
!pip -q install pandas numpy matplotlib scikit-learn shap lime

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import LeaveOneOut
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from sklearn.inspection import permutation_importance, PartialDependenceDisplay

SEED = 42
np.random.seed(SEED)

Run A B Y1 Y2

0 1 600.000 7.00000 52.79 79.56

1 2 400.000 18.50000 47.37 71.48

2 3 400.000 18.50000 42.23 67.37

3 4 600.000 30.00000 65.86 85.93

4 5 400.000 18.50000 46.70 76.48

5 6 200.000 7.00000 21.50 33.89

6 7 400.000 34.76350 52.28 79.33

7 8 400.000 18.50000 37.15 62.15

8 9 200.000 30.00000 35.64 57.03

9 10 400.000 18.50000 41.56 66.46

10 11 682.843 18.50000 74.63 95.73

11 12 117.157 18.50000 17.31 26.08

12 13 400.000 2.23654 9.83 25.31

 Run A B Y1 Y2
count 13.00000 13.000000 13.000000 13.000000 13.000000
mean 7.00000 400.000000 18.500003 41.911538 63.600000
std 3.89444 163.299399 9.389718 18.339206 22.519117
min 1.00000 117.157000 2.236540 9.830000 25.310000
25% 4.00000 400.000000 18.500000 35.640000 57.030000
50% 7.00000 400.000000 18.500000 42.230000 67.370000
75% 10.00000 400.000000 18.500000 52.280000 79.330000
max 13.00000 682.843000 34.763500 74.630000 95.730000

Run, A (mg), B (min), Y1 (solubility), Y2 (%CDR)
data = [
(1, 600.0000, 7.00000, 52.79, 79.56),
(2, 400.0000, 18.50000, 47.37, 71.48),
(3, 400.0000, 18.50000, 42.23, 67.37),
(4, 600.0000, 30.00000, 65.86, 85.93),
(5, 400.0000, 18.50000, 46.70, 76.48),
(6, 200.0000, 7.00000, 21.50, 33.89),
(7, 400.0000, 34.76350, 52.28, 79.33),
(8, 400.0000, 18.50000, 37.15, 62.15),
(9, 200.0000, 30.00000, 35.64, 57.03),
(10, 400.0000, 18.50000, 41.56, 66.46),
(11, 682.8430, 18.50000, 74.63, 95.73),
(12, 117.1570, 18.50000, 17.31, 26.08),
(13, 400.0000, 2.23654, 9.83, 25.31),
]

df = pd.DataFrame(data, columns=["Run","A","B","Y1","Y2"])
display(df)
print(df.describe())

import numpy as np

Validation points: R1, R9, Optimized
val_points = [(600.0, 7.0), (200.0, 30.0), (600.0, 30.0)]

def is_val_point(a, b):
 return any(np.isclose(a, aa) and np.isclose(b, bb) for aa, bb in val_points)

df must already exist with columns: A, B, Y1, Y2
mask_val = df.apply(lambda r: is_val_point(r["A"], r["B"]), axis=1)

train_df = df.loc[~mask_val].copy()
val_df = df.loc[mask_val].copy()

print("Training n =", len(train_df), " Validation n =", len(val_df))
display(train_df)
display(val_df)

Training n = 10 Validation n = 3

Run A B Y1 Y2

1 2 400.000 18.50000 47.37 71.48

2 3 400.000 18.50000 42.23 67.37

4 5 400.000 18.50000 46.70 76.48

5 6 200.000 7.00000 21.50 33.89

6 7 400.000 34.76350 52.28 79.33

7 8 400.000 18.50000 37.15 62.15

9 10 400.000 18.50000 41.56 66.46

10 11 682.843 18.50000 74.63 95.73

11 12 117.157 18.50000 17.31 26.08

12 13 400.000 2.23654 9.83 25.31

Run A B Y1 Y2

0 1 600.0 7.0 52.79 79.56

3 4 600.0 30.0 65.86 85.93

8 9 200.0 30.0 35.64 57.03

X_train = train_df[["A","B"]]
y1_train = train_df["Y1"].values
y2_train = train_df["Y2"].values

rf_y1 = RandomForestRegressor(n_estimators=800, random_state=SEED)
rf_y2 = RandomForestRegressor(n_estimators=800, random_state=SEED)

rf_y1.fit(X_train, y1_train)
rf_y2.fit(X_train, y2_train)

print("RF models trained.")

RF models trained.

RF (LOOCV) Y1: R2=0.1651 MAE=12.0030 RMSE=16.4042
RF (LOOCV) Y2: R2=0.2217 MAE=14.4085 RMSE=20.0952

Model Response R2 MAE RMSE

0 RF Y1 0.165112 12.003022 16.404238

1 RF Y2 0.221661 14.408530 20.095215

Saved: Table_RF_LOOCV_train.csv

import numpy as np
import pandas as pd
from copy import deepcopy
from sklearn.model_selection import LeaveOneOut
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error

def loocv_predict(model, X, y):
 loo = LeaveOneOut()
 preds = np.zeros(len(y), dtype=float)

 for tr, te in loo.split(X):
 m = deepcopy(model)
 m.fit(X.iloc[tr], y[tr])
 preds[te[0]] = m.predict(X.iloc[te])[0]

 return preds

def report_metrics(y_true, y_pred, label):
 r2 = r2_score(y_true, y_pred)
 mae = mean_absolute_error(y_true, y_pred)
 mse = mean_squared_error(y_true, y_pred) # no squared=False
 rmse = float(np.sqrt(mse)) # RMSE = sqrt(MSE)

 print(f"{label}: R2={r2:.4f} MAE={mae:.4f} RMSE={rmse:.4f}")
 return r2, mae, rmse

---- Run LOOCV predictions (RF models must already be trained) ----
pred_loocv_y1 = loocv_predict(rf_y1, X_train, y1_train)
pred_loocv_y2 = loocv_predict(rf_y2, X_train, y2_train)

m_y1 = report_metrics(y1_train, pred_loocv_y1, "RF (LOOCV) Y1")
m_y2 = report_metrics(y2_train, pred_loocv_y2, "RF (LOOCV) Y2")

metrics_table = pd.DataFrame([
 {"Model": "RF", "Response": "Y1", "R2": m_y1[0], "MAE": m_y1[1], "RMSE": m_y1[2]},
 {"Model": "RF", "Response": "Y2", "R2": m_y2[0], "MAE": m_y2[1], "RMSE": m_y2[2]},
])

metrics_table.to_csv("Table_RF_LOOCV_train.csv", index=False)
display(metrics_table)
print("Saved: Table_RF_LOOCV_train.csv")

Run A B Y1 Y2 RF_Y1_pred RF_Y2_pred RF_Y1_%error RF_Y2_%error QbD_Y1_pred QbD_Y2_pred QbD_Y1_%error QbD_Y2_%error

0 1 600.0 7.0 52.79 79.56 46.676787 51.429836 -11.580247 -35.357169 48.82 71.99 -7.520364 -9.514832

3 4 600.0 30.0 65.86 85.93 66.092435 89.079350 0.352923 3.665018 70.64 98.47 7.257820 14.593274

8 9 200.0 30.0 35.64 57.03 28.078118 42.132041 -21.217401 -26.123022 34.99 55.20 -1.823793 -3.208837

Saved: Table_RF_validation_checkpoints.csv

X_val = val_df[["A","B"]]
val_pred_y1 = rf_y1.predict(X_val)
val_pred_y2 = rf_y2.predict(X_val)

QbD predicted values (Table 4) for comparison
qbd_pred = {
(600.0, 7.0): (48.82, 71.99),
(200.0, 30.0): (34.99, 55.20),
(600.0, 30.0): (70.64, 98.47),
}

val_table = val_df[["Run","A","B","Y1","Y2"]].copy()
val_table["RF_Y1_pred"] = val_pred_y1
val_table["RF_Y2_pred"] = val_pred_y2

val_table["RF_Y1_%error"] = 100*(val_table["RF_Y1_pred"]-val_table["Y1"])/val_table["Y1"]
val_table["RF_Y2_%error"] = 100*(val_table["RF_Y2_pred"]-val_table["Y2"])/val_table["Y2"]

val_table["QbD_Y1_pred"] = val_table.apply(lambda r: qbd_pred[(float(r["A"]), float(r["B"]))][0], axis=1)
val_table["QbD_Y2_pred"] = val_table.apply(lambda r: qbd_pred[(float(r["A"]), float(r["B"]))][1], axis=1)

val_table["QbD_Y1_%error"] = 100*(val_table["QbD_Y1_pred"]-val_table["Y1"])/val_table["Y1"]
val_table["QbD_Y2_%error"] = 100*(val_table["QbD_Y2_pred"]-val_table["Y2"])/val_table["Y2"]

val_table.to_csv("Table_RF_validation_checkpoints.csv", index=False)
display(val_table)
print("Saved: Table_RF_validation_checkpoints.csv")

import matplotlib.pyplot as plt

def pred_vs_obs(y_true, y_pred, title, filename):
 plt.figure()
 plt.scatter(y_true, y_pred)

 mn = float(min(np.min(y_true), np.min(y_pred)))
 mx = float(max(np.max(y_true), np.max(y_pred)))

 plt.plot([mn, mx], [mn, mx])
 plt.xlabel("Observed")
 plt.ylabel("Predicted (LOOCV)")
 plt.title(title)
 plt.tight_layout()
 plt.savefig(filename, dpi=300)
 plt.close()

---- Call the function (these lines must NOT be indented) ----
pred_vs_obs(y1_train, pred_loocv_y1, "RF LOOCV: Predicted vs Observed (Y1)", "Fig_PredVsObs_Y1.png")
pred_vs_obs(y2_train, pred_loocv_y2, "RF LOOCV: Predicted vs Observed (Y2)", "Fig_PredVsObs_Y2.png")

print("Saved: Fig_PredVsObs_Y1.png and Fig_PredVsObs_Y2.png")

Saved: Fig_PredVsObs_Y1.png and Fig_PredVsObs_Y2.png

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import shap

Use TRAIN set for explanations (recommended)
Make sure these exist before running:
df, X_train, y1_train, y2_train, rf_y1, rf_y2

---------------- Y1 ----------------
explainer_y1 = shap.TreeExplainer(rf_y1)
shap_exp_y1 = explainer_y1(X_train) # Explanation object

Summary plot (beeswarm)
shap.summary_plot(shap_exp_y1.values, X_train, show=False)
plt.tight_layout()
plt.savefig("Fig_SHAP_summary_Y1.png", dpi=300)
plt.close()

Dependence plots (A and B)
for feat in ["A", "B"]:
 shap.dependence_plot(feat, shap_exp_y1.values, X_train, show=False)
 plt.tight_layout()
 plt.savefig(f"Fig_SHAP_dependence_Y1_{feat}.png", dpi=300)
 plt.close()

Local SHAP waterfall: highest and lowest observed Y1 within TRAIN
idx_hi = int(np.argmax(y1_train))
idx_lo = int(np.argmin(y1_train))

/tmp/ipython-input-1010726122.py:15: FutureWarning: The NumPy global RNG was seeded by calling `np.random.seed`. In a future version this function will no longer use th
 shap.summary_plot(shap_exp_y1.values, X_train, show=False)
Saved SHAP figures for Y1
/tmp/ipython-input-1010726122.py:43: FutureWarning: The NumPy global RNG was seeded by calling `np.random.seed`. In a future version this function will no longer use th
 shap.summary_plot(shap_exp_y2.values, X_train, show=False)
Saved SHAP figures for Y2

Feature mean_abs_SHAP_Y1 mean_abs_SHAP_Y2

0 A 5.219187 8.014233

1 B 5.724004 8.042018

Saved: Table_SHAP_importance.csv

for name, idx in [("high", idx_hi), ("low", idx_lo)]:
 shap.plots.waterfall(shap_exp_y1[idx], show=False)
 plt.tight_layout()
 plt.savefig(f"Fig_SHAP_waterfall_Y1_{name}.png", dpi=300)
 plt.close()

print("Saved SHAP figures for Y1")

---------------- Y2 ----------------
explainer_y2 = shap.TreeExplainer(rf_y2)
shap_exp_y2 = explainer_y2(X_train)

shap.summary_plot(shap_exp_y2.values, X_train, show=False)
plt.tight_layout()
plt.savefig("Fig_SHAP_summary_Y2.png", dpi=300)
plt.close()

for feat in ["A", "B"]:
 shap.dependence_plot(feat, shap_exp_y2.values, X_train, show=False)
 plt.tight_layout()
 plt.savefig(f"Fig_SHAP_dependence_Y2_{feat}.png", dpi=300)
 plt.close()

idx_hi2 = int(np.argmax(y2_train))
idx_lo2 = int(np.argmin(y2_train))

for name, idx in [("high", idx_hi2), ("low", idx_lo2)]:
 shap.plots.waterfall(shap_exp_y2[idx], show=False)
 plt.tight_layout()
 plt.savefig(f"Fig_SHAP_waterfall_Y2_{name}.png", dpi=300)
 plt.close()

print("Saved SHAP figures for Y2")

---------------- SHAP global importance table ----------------
imp_y1 = np.abs(shap_exp_y1.values).mean(axis=0)
imp_y2 = np.abs(shap_exp_y2.values).mean(axis=0)

shap_table = pd.DataFrame({
 "Feature": list(X_train.columns),
 "mean_abs_SHAP_Y1": imp_y1,
 "mean_abs_SHAP_Y2": imp_y2
})

shap_table.to_csv("Table_SHAP_importance.csv", index=False)
display(shap_table)
print("Saved: Table_SHAP_importance.csv")

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.inspection import permutation_importance

SEED must exist; if not, define it
try:
 SEED
except NameError:
 SEED = 42

def run_pfi(model, X, y, title, out_csv, out_png):
 r = permutation_importance(
 model, X, y,
 scoring="neg_mean_absolute_error",
 n_repeats=200,
 random_state=SEED
)

 pfi = pd.DataFrame({
 "Feature": list(X.columns),
 "Importance_mean": r.importances_mean,
 "Importance_std": r.importances_std
 }).sort_values("Importance_mean", ascending=False)

 pfi.to_csv(out_csv, index=False)

 plt.figure()
 plt.bar(pfi["Feature"], pfi["Importance_mean"], yerr=pfi["Importance_std"])
 plt.ylabel("PFI (increase in MAE units)")
 plt.title(title)
 plt.tight_layout()
 plt.savefig(out_png, dpi=300)
 plt.close()

Feature Importance_mean Importance_std

0 A 6.928346 2.151580

1 B 5.020840 1.816498

Feature Importance_mean Importance_std

0 A 8.846882 3.002529

1 B 6.997089 2.700590

Saved: Table_PFI_Y1.csv, Fig_PFI_Y1.png, Table_PFI_Y2.csv, Fig_PFI_Y2.png

 return pfi

---- Run PFI on TRAIN set ----
pfi_y1 = run_pfi(rf_y1, X_train, y1_train, "Permutation Feature Importance (RF–Y1)", "Table_PFI_Y1.csv", "Fig_PFI_Y1.png")
pfi_y2 = run_pfi(rf_y2, X_train, y2_train, "Permutation Feature Importance (RF–Y2)", "Table_PFI_Y2.csv", "Fig_PFI_Y2.png")

display(pfi_y1)
display(pfi_y2)
print("Saved: Table_PFI_Y1.csv, Fig_PFI_Y1.png, Table_PFI_Y2.csv, Fig_PFI_Y2.png")

1D PDP
fig, ax = plt.subplots(1, 2, figsize=(10,4))
PartialDependenceDisplay.from_estimator(rf_y1, X_train, ["A"], ax=ax[0], grid_resolution=50)
PartialDependenceDisplay.from_estimator(rf_y1, X_train, ["B"], ax=ax[1], grid_resolution=50)
plt.suptitle("PDP (1D) — RF–Y1")
plt.tight_layout()
plt.savefig("Fig_PDP1D_Y1.png", dpi=300)
plt.close()

fig, ax = plt.subplots(1, 2, figsize=(10,4))
PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["A"], ax=ax[0], grid_resolution=50)
PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["B"], ax=ax[1], grid_resolution=50)
plt.suptitle("PDP (1D) — RF–Y2")
plt.tight_layout()
plt.savefig("Fig_PDP1D_Y2.png", dpi=300)
plt.close()

2D PDP
fig, ax = plt.subplots(figsize=(6,5))
PartialDependenceDisplay.from_estimator(rf_y1, X_train, [("A","B")], ax=ax, grid_resolution=40)
plt.title("PDP (2D A×B) — RF–Y1")
plt.tight_layout()
plt.savefig("Fig_PDP2D_Y1.png", dpi=300)
plt.close()

fig, ax = plt.subplots(figsize=(6,5))
PartialDependenceDisplay.from_estimator(rf_y2, X_train, [("A","B")], ax=ax, grid_resolution=40)
plt.title("PDP (2D A×B) — RF–Y2")
plt.tight_layout()
plt.savefig("Fig_PDP2D_Y2.png", dpi=300)
plt.close()

ICE
fig, ax = plt.subplots(figsize=(6,4))
PartialDependenceDisplay.from_estimator(rf_y1, X_train, ["A"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — A on RF–Y1")
plt.tight_layout()
plt.savefig("Fig_ICE_Y1_A.png", dpi=300)
plt.close()

fig, ax = plt.subplots(figsize=(6,4))
PartialDependenceDisplay.from_estimator(rf_y1, X_train, ["B"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — B on RF–Y1")
plt.tight_layout()
plt.savefig("Fig_ICE_Y1_B.png", dpi=300)
plt.close()

fig, ax = plt.subplots(figsize=(6,4))
PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["A"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — A on RF–Y2")
plt.tight_layout()
plt.savefig("Fig_ICE_Y2_A.png", dpi=300)
plt.close()

fig, ax = plt.subplots(figsize=(6,4))
PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["B"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — B on RF–Y2")
plt.tight_layout()
plt.savefig("Fig_ICE_Y2_B.png", dpi=300)
plt.close()

print("Saved PDP/ICE figures")

Saved PDP/ICE figures

!pip -q install lime

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 275.7/275.7 kB 12.4 MB/s eta 0:00:00
 Preparing metadata (setup.py) ... done
 Building wheel for lime (setup.py) ... done

import numpy as np
import pandas as pd
from lime.lime_tabular import LimeTabularExplainer

Make sure these exist before running:
X_train, rf_y1, rf_y2, SEED

feature_names = list(X_train.columns)

lime_explainer = LimeTabularExplainer(
 training_data=X_train.values,
 feature_names=feature_names,
 mode="regression",
 discretize_continuous=True,
 random_state=SEED
)

Wrapper functions (must return a 1D array of predictions)
def predict_y1(arr):
 arr_df = pd.DataFrame(arr, columns=feature_names)
 return rf_y1.predict(arr_df)

def predict_y2(arr):
 arr_df = pd.DataFrame(arr, columns=feature_names)
 return rf_y2.predict(arr_df)

Choose one "best" and one "worst" point based on RF predictions (within TRAIN)
pred_train_y1 = rf_y1.predict(X_train)
idx_best = int(np.argmax(pred_train_y1))
idx_worst = int(np.argmin(pred_train_y1))

NUM_SAMPLES = 5000

for label, idx in [("best", idx_best), ("worst", idx_worst)]:
 # Explain Y1
 exp1 = lime_explainer.explain_instance(
 data_row=X_train.values[idx],
 predict_fn=predict_y1,
 num_features=2,
 num_samples=NUM_SAMPLES
)
 exp1.save_to_file(f"LIME_Y1_{label}.html")

 # Explain Y2 at the same point (so it's comparable)
 exp2 = lime_explainer.explain_instance(
 data_row=X_train.values[idx],
 predict_fn=predict_y2,
 num_features=2,
 num_samples=NUM_SAMPLES
)
 exp2.save_to_file(f"LIME_Y2_{label}.html")

print("Saved: LIME_Y1_best.html, LIME_Y1_worst.html, LIME_Y2_best.html, LIME_Y2_worst.html")
print("Open them from Colab > Files (left panel) > click the .html files.")

Saved: LIME_Y1_best.html, LIME_Y1_worst.html, LIME_Y2_best.html, LIME_Y2_worst.html
Open them from Colab > Files (left panel) > click the .html files.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

---- Dense grid in A and B ----
A_grid = np.linspace(df["A"].min(), df["A"].max(), 120)
B_grid = np.linspace(df["B"].min(), df["B"].max(), 120)
AA, BB = np.meshgrid(A_grid, B_grid)

grid = pd.DataFrame({"A": AA.ravel(), "B": BB.ravel()})
Z1 = rf_y1.predict(grid).reshape(AA.shape)
Z2 = rf_y2.predict(grid).reshape(AA.shape)

---- RF contour plots ----
plt.figure()
plt.contourf(AA, BB, Z1, levels=20)
plt.xlabel("A (mg)")
plt.ylabel("B (min)")
plt.title("RF contour — Y1")
plt.tight_layout()
plt.savefig("Fig_RF_contour_Y1.png", dpi=300)
plt.close()

plt.figure()
plt.contourf(AA, BB, Z2, levels=20)
plt.xlabel("A (mg)")
plt.ylabel("B (min)")
plt.title("RF contour — Y2")
plt.tight_layout()
plt.savefig("Fig_RF_contour_Y2.png", dpi=300)
plt.close()

A_opt_mg B_opt_min Y1_pred Y2_pred Overall_desirability

0 544.986748 26.836762 66.092435 89.07935 0.886706

Saved: Fig_RF_contour_Y1.png, Fig_RF_contour_Y2.png, Fig_Desirability_contour.png, Table_RF_optimum.csv

---- Desirability (maximize both) ----
def desirability_max(y, low, high):
 y = np.asarray(y)
 d = np.zeros_like(y, dtype=float)
 d[y >= high] = 1.0
 mid = (y > low) & (y < high)
 d[mid] = (y[mid] - low) / (high - low)
 return d

Y1_low, Y1_high = df["Y1"].min(), df["Y1"].max()
Y2_low, Y2_high = df["Y2"].min(), df["Y2"].max()

d1 = desirability_max(Z1, Y1_low, Y1_high)
d2 = desirability_max(Z2, Y2_low, Y2_high)
D = np.sqrt(d1 * d2)

---- Find optimum ----
best_idx = np.unravel_index(np.argmax(D), D.shape)
A_star = float(AA[best_idx])
B_star = float(BB[best_idx])
Y1_star = float(Z1[best_idx])
Y2_star = float(Z2[best_idx])
D_star = float(D[best_idx])

opt = pd.DataFrame([{
 "A_opt_mg": A_star,
 "B_opt_min": B_star,
 "Y1_pred": Y1_star,
 "Y2_pred": Y2_star,
 "Overall_desirability": D_star
}])

opt.to_csv("Table_RF_optimum.csv", index=False)
display(opt)

---- Desirability contour ----
plt.figure()
plt.contourf(AA, BB, D, levels=20)
plt.scatter([A_star], [B_star])
plt.xlabel("A (mg)")
plt.ylabel("B (min)")
plt.title("Overall desirability (RF)")
plt.tight_layout()
plt.savefig("Fig_Desirability_contour.png", dpi=300)
plt.close()

print("Saved: Fig_RF_contour_Y1.png, Fig_RF_contour_Y2.png, Fig_Desirability_contour.png, Table_RF_optimum.csv")

 adding: Fig_Desirability_contour.png (deflated 29%)
 adding: Fig_ICE_Y1_A.png (deflated 14%)
 adding: Fig_ICE_Y1_B.png (deflated 16%)
 adding: Fig_ICE_Y2_A.png (deflated 15%)
 adding: Fig_ICE_Y2_B.png (deflated 17%)
 adding: Fig_PDP1D_Y1.png (deflated 16%)
 adding: Fig_PDP1D_Y2.png (deflated 17%)
 adding: Fig_PDP2D_Y1.png (deflated 9%)
 adding: Fig_PDP2D_Y2.png (deflated 9%)
 adding: Fig_PFI_Y1.png (deflated 30%)
 adding: Fig_PFI_Y2.png (deflated 28%)
 adding: Fig_PredVsObs_Y1.png (deflated 17%)
 adding: Fig_PredVsObs_Y2.png (deflated 17%)
 adding: Fig_RF_contour_Y1.png (deflated 32%)
 adding: Fig_RF_contour_Y2.png (deflated 32%)
 adding: Fig_SHAP_dependence_Y1_A.png (deflated 29%)
 adding: Fig_SHAP_dependence_Y1_B.png (deflated 28%)
 adding: Fig_SHAP_dependence_Y2_A.png (deflated 31%)
 adding: Fig_SHAP_dependence_Y2_B.png (deflated 28%)
 adding: Fig_SHAP_summary_Y1.png (deflated 15%)
 adding: Fig_SHAP_summary_Y2.png (deflated 16%)
 adding: Fig_SHAP_waterfall_Y1_high.png (deflated 19%)
 adding: Fig_SHAP_waterfall_Y1_low.png (deflated 18%)
 adding: Fig_SHAP_waterfall_Y2_high.png (deflated 19%)
 adding: Fig_SHAP_waterfall_Y2_low.png (deflated 19%)
 adding: Table_PFI_Y1.csv (deflated 20%)
 adding: Table_PFI_Y2.csv (deflated 20%)
 adding: Table_RF_LOOCV_train.csv (deflated 24%)
 adding: Table_RF_optimum.csv (deflated 20%)
 adding: Table_RF_validation_checkpoints.csv (deflated 45%)
 adding: Table_SHAP_importance.csv (deflated 19%)
 adding: LIME_Y1_best.html (deflated 80%)
 adding: LIME_Y1_worst.html (deflated 80%)
 adding: LIME_Y2_best.html (deflated 80%)
 adding: LIME_Y2_worst.html (deflated 80%)

import os
from google.colab import files

!zip -r Results_RF_XAI.zip *.png *.csv *.html
files.download("Results_RF_XAI.zip")

