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Fig. S1. Biodiversity-centered hydropower planning can result in higher carbon emissions than low-carbon planning in South American basins. First column: dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) emit less carbon than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10). 
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Fig. S2. Biodiversity-centered hydropower planning can result in higher carbon emissions than low-carbon planning in African basins. First column: dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) emit less carbon than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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Fig. S3. Biodiversity-centered hydropower planning can result in higher carbon emissions than low-carbon planning in a subset of Asian basins. First column: dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) emit less carbon than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10). 
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Fig. S4. Biodiversity-centered hydropower planning can result in higher carbon emissions than low-carbon planning in the second subset of Asian basins. First column: dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) emit less carbon than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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AI-generated content may be incorrect.]Fig. S5. Biodiversity-centered hydropower planning can result in higher carbon emissions than low-carbon planning in the Danube. First column: dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) emit less carbon than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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Fig. S6. Biodiversity-centered hydropower planning can more than triple carbon intensities in comparison to low-carbon planning in South American basins. First column: Dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) have lower carbon intensities than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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AI-generated content may be incorrect.]Fig. S7. Biodiversity-centered hydropower planning can more than triple carbon intensities in comparison to low-carbon planning in African basins. First column: Dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) have lower carbon intensities than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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Fig. S8. Biodiversity-centered hydropower planning can more than triple carbon intensities in comparison to low-carbon planning in a subset of Asian basins. First column: Dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) have lower carbon intensities than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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Fig. S9. Biodiversity-centered hydropower planning can more than triple carbon intensities in comparison to low-carbon planning in a second subset of Asian basins. First column: Dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) have lower carbon intensities than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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AI-generated content may be incorrect.]Fig. S10. Biodiversity-centered hydropower planning can more than triple carbon intensities in comparison to low-carbon planning in a second subset of Asian basins. First column: Dams vary in their biodiversity impacts, carbon emissions and energy capacity. Second column: Thus, basin-wide Pareto optimal solutions for low-carbon hydropower planning (purple) have lower carbon intensities than Pareto optimal solutions for biodiversity-centered planning (blue). Third column: Offsetting carbon emissions from biodiversity-centered planning to levels equivalent to those associated with lowest-carbon dam portfolios depends on the additional capacity installed, and varies across basins. The grey shaded area represents the potential range of future hydropower expansion for each basin from ref. (10).
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Fig. S11. Dams vary in their potential impacts on fish diversity, carbon emissions and installed capacities. Importantly, these three objectives are effectively decoupled across all river basins, and thus tradeoffs are prevalent. Each point corresponds to an individual dam colored by its installed capacity, as indicated in the legend. 
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Fig. S12. Feature importance for final random forest models for (A) CH4 and (B) CO2. For variable descriptions see tables S1 and S2.


Table S1. Final predictors included in the random forest model for CH4.
	Predictors
	Description
	Unit
	Category

	Potential Evapotranspiration
	April through September in the sub-basin.
	mm
	






Climate

	Actual Evapotranspiration 
	April through December in the sub-basin.
	mm
	

	Precipitation
	February through December in the sub-basin.
	mm
	

	The Climate Moisture Index
	In sub-basin and upstream
	Index
	

	Global Aridity Index
	In sub-basin and upstream
	Index
	

	Air Temperature
	Temperatures for May and July
	Degrees Celsius
	

	Terrain Slope
	In sub-basin
	Degree
	Physiography

	Inundation Extent 
	Annual minimum inundation (smn) Long-term maximum inundation (ult)
	% cover
	


Hydrology

	Percent Lake Area
	Upstream lake area extent (use)
	% cover
	

	Latitude
	Geographic Coordinates
	Degree
	Other

	Longitude
	Geographic Coordinates
	Degree
	Other

	Dissolved Inorganic Phosphorus
	In sub-basin Dissolved inorganic phosphorus 
	kg P km-2 yr-1
	Other





Table S2. Final predictors included in the random forest model for CO2.
	Predictors
	Description
	Unit
	Category

	Potential Evapotranspiration
	July and August in the sub-basin
	mm
	

Climate

	Actual Evapotranspiration 
	October and September in the sub-basin
	mm
	

	Snow Cover Extent 
	July in the sub-basin.
	%
	

	The Climate Moisture Index
	June in the sub-basin
	Index
	

	Wetland Extent
	Lakes/reservoirs, in the upstream watershed
	%
	
Landcover

	Land Cover Extent
	Class 2 upstream
	%
	

	Soil Water Content 
	August in the sub-basin
	%
	Soils/Geology

	Latitude
	Geographic Coordinates
	Degree
	Other

	Longitude
	Geographic Coordinates
	Degree
	Other
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