I'pip -q install pandas numpy matplotlib scikit-learn shap lime

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import LeaveOneOut

from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from sklearn.inspection import permutation_importance, PartialDependenceDisplay

SEED = 42
np.random.seed(SEED)

Run, A (mg), B (min), Y1 (solubility), Y2 (%CDR)
data = [

(1, 600.0000, 7.00000, 52.79, 79.56),
(2, 400.0000, 18.50000, 47.37, 71.48),
(3, 400.0000, 18.50000, 42.23, 67.37),
(4, 600.0000, 30.00000, 65.86, 85.93),
(5, 400.0000, 18.50000, 46.70, 76.48),
(6, 200.0000, 7.60000, 21.50, 33.89),
(7, 400.0000, 34.76350, 52.28, 79.33),
(8, 400.0000, 18.50000, 37.15, 62.15),
(9, 200.0000, 30.00000, 35.64, 57.03),
(10, 400.0000, 18.50000, 41.56, 66.46),
(11, 682.8430, 18.50000, 74.63, 95.73),
(12, 117.1570, 18.50000, 17.31, 26.08),
(13, 400.0000, 2.23654, 9.83, 25.31),
1

df = pd.DataFrame(data, columns=["Run","A","B","Y1","Y2"])

display(df)

print(df.describe())

Run A B Y1 Y2

0 1 600.000 7.00000 52.79 79.56
1 2 400.000 18.50000 47.37 71.48
2 3 400.000 18.50000 42.23 67.37
3 4 600.000 30.00000 65.86 85.93
4 5 400.000 18.50000 46.70 76.48
5 6 200.000 7.00000 21.50 33.89
6 7 400.000 34.76350 52.28 79.33
7 8 400.000 18.50000 37.15 62.15
8 9 200.000 30.00000 35.64 57.03
9 10 400.000 18.50000 41.56 66.46
10 11 682.843 18.50000 74.63 95.73
1" 12 117.157 18.50000 17.31 26.08

12 13 400.000 2.23654 9.83 25.31

Run A B Y1 Y2
count 13.00000 13.000000 13.000000 13.000000 13.000000
mean 7.00000 400.000000 18.500003 41.911538 63.600000
std 3.89444 163.299399 9.389718 18.339206 22.519117
min 1.00000 117.157000 2.236540 9.830000 25.310000
25% 4.00000 400.000000 18.500000 35.640000 57.030000
50% 7.00000 400.000000 18.500000 42.230000 67.370000
75% 10.00000 400.000000 18.500000 52.280000 79.330000
max 13.00000 682.843000 34.763500 74.630000 95.730000

import numpy as np

Vvalidation points: R1, R9, Optimized
val_points = [(600.0, 7.0), (200.0, 30.0), (600.0, 30.0)]

def is_val_point(a, b):

return any(np.isclose(a, aa) and np.isclose(b, bb) for aa, bb in val_points)

df must already exist with columns: A, B, Y1, Y2
mask_val = df.apply(lambda r: is_val_point(r["A"], r["B"]), axis=1)

train_df = df.loc[~mask_val].copy()

val_df = df.loc[mask_val].copy()

print("Training n =", len(train_df), " Validation n =", len(val_df))
display(train_df)

display(val_df)

Training n = 10 Validation n = 3
Run A B Y1 Y2

1 2 400.000 18.50000 47.37 71.48

2 3 400.000 18.50000 4223 67.37

4 5 400.000 18.50000 46.70 76.48
5 6 200.000 7.00000 21.50 33.89
6 7 400.000 34.76350 52.28 79.33

7 8 400.000 18.50000 37.15 62.15

9 10 400.000 18.50000 41.56 66.46

10 11 682.843 18.50000 74.63 95.73

11 12 117.157 18.50000 17.31 26.08

12 13 400.000 2.23654 9.83 25.31
Run A B Y1 Y2

0 1 6000 7.0 5279 79.56

3 4 600.0 30.0 65.86 8593

8 9 200.0 30.0 3564 57.03

X_train = train_df[["A","B"]]
y1l_train = train_df["Y1"].values
y2_train = train_df["Y2"].values

rf_yl = RandomForestRegressor(n_estimators=800, random_state=SEED)
rf_y2 = RandomForestRegressor(n_estimators=800, random_state=SEED)

rf_yl.fit(X_train, yl_train)
rf_y2.fit(X_train, y2_train)

print("RF models trained.")

RF models trained.

import numpy as np

import pandas as pd

from copy import deepcopy

from sklearn.model_selection import LeaveOneOut

from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error

def loocv_predict(model, X, y):
loo = LeaveOneOut()
preds = np.zeros(len(y), dtype=float)

for tr, te in loo.split(X):
m = deepcopy(model)
m.fit(X.iloc[tr], y[tr])
preds[te[@]] = m.predict(X.iloc[te])[0]

return preds

def report_metrics(y_true, y_pred, label):
r2 = r2_score(y_true, y_pred)
mae = mean_absolute_error(y_true, y_pred)
mse = mean_squared_error(y_true, y_pred) # no squared=False
rmse = float(np.sqrt(mse)) # RMSE = sqrt(MSE)

print(f"{label}: R2={r2:.4f} MAE={mae:.4f} RMSE={rmse:.4f}")
return r2, mae, rmse

---- Run LOOCV predictions (RF models must already be trained) ----
pred_loocv_yl = loocv_predict(rf_yl, X_train, yl_train)
pred_loocv_y2 = loocv_predict(rf_y2, X_train, y2_train)

m_yl = report_metrics(yl_train, pred_loocv_yl, "RF (LOOCV) Y1")
m_y2 = report_metrics(y2_train, pred_loocv_y2, "RF (LOOCV) Y2")

metrics_table = pd.DataFrame([
{"Model": "RF", "Response": "Y1", "R2": m_y1[@], "MAE": m_y1[1], "RMSE": m_y1[2]},
{"Model": "RF", "Response": "Y2", "R2": m_y2[@], "MAE": m_y2[1], "RMSE": m_y2[2]},
I}

metrics_table.to_csv("Table_RF_LOOCV_train.csv", index=False)
display(metrics_table)
print(“Saved: Table_RF_LOOCV_train.csv")

RF (LOOCV) Y1: R2=0.1651 MAE=12.0030 RMSE=16.4042
RF (LOOCV) Y2: R2=0.2217 MAE=14.4085 RMSE=20.0952

Model Response R2 MAE RMSE
0 RF Y1 0.165112 12.003022 16.404238
1 RF Y2 0.221661 14.408530 20.095215

Saved: Table RF LOOCV train.csv

X_val = val_df[["A","B"]]
val_pred_yl = rf_yl.predict(X_val)
val_pred_y2 = rf_y2.predict(X_val)

QbD predicted values (Table 4) for comparison
gbd_pred = {

(600.0, 7.0): (48.82, 71.99),

(200.0, 30.0): (34.99, 55.20),

(600.0, 30.8): (70.64, 98.47),

}

val_table = val_df[["Run","A","B","Y1","Y2"]].copy()
val_table["RF_Y1_pred"] = val_pred_yl
val_table["RF_Y2_pred"] = val_pred_y2

val_table["RF_Y1_%error"] = 100*(val_table["RF_Y1_pred"]-val_table["Y1"])/val_table["Y1"]
val_table["RF_Y2_%error"] = 100*(val_table["RF_Y2_pred"]-val_table["Y2"])/val_table["Y2"]

val_table["QbD_Y1_pred"] = val_table.apply(lambda r: gbd_pred[(float(r["A"]), float(r["B"]))][@], axis=1)
val_table["QbD_Y2_pred"] = val_table.apply(lambda r: gbd_pred[(float(r["A"]), float(r["B"]))][1], axis=1)

val_table["QbD_Y1_%error"] = 100*(val_table["QbD_Y1_pred"]-val_table["Y1"])/val_table["Y1"]
val_table["QbD_Y2_%error"] = 100*(val_table["QbD_Y2_pred"]-val_table["Y2"])/val_table["Y2"]

val_table.to_csv("Table_RF_validation_checkpoints.csv", index=False)
display(val_table)
print(“Saved: Table_RF_validation_checkpoints.csv")

Run A B Y1 Y2 RF_Y1_pred RF_Y2_pred RF_Y1_%error RF_Y2_%error QbD_Y1_pred QbD_Y2_pred QbD_Y1_%error QbD_Y2_%error
0 1 6000 7.0 5279 79.56 46.676787 51.429836 -11.580247 -35.357169 48.82 71.99 -7.520364 -9.514832
3 4 600.0 30.0 6586 8593 66.092435 89.079350 0.352923 3.665018 70.64 98.47 7.257820 14.593274
8 9 200.0 30.0 3564 57.03 28.078118 42.132041 -21.217401 -26.123022 34.99 55.20 -1.823793 -3.208837

Saved: Table_RF_validation_checkpoints.csv

import matplotlib.pyplot as plt

def pred_vs_obs(y_true, y_pred, title, filename):
plt.figure()
plt.scatter(y_true, y_pred)

mn = float(min(np.min(y_true), np.min(y_pred)))
mx = float(max(np.max(y_true), np.max(y_pred)))

plt.plot([mn, mx], [mn, mx])
plt.xlabel("Observed")
plt.ylabel("Predicted (LOOCV)")
plt.title(title)
plt.tight_layout()
plt.savefig(filename, dpi=300)
plt.close()

---- Call the function (these lines must NOT be indented) ----
pred_vs_obs(yl_train, pred_loocv_yl, "RF LOOCV: Predicted vs Observed (Y1)", "Fig_PredVsObs_Y1.png")
pred_vs_obs(y2_train, pred_loocv_y2, "RF LOOCV: Predicted vs Observed (Y2)", "Fig_PredVsObs_Y2.png")

print("Saved: Fig_PredVsObs_Y1l.png and Fig_PredVsObs_Y2.png")

Saved: Fig_PredVsObs_Yl.png and Fig_PredVsObs_Y2.png

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import shap

Use TRAIN set for explanations (recommended)
Make sure these exist before running:
df, X_train, yl_train, y2_train, rf_yl, rf_y2

explainer_yl = shap.TreeExplainer(rf_yl)
shap_exp_yl = explainer_y1(X_train) # Explanation object

Summary plot (beeswarm)
shap.summary_plot(shap_exp_yl.values, X_train, show=False)
plt.tight_layout()

plt.savefig("Fig_SHAP_summary_Y1l.png", dpi=300)
plt.close()

Dependence plots (A and B)

for feat in ["A", "B"]:
shap.dependence_plot(feat, shap_exp_yl.values, X_train, show=False)
plt.tight_layout()
plt.savefig(f"Fig_SHAP_dependence_Y1_{feat}.png", dpi=300)
plt.close()

Local SHAP waterfall: highest and lowest observed Y1 within TRAIN
idx_hi = int(np.argmax(yl_train))
idx_lo = int(np.argmin(yl_train))

for name, idx in [("high", idx_hi), ("low", idx_lo)]:
shap.plots.waterfall(shap_exp_y1[idx], show=False)
plt.tight_layout()
plt.savefig(f"Fig_SHAP_waterfall_Y1_{name}.png", dpi=300)
plt.close()

print(“Saved SHAP figures for Y1")

explainer_y2 = shap.TreeExplainer(rf_y2)
shap_exp_y2 = explainer_y2(X_train)

shap.summary_plot(shap_exp_y2.values, X_train, show=False)
plt.tight_layout()

plt.savefig("Fig_SHAP_summary_Y2.png", dpi=300)
plt.close()

for feat in ["A", "B"]:
shap.dependence_plot(feat, shap_exp_y2.values, X_train, show=False)
plt.tight_layout()
plt.savefig(f"Fig_SHAP_dependence_Y2_{feat}.png", dpi=300)
plt.close()

+

idx_hi2 = int(np.argmax(y2_train))
idx_lo2 = int(np.argmin(y2_train))

for name, idx in [("high", idx_hi2), ("low", idx_lo2)]:
shap.plots.waterfall(shap_exp_y2[idx], show=False)
plt.tight_layout()
plt.savefig(f"Fig_SHAP_waterfall_Y2_{name}.png", dpi=300)
plt.close()

print(“Saved SHAP figures for Y2")
-- ---- SHAP global importance table

imp_yl = np.abs(shap_exp_yl.values).mean(axis=0)
imp_y2 = np.abs(shap_exp_y2.values).mean(axis=0)

shap_table = pd.DataFrame({
"Feature": list(X_train.columns),
"mean_abs_SHAP_Y1": imp_y1,
"mean_abs_SHAP_Y2": imp_y2

2l

shap_table.to_csv("Table_SHAP_importance.csv", index=False)
display(shap_table)
print("Saved: Table_SHAP_importance.csv")

/tmp/ipython-input-1010726122.py:15: FutureWarning: The NumPy global RNG was seeded by calling “np.random.seed”

shap.summary_plot(shap_exp_yl.values, X_train, show=False)
Saved SHAP figures for Y1

/tmp/ipython-input-1010726122.py:43: FutureWarning: The NumPy global RNG was seeded by calling “np.random.seed” .

shap.summary_plot(shap_exp_y2.values, X_train, show=False)
Saved SHAP figures for Y2

Feature mean_abs_SHAP_Y1 mean_abs_SHAP_Y2
0 A 5.219187 8.014233

1 B 5.724004 8.042018

Saved: Table_SHAP_importance.csv

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.inspection import permutation_importance

SEED must exist; if not, define it

try:
SEED

except NameError:
SEED = 42

def run_pfi(model, X, y, title, out_csv, out_png):
r = permutation_importance(
model, X, vy,
scoring="neg_mean_absolute_error",
n_repeats=200,
random_state=SEED

pfi = pd.DataFrame({
"Feature": list(X.columns),
"Importance_mean": r.importances_mean,
"Importance_std": r.importances_std
}).sort_values("Importance_mean", ascending=False)

pfi.to_csv(out_csv, index=False)

plt.figure()

plt.bar(pfi["Feature"], pfi["Importance_mean"], yerr=pfi["Importance_std"])
plt.ylabel("PFI (increase in MAE units)")

plt.title(title)

plt.tight_layout()

plt.savefig(out_png, dpi=300)

plt.close()

. In a future version this function will no longer use th

In a future version this function will no longer use th

return pfi

---- Run PFI on TRAIN set ----
pfi_yl = run_pfi(rf_yl, X_train, yl train, "Permutation Feature Importance (RF-Y1)", "Table PFI_Yl.csv", "Fig_PFI_Yl.png")
pfi_y2 = run_pfi(rf_y2, X_train, y2_train, "Permutation Feature Importance (RF-Y2)", "Table_ PFI_Y2.csv", "Fig_PFI_Y2.png")

display(pfi_y1)
display(pfi_y2)
print(“Saved: Table_PFI_Yl.csv, Fig_PFI_Yl.png, Table_PFI_Y2.csv, Fig_PFI_Y2.png")

Feature Importance_mean Importance_std
0 A 6.928346 2.151580
1 B 5.020840 1.816498
Feature Importance_mean Importance_std
0 A 8.846882 3.002529

1 B 6.997089 2.700590
Saved: Table PFI Yl.csv, Fig PFI Yl.png, Table PFI Y2.csv, Fig PFI Y2.png

1D PDP

fig, ax = plt.subplots(l, 2, figsize=(10,4))

PartialDependenceDisplay.from_estimator(rf_yl, X_train, ["A"], ax=ax[@], grid_resolution=50)
PartialDependenceDisplay.from_estimator(rf_yl, X_train, ["B"], ax=ax[1], grid_resolution=50)
plt.suptitle("PDP (1D) — RF-Y1")

plt.tight_layout()

plt.savefig("Fig_PDP1D_Y1.png", dpi=300)

plt.close()

fig, ax = plt.subplots(l, 2, figsize=(10,4))

PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["A"], ax=ax[@], grid_resolution=50)
PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["B"], ax=ax[1], grid_resolution=50)
plt.suptitle("PDP (1D) — RF-Y2")

plt.tight_layout()

plt.savefig("Fig_PDP1D_Y2.png", dpi=300)

plt.close()

2D PDP

fig, ax = plt.subplots(figsize=(6,5))

PartialDependenceDisplay.from_estimator(rf_y1, X_train, [("A","B")], ax=ax, grid_resolution=40)
plt.title("PDP (2D AxB) — RF-Y1")

plt.tight_layout()

plt.savefig("Fig_PDP2D_Y1.png", dpi=300)

plt.close()

fig, ax = plt.subplots(figsize=(6,5))

PartialDependenceDisplay.from_estimator(rf_y2, X_train, [("A","B")], ax=ax, grid_resolution=40)
plt.title("PDP (2D AxB) — RF-Y2")

plt.tight_layout()

plt.savefig("Fig_PDP2D_Y2.png", dpi=300)

plt.close()

ICE

fig, ax = plt.subplots(figsize=(6,4))

PartialDependenceDisplay.from_estimator(rf_y1l, X_train, ["A"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — A on RF-Y1")

plt.tight_layout()

plt.savefig("Fig_ICE_Y1_A.png", dpi=300)

plt.close()

fig, ax = plt.subplots(figsize=(6,4))

PartialDependenceDisplay.from_estimator(rf_y1l, X_train, ["B"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — B on RF-Y1")

plt.tight_layout()

plt.savefig("Fig_ICE_Y1_B.png", dpi=300)

plt.close()

fig, ax = plt.subplots(figsize=(6,4))

PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["A"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — A on RF-Y2")

plt.tight_layout()

plt.savefig("Fig_ICE_Y2_A.png", dpi=300)

plt.close()

fig, ax = plt.subplots(figsize=(6,4))

PartialDependenceDisplay.from_estimator(rf_y2, X_train, ["B"], kind="individual", ax=ax, grid_resolution=50)
plt.title("ICE — B on RF-Y2")

plt.tight_layout()

plt.savefig("Fig_ICE_Y2_B.png", dpi=300)

plt.close()

print(“Saved PDP/ICE figures")

Saved PDP/ICE figures

I'pip -q install lime

275.7/275.7 kB 12.4 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Building wheel for lime (setup.py) ... done

import numpy as np
import pandas as pd
from lime.lime_tabular import LimeTabularExplainer

Make sure these exist before running:
X_train, rf_yl, rf_y2, SEED

feature_names = list(X_train.columns)

lime_explainer = LimeTabularExplainer(
training_data=X_train.values,
feature_names=feature_names,
mode="regression",
discretize_continuous=True,
random_state=SEED

Wrapper functions (must return a 1D array of predictions)
def predict_yl(arr):
arr_df = pd.DataFrame(arr, columns=feature_names)
return rf_yl.predict(arr_df)

def predict_y2(arr):
arr_df = pd.DataFrame(arr, columns=feature_names)
return rf_y2.predict(arr_df)

Choose one "best" and one "worst" point based on RF predictions (within TRAIN)
pred_train_yl = rf_yl.predict(X_train)

idx_best = int(np.argmax(pred_train_y1))

idx_worst = int(np.argmin(pred_train_y1))

NUM_SAMPLES = 5000

for label, idx in [("best", idx_best), ("worst", idx_worst)]:
Explain Y1
expl = lime_explainer.explain_instance(
data_row=X_train.values[idx],
predict_fn=predict_y1,
num_features=2,
num_samples=NUM_SAMPLES
)
expl.save_to_file(f"LIME_Y1_{label}.html")

Explain Y2 at the same point (so it's comparable)
exp2 = lime_explainer.explain_instance(
data_row=X_train.values[idx],
predict_fn=predict_y2,
num_features=2,
num_samples=NUM_SAMPLES
)
exp2.save_to_file(f"LIME_Y2_{label}.html")

print("Saved: LIME_Y1_best.html, LIME_Y1_worst.html, LIME_Y2_best.html, LIME_Y2_ worst.html")
print("Open them from Colab > Files (left panel) > click the .html files.")

Saved: LIME_Y1_best.html, LIME_Y1 worst.html, LIME_Y2_best.html, LIME_Y2_worst.html
Open them from Colab > Files (left panel) > click the .html files.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

---- Dense grid in A and B ----

A_grid = np.linspace(df["A"].min(), df["A"].max(), 120)
B_grid = np.linspace(df["B"].min(), df["B"].max(), 120)
AA, BB = np.meshgrid(A_grid, B_grid)

grid = pd.DataFrame({"A": AA.ravel(), "B": BB.ravel()})
Z1 = rf_yl.predict(grid).reshape(AA.shape)
Z2 = rf_y2.predict(grid).reshape(AA.shape)

---- RF contour plots ----

plt.figure()

plt.contourf(AA, BB, Z1, levels=20)
plt.xlabel("A (mg)")

plt.ylabel("B (min)")

plt.title("RF contour — Y1")
plt.tight_layout()
plt.savefig("Fig_RF_contour_Y1l.png", dpi=300)
plt.close()

+ oot

plt.figure()

plt.contourf(AA, BB, Z2, levels=20)
plt.xlabel("A (mg)")

plt.ylabel("B (min)")

plt.title("RF contour — Y2")
plt.tight_layout()
plt.savefig("Fig_RF_contour_Y2.png", dpi=300)
plt.close()

---- Desirability (maximize both) ----
def desirability_max(y, low, high):

y = np.asarray(y)

d = np.zeros_like(y, dtype=float)

d[y >= high] = 1.0

mid = (y > low) & (y < high)

d[mid] = (y[mid] - low) / (high - low)

return d

Y1_low, Y1_high = df["Y1"].min(), df["Y1"].max()
Y2_low, Y2_high = df["Y2"].min(), df["V2"].max()

dl = desirability_max(Z1, Y1_low, Y1_high)
d2 = desirability_max(Z2, Y2_low, Y2_high)
D = np.sqrt(dl * d2)

---- Find optimum ----

best_idx = np.unravel_index(np.argmax(D), D.shape)
A_star = float(AA[best_idx])

B_star = float(BB[best_idx])

Y1_star = float(zl[best_idx])

Y2_star = float(z2[best_idx])

D_star = float(D[best_idx])

opt = pd.DataFrame([{
"A_opt_mg": A_star,
"B_opt_min": B_star,
"Y1_pred": Y1_star,
"Y2_pred": Y2_star,
"Overall_desirability": D_star

1abl

opt.to_csv("Table_RF_optimum.csv", index=False)
display(opt)

---- Desirability contour ----

plt.figure()

plt.contourf(AA, BB, D, levels=20)
plt.scatter([A_star], [B_star])

plt.xlabel("A (mg)")

plt.ylabel("B (min)")

plt.title("Overall desirability (RF)")
plt.tight_layout()
plt.savefig("Fig_Desirability_contour.png", dpi=300)
plt.close()

print("Saved: Fig_RF_contour_Y1l.png, Fig_ RF_contour_Y2.png, Fig_Desirability_contour.png, Table_RF_optimum.csv")

A_opt_mg B_opt_min Y1l_pred Y2_pred Overall_desirability

0 544986748 26.836762 66.092435 89.07935 0.886706
Saved: Fig RF contour Y1.png, Fig RF contour Y2.png, Fig Desirability contour.png, Table RF optimum.csv

import os
from google.colab import files

!zip -r Results_RF_XAI.zip *.png *.csv *.html
files.download("Results_RF_XAI.zip")

adding: Fig_Desirability_contour.png (deflated 29%)
adding: Fig_ICE_Y1_A.png (deflated 14%)

adding: Fig_ICE_Y1_B.png (deflated 16%)

adding: Fig_ICE_Y2_A.png (deflated 15%)

adding: Fig_ICE_Y2_B.png (deflated 17%)

adding: Fig_PDP1D_Y1.png (deflated 16%)

adding: Fig_PDP1D_Y2.png (deflated 17%)

adding: Fig_PDP2D_Y1.png (deflated 9%)

adding: Fig_PDP2D_Y2.png (deflated 9%)

adding: Fig_PFI_Y1l.png (deflated 30%)

adding: Fig_PFI_Y2.png (deflated 28%)

adding: Fig_PredVsObs_Y1l.png (deflated 17%)

adding: Fig_PredVsObs_Y2.png (deflated 17%)

adding: Fig_RF_contour_Y1l.png (deflated 32%)

adding: Fig_RF_contour_Y2.png (deflated 32%)

adding: Fig_SHAP_dependence_Y1_A.png (deflated 29%)
adding: Fig_SHAP_dependence_Y1_B.png (deflated 28%)
adding: Fig_SHAP_dependence_Y2_A.png (deflated 31%)
adding: Fig_SHAP_dependence_Y2_B.png (deflated 28%)
adding: Fig_SHAP_summary_Y1.png (deflated 15%)
adding: Fig_SHAP_summary_Y2.png (deflated 16%)
adding: Fig_SHAP_waterfall_Y1_high.png (deflated 19%)
adding: Fig_SHAP_waterfall_Y1_low.png (deflated 18%)
adding: Fig_SHAP_waterfall_Y2_high.png (deflated 19%)
adding: Fig_SHAP_waterfall_Y2_low.png (deflated 19%)
adding: Table_PFI_Yl.csv (deflated 20%)

adding: Table_PFI_Y2.csv (deflated 20%)

adding: Table_RF_LOOCV_train.csv (deflated 24%)
adding: Table_RF_optimum.csv (deflated 20%)

adding: Table_RF_validation_checkpoints.csv (deflated 45%)
adding: Table_SHAP_importance.csv (deflated 19%)
adding: LIME_Y1_best.html (deflated 80%)

adding: LIME_Y1_worst.html (deflated 80%)

adding: LIME_Y2_best.html (deflated 80%)

adding: LIME Y2 worst.html (deflated 80%)

