and final DO or TAN concentrations 83 

(μmol O2 L-1
 or μmol N L-1) in the incubation water, respectively; ΔC0 denote the 84 

change in DO or TAN concentration in the control chambers over the incubation period; 85 

V is the volume of incubation water (L); T is the experimental duration (h), and M is 86 

the dry weight of mussel soft tissue (g). 87 

Calcification rate (Rcal, μmol CaCO3 g
-1 h-1) was determined using the alkalinity 88 

anomaly technique14, with a correction for changes in TA due to ammonia excretion15. 89 

The rate was calculated as follows: 90 

Rcal = 
[- ( TAf - TAi - ∆TA0) + ∆TAN] × V

2 × T × M
 91 

In the formula, TAi and TAf represent the TA of the incubation water before and 92 

after incubation, respectively; ΔTA0 indicates the change in TA observed in the control 93 

chambers; ∆TAN denotes the change in TAN concentration during the incubation. It is 94 

assumed that for every 1mol of ammonia nitrogen produced, the total alkalinity will 95 

decrease by 1mol. 96 

The calculation formula for the respiration rates (Rres, μmol CO2 g
-1 h-1) of mussels 97 

is as follows: 98 
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Rres = 
[ (∆TA) / 2 + ( DICf - DICi - ∆DIC0)] × V

T × M
 99 

In the formula, ∆TA represents the change in TA during the incubation; DICi and 100 

DICf represent the DIC concentrations in the water before and after incubation, 101 

respectively; ΔDIC0 indicates the change in DIC observed in the control chambers. 102 

Supplementary Method 4 | Quantify the contributions of different biogeochemical 103 

processes to changes in carbonate parameters 104 

Following the method proposed by previous studies16-18, a mass balance model 105 

was employed to quantify the contributions of different biogeochemical processes to 106 

net changes in carbonate parameters (TA, DIC and pCO2) at 10-day intervals, in order 107 

to identify the key processes that control CO2 source-sink function of bivalve culture 108 

systems. Suppose that the initial values of water temperature, salinity and carbonate 109 

parameters are defined as T1, S1, TA1, DIC1 and (pCO2)1, respectively. After 10 days, 110 

these values become T2, S2, TA2, DIC2 and (pCO2)2. 111 

The primary processes controlling changes in TA  112 

In this study, the effects of net primary production (NPP) and bivalve calcification 113 

on TA are taken into account. 114 

∆TA  = TA2 - TA1 = ∆TANPP + ∆TAcal + ∆TAothers 115 

In the formulation, ΔTANPP denotes the contribution of the water column NPP to 116 

net changes in TA, and it is estimated based on the relationship between the net oxygen 117 

production and the net change in TA during photosynthesis19. ΔTAcal denotes the 118 

contribution of calcification to net changes in TA, estimated from the calcification rate 119 
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measured in the mussel incubation experiment. ΔTAothers denotes the contribution of 120 

other processes to net changes in TA, calculated as ΔTA minus ΔTANPP and ΔTAcal. 121 

The primary processes controlling changes in DIC  122 

In this study, the effects of CO2 fluxes at the air-water interface (FCO2-aw), CO2 123 

fluxes at the sediment-water interface (FCO2-sw), NPP, calcification and respiration on 124 

DIC were considered. 125 

∆DIC = DIC2 - DIC1= ∆DICFCO2-aw +  ∆DICFCO2-sw + ∆DICNPP + ∆DICres + 126 

               ∆DICcal+  ∆DICothers 127 

In the formulation, ΔDICFCO2-aw and ΔDICFCO2-sw represent the contributions of 128 

FCO2-aw and FCO2-sw to the net change in DIC, respectively. ΔDICNPP represents the 129 

contribution of the water column NPP to the net change in DIC, estimated from the 130 

relationship between the net oxygen production and net CO2 consumption during 131 

photosynthesis19. ΔDICres and ΔDICcal represent the contributions of bivalve respiration 132 

and calcification to the net change in DIC, estimated from the respiration rates and 133 

calcification rates measured in the mussel incubation experiment, respectively. 134 

ΔDICothers represents the contribution of other processes to the net change in DIC, the 135 

residual after subtracting the contributions of the known processes from ΔDIC. 136 

The primary processes controlling changes in pCO2  137 

In this study, the effects of temperature, salinity, FCO2-aw, FCO2-sw, NPP, 138 

respiration and calcification on pCO2 were considered. 139 

∆pCO
2
 = (pCO

2
)
2
 - (pCO

2
)
1 

= ∆(pCO
2
)

tem
 + ∆(pCO

2
)
sal

 + ∆(pCO
2
)
FCO2-aw

 + 140 

                  ∆(pCO
2
)
FCO2-sw

 + ∆(pCO
2
)
NPP

 + ∆(pCO
2
)

res
 + ∆(pCO

2
)
cal

 + ∆(pCO
2
)
others

 141 
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∆(pCO
2
)

tem
 = f (T2, S1, TA1, DIC1) -  (pCO

2
)
1 

 142 

∆(pCO
2
)

sal
 = f (T1, S2, TA1, DIC1) -  (pCO

2
)
1 

 143 

∆(pCO
2
)
FCO2-aw

 = f (T1, S1, TA1, (DIC
2
)
FCO2-aw

)  - (pCO
2
)
1 

 144 

∆(pCO
2
)
FCO2-sw

 = f (T1, S1, TA1, (DIC
2
)
FCO2-sw

)  - (pCO
2
)
1 

 145 

∆(pCO
2
)
NPP

 = f (T1, S1, (TA
2
)
NPP

, (DIC
2
)
NPP

)  - (pCO
2
)
1 

 146 

∆(pCO
2
)

res
 = f (T1, S1, (TA

2
)

res
, (DIC

2
)
res

)  - (pCO
2
)
1 

 147 

∆(pCO
2
)

cal
 = f (T1, S1, (TA

2
)

cal
, (DIC

2
)
cal

)  - (pCO
2
)
1 

 148 

In the formulation, (△pCO2)tem, (△pCO2)sal, (△pCO2)FCO2-aw, (△pCO2)FCO2-sw, 149 

(△pCO2)NPP, (△pCO2)res, (△pCO2)cal and (△pCO2)others denote the contributions of 150 

temperature, salinity, FCO2-aw, FCO2-sw, NPP, calcification, respiration and other 151 

processes to the net change in pCO2, respectively. (DIC2)FCO2-aw, (DIC2)FCO2-sw, 152 

(TA2)NPP, (DIC2)NPP, (TA2)res, (DIC2)res, (TA2)cal, (DIC2)cal denote the TA or DIC values 153 

at T2 when the corresponding process works alone. f () denotes the pCO2 under the 154 

given environmental and carbonate parameters, calculated using the CO2SYS 155 

program20.  156 
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Supplementary Figures 157 

 158 

Supplementary Figure 1 | Experimental mesocosms and sampling campaign. (a) Location of the 159 

experimental site. (b) Field photograph of the mesocosms. (c) Schematic diagram of the mesocosms. 160 

(d) Sampling schedule and measured indicators.  161 
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 162 

Supplementary Figure 2 | The metabolic activity rates of mussels. (a) The dissolved oxygen 163 

consumption rate (RDO) of mussels at different culture period. (b) The total ammonia nitrogen 164 

(RTAN) excretion rate of mussels at different culture period. The error bars represent the standard 165 

deviation.   166 
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 167 

Supplementary Figure 3 | Environmental parameters of mussel culture systems during the 168 

experiment. (a) Variations in salinity and temperature of the surface water. (b) Correlation between 169 

measured pH and calculated pH. (c) Variations in pH of the surface water. The error bars represent 170 

the standard deviation. Different letters indicate significant differences between data from different 171 

groups (P < 0.05). 172 
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 173 

Supplementary Figure 4 | Proportion of different ecological processes in the total absolute 174 

contributions to changes in carbonate parameters. (a-e) Proportion of different ecological processes 175 

in the total absolute contributions to TA change. (f-j) Proportion of different ecological processes in 176 

the total absolute contributions to DIC change. (k-o) Proportion of different ecological processes in 177 

the total absolute contributions to pCO2 change.178 
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Supplementary Tables 179 

Supplementary Table 1 | Stocking densities in coastal bivalve culture farms worldwide 180 

Systems Country 
Area 

km2 

Water volume 

m3 

Exchange water 

volume m3 

Main bivalve 

species 

Stock capacity g 

(survey year) 

Stock density  

g m-3 

Adjusted stock 

density g m-3 
References 

Mesocosms - 100 m2 180 - mussel - - 6.94 ~ 55.56 This study 

Zhangzidao 

sea area 
China 333 1.17×1010 5.03×1011 scallop 124725 (2010) 10.70 0.25 21-23 

Oosterschelde 

estuary 
Netherlands 350 

2.48 ~ 3.15×

109 
1.20 ~ 1.44×1010 

oyster, mussel, 

calm 
134030 (2009) 42.55 ~ 54.04 9.30 ~ 11.19 24,25 

 Sacca di Goro 

lagoon 
Italy 26 3.90×107 4.75×109 calm 11250 (2001) 288.46 2.37 26,27 

Ria de Aveiro 

lagoon 
Portugal 74.5 7.45×107 9.85×108 ~ 2.80×109 calm 28404 (2012) 381.26 10.13 ~ 28.83 28-30 

Thau lagoon France 68 2.72×108 2.03×109 oyster, mussel 25433 (2016) 93.50 12.50 31 

Sishili Bay China 133 1.20×109 5.75×1010 scallop 30000 (2009) 25.06 0.52 32 

Sechura Bay Peru 400 2.00×108 2.76 ~ 4.14×1011 scallop 58955 (2010) 9.83 014 ~ 0.21 33 

Dapeng Cove China 14 9.80×107 1.49×109 oyster 12100 (2012) 61.73 4.06 34-36 

Malpeque Bay Canada 223..6 6.30×108 6.38×1010 
  mussel, 

oyster 

5689 ~ 10169 

(2014) 
9.04~16.15 0.09 ~ 0.16 37,38 

Sanggou Bay China 144 1.08×109  3.27×1010 oyster, scallop 97848 (2016) 90.60 2.99 39-41 
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Note: The water volume of each culture system was obtained from the literature or calculated from area and mean water depth. The Exchange water volume was 181 

calculated from the water volume and the annual number of turnovers. Stocking capacity were taken from the literature or calculated from annual production (tons per 182 

year) and the culture cycle (year). Stocking density was calculated as the stocking capacity divided by the water volume, and the adjusted stocking density as the 183 

stocking capacity divided by the exchange water volume.184 
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