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Room Temperature long-wavelength infrared Sensitive Imaging Photodetection based on topological insulator Bi2Te3 nanoflakes
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[bookmark: _Hlk173764402]Appendix 1: Calculation of single-particle eigen-energy and eigen-wavefunction from a tight-binding model
[bookmark: _Hlk170405073][bookmark: _Hlk170400309]With the energies and wavefunctions obtained from DFT calculation, we develop a tight-binding (TB) model using the Wannier90 package [Mostofi A A, Yates J R, Pizzi G, Lee Y-S, Souza I, Vanderbilt D and Marzari N 2014 Computer Physics Communications 185 2309-10]. This maps the ground-state wave functions from the plane wave basis set onto a maximally localized Wannier function basis , where  is the composite index of the atomic orbit  of an atom with atom site R. R = Raa + Rbb + Rcc is the Bravais lattice vector with Ra/b/c being the Bravais lattice vector component in the direction of the unit cell lattice vector a/b/c. The Bloch function of TB model is thus given by:
		(A1)
and elements of the TB Hamiltonian HTB are given by:
		(A2)
where  are the matrix element extracted from the Wannier90 output file, with HKS being the Hamiltonian of the Kohn-Sham equation.

Appendix 2: Calculation of excitonic bandstructure
[bookmark: _Hlk140775110]With single-particle eigenvalues and wavefunctions of the single particle from TB model, we calculate excitonic states through many-body problem using Bethe–Salpeter equation (BSE) [Cutkosky R E 1954 Phys Rev 96 1135-41; Carbonell J and Karmanov V A 2010 The European Physical Journal A 46 387-97]. An exciton state is a coherent superposition of hole (with crystal momentum k) and electron (with crystal momentum ) states from band-pairs (υ, c) in the reciprocal space and can be written as:
		(A3)
where S and Q are the exciton band index and the center-of-mass momentum, respectively, and  is the coordinate. The exciton eigenvalue problem in the basis displayed in Eq. (A3) leads to the following BSE:
		(A4)
where  is the total area of the crystal, with  and  being the lattice constant,  is the eigenvalue of TB model with the momentum ,  represents the matrix element of the many-body Coulomb potential including direct and  exchange terms, and  is the exciton energy of the Sth state with the center-of-mass momentum Q.
To simplify the calculation, we apply the Tamm-Dancoff approximation [ So Hirata and Head-Gordon M 1999 Chem Phys Lett 314 291-299] to the many-body Coulomb potential, which neglects the orbital character of the Coulomb interaction. In this case  and  are given by
		(A5)
and
		(A6)
with
		(A7)
where  is the vacuum/effective dielectric constant, and represents a characteristic length.

Appendix 3: Calculations of the surface local density of states.(LDOS) of related energy spectrum
To investigate the superconducting or magnetic proximity effects in Bi₂Te₃ crystals, it is necessary to adopt open boundary conditions to model the material’s surface or interface. For convenience, the three-dimensional vector R is decomposed into a longitudinal component , perpendicular to the material surface, and a transverse component , parallel to the surface. After applying open boundary conditions along the  direction, a two-dimensional thin-film system is formed, in which only the in-plane  direction remains periodic.
In general, experimentally cleavable planes often conflict with the primitive lattice vectors obtained from first-principles calculations. Therefore, it becomes necessary to redefine the basis vectors R′₁, R′₂, and R′₃ as follows:

	R′1 = U11R1 + U12R2 + U13R3 
	R′2 = U21R1 + U22R2 + U23R3 
	R′3 = U31R1 + U32R2 + U33R3	(A8)
where R′₁ and R′₂ form the transverse vector , while R′₃ corresponds to . Using the basis vector transformation matrix U, the physical properties of arbitrary cleavage surfaces can be systematically studied.
In this project, the Hamiltonian of the resulting two-dimensional Bi₂Te₃ crystal is obtained by imposing open boundary conditions along the R′₃ direction and performing a Fourier transform along the periodic directions:

	 	(A9)
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Figure S1 (a, b)TEM and (c, d) multi-element mappings of the synthesis samples of Bi2Te3.
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Figure S2 (a)SEM and (b, c) AFM of the synthesis samples of Bi2Te3.
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Figure S3 (a) XPS survey of Bi2Te3. (b, c) XPS fine spectra of elemental Bi and Te in Bi2Te3. 
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[bookmark: OLE_LINK18][bookmark: OLE_LINK15]Figure S4 (a, c, e) Variable temperature PL of Bi2Te3 and (b, d, f) Variable power PL of Bi2Te3 which be prepared in different batches.
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Figure S5 Absorption spectra of Bi2Te3 (a) in the visible light and (b) in the infrared light.
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Figure S6 Under the excitation of a 447 nm laser (a) I-V characteristics. (b) photocurrent response of the Bi2Te3-based device. (c) Response time characteristics of the device.
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Figure S7 Under the excitation of a 470 nm laser (a) I-V characteristics. (b) photocurrent response of the Bi2Te3-based device. (c) Response time characteristics of the device.
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Figure S8 Under the excitation of a 520 nm laser (a) I-V characteristics. (b) photocurrent response of the Bi2Te3-based device. (c) Response time characteristics of the device.
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Figure S9 Under the excitation of a 808 nm laser (a) I-V characteristics at different temperature. (b) I-V characteristics at different power. (c) Photocurrent response of the Bi2Te3-based device. (d) Response time characteristics of the device.
[image: ]
Figure S10 Under the excitation of a 980 nm laser (a) I-V characteristics at different temperature. (b) I-V characteristics at different power. (c) Photocurrent response of the Bi2Te3-based device. (d) Response time characteristics of the device.
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Figure S11 Under the excitation of a 1064 nm laser (a) I-V characteristics. (b) Photocurrent response of the Bi2Te3-based device. (c) Response time characteristics of the device. (d) Cycling test of photocurrent response.


















Table S1 The on/off ratio, Ri, D* and EQE values of each laser at different temperatures.
	Laser
	Temperature (K)
	on/off ratio
	Ri (mA/W)
	D* (Jones)
	EQE (%)

	447 nm
100 mW
0.1 V
	75
	1844
	5.75938E-5
	1.82127E9
	6.75029E-4

	
	100
	2060
	6.43438E-5
	2.03473E9
	7.54142E-4

	
	150
	2280
	7.12188E-5
	2.25213E9
	8.34721E-4

	
	200
	236
	7.34375E-5
	7.34375E8
	8.60726E-4

	
	250
	30.20833
	8.7625E-5
	2.82808E8
	1.02701E-3

	
	300
	3.98214
	1.04375E-4
	9.86251E7
	1.22333E-3

	808 nm
100 mW
0.1 V
	15
	13008.13008
	9.99923E-5
	6.37528E9
	1.17196E-3

	
	50
	9847.32824
	8.06168E-5
	4.98052E9
	9.44871E-4

	
	100
	9310.34483
	8.43659E-5
	4.95414E9
	9.88813E-4

	
	150
	2572.46377
	8.87155E-5
	2.67002E9
	1.03979E-3

	
	200
	309.61538
	1.003E-4
	9.83522E8
	1.17557E-3

	
	250
	27.74123
	1.52425E-4
	3.56898E8
	1.7865E-3

	
	300
	5.01661
	1.51125E-4
	1.37728E8
	1.77126E-3

	980 nm
100 mW
0.1 V
	15
	12053.57143
	8.4368E-5
	5.63707E9
	9.88837E-4

	
	50
	12248.06202
	9.87419E-5
	6.1474E9
	1.15731E-3

	
	100
	11586.2069
	1.04991E-4
	6.16528E9
	1.23055E-3

	
	150
	3955.82329
	1.23094E-4
	3.90038E9
	1.44272E-3

	
	200
	479.21225
	1.36589E-4
	1.42871E9
	1.6009E-3

	
	250
	34.97653
	1.80925E-4
	4.38292E8
	2.12053E-3

	
	300
	6.05128
	1.84688E-4
	1.70744E8
	2.16463E-3
























Table S2 The on/off ratio, Ri, D* and EQE values of each laser at different power.
	[bookmark: _Hlk201263825]Laser
	Power density
	on/off ratio
	Ri (mA/W)
	D* (Jones)
	EQE (%)

	470 nm
300 K
0.1 V
	167.6 μW
	7.21667
	0.1391
	1.26977E11
	1.63

	
	5891.5 μW
	16.71667
	0.01
	9.1322E9
	0.117

	
	9047.1 μW
	23.15
	0.00918
	8.38118E9
	0.108

	
	10704.2 μW
	24.91667
	0.00838
	7.64869E9
	9.8203E-2

	520 nm
300 K
0.1 V
	[bookmark: OLE_LINK1]6.8 mW
	1.78333
	4.31985E-4
	3.94347E8
	5.06309E-3

	
	25 mW
	2.16667
	1.75E-4
	1.59752E8
	2.05109E-3

	
	43.5 mW
	2.35
	1.16379E-4
	1.06239E8
	1.36403E-3

	
	60.3 mW
	2.5
	9.32836E-5
	8.51559E7
	1.09333E-3

	
	77.2 mW
	2.61667
	7.85298E-5
	7.16876E7
	9.2041E-4

	808 nm
300 K
0.1 V
	40 mW
	4.16667
	2.96875E-4
	2.71009E8
	3.47953E-3

	
	60 mW
	4.46667
	2.16667E-4
	1.97789E8
	2.53945E-3

	
	80 mW
	4.73333
	1.75E-4
	1.59752E8
	2.05109E-3

	
	100 mW
	5.01667
	1.50625E-4
	1.37501E8
	1.7654E-3

	
	120 mW
	5.3
	1.34375E-4
	1.22667E8
	1.57494E-3

	980 nm
300 K
0.1 V
	40 mW
	4.58333
	3.35937E-4
	3.06668E8
	3.93736E-3

	
	60 mW
	5
	2.5E-4
	2.28218E8
	2.93013E-3

	
	80 mW
	5.46667
	2.09375E-4
	1.91132E8
	2.45398E-3

	
	100 mW
	5.88333
	1.83125E-4
	1.67169E8
	2.14632E-3

	
	120 mW
	6.41667
	1.69271E-4
	1.54522E8
	1.98394E-3

	1064 nm
300 K
0.1 V
	7.5 μW
	4.1
	3.35937E-4
	1.1553E12
	12.111

	
	375.8μW
	11.75
	2.5E-4
	7.99552E10
	0.838

	
	637.6μW
	19.33333
	2.09375E-4
	9.84314E10
	1.264

	
	787.4μW
	23.66667
	1.83125E-4
	9.85446E10
	1.265

	10.6 μm
300 K
1 V
	60 mW
	1.86408
	0.00221
	3.1503E8
	2.58462E-2

	
	80 mW
	1.89879
	0.00173
	2.46763E8
	2.03278E-2

	
	100 mW
	1.93952
	0.00146
	2.07612E8
	1.7068E-2

	
	120 mW
	1.94444
	0.00124
	1.74607E8
	1.45286E-2

	
	140 mW
	1.95402
	0.00111
	1.53857E8
	1.30286E-2

	
	160 mW
	2.04183
	0.00107
	1.47577E8
	1.25446E-2
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Figure S11 Picture of the Bi2Te3-based device. (b) Optical photograph of the electrode. (c) “HIT” pixel images under the excitation of a 1064 nm laser.
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Figure S12 Response spectrum.
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Figure S13 (a) Picture of the Bi2Te3-based 64×64 focal plane array. (b) Picture of the Bi2Te3-based 64×64 focal plane device. (c) Imaging system under the excitation of visible light.








Video S1 Imaging process under the excitation of visible light.
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