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Appendix A: Preliminary results

This section presents the theoretical foundations and preliminary results underpinning the S-ZNE framework. In
particular, SI A 1 provides the mathematical framework of Pauli transfer matrix and trigonometric expansion for both
noiseless and noisy quantum circuits, SI A 2 details the implementation of two classical learning surrogates, SI A 3
summarizes the noise models employed in numerical simulations, SI A 4 discusses the complementarity with other
sampling reduction methods, and SI A 5 elaborates on the extrapolation functions used in ZNE.

1. Pauli transfer matrix and trigonometric expansion of quantum circuits

Pauli Transfer Matrix. Here we review how to use the Pauli-Liouville representation to formulate the quantum
state and the observable. Denote Pl as the l-th normalized Pauli operator with Pl ∈ 1√

2N
{I, X, Y, Z}⊗N , which

satisfies Tr(PlPk) = δlk. An arbitrary density matrix ρ could be expanded by a set of normalized Pauli operators, i.e.,

ρ =
∑
k

ckPk, with ck = Tr(Pkρ).

We can denote ρ as a 4N -dimension vector under the normalized Pauli bases, i.e.,

|ρ⟩⟩ = [c1, · · · , ck, · · · , c4N ]⊤.

Given a circuit U(x), its representation under Pauli bases is termed as Pauli transfer matrix (PTM) [1]. The matrix
element [U(x)]lk at the l-th row and k-th column yields:

[U(x)]lk = Tr(PlU(x)PkU(x)†) = ⟨⟨Pj |U(x)|PK⟩⟩,
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where |ρ⟩⟩ denotes the quantum state under PTM representation. To be concrete, the PTM representation of RZ(xj)
gates takes the form as

RZ(xj) =

 1 0 0 0
0 cos(xj) −sin(xj) 0
0 sin(xj) cos(xj) 0
0 0 0 1

 = D0 + cos(xj)D1 + sin(xj)D−1 (A1)

where D0 =
( 1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1

)
, D1 =

( 0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

)
, and D−1 =

( 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

)
.

Trigonometric expansion of noiseless quantum circuits. Following the main text, let us consider an N -qubit

quantum circuit in the form of U(x) =
(∏d

j=1 Cj RZ(xj)
)
C0. When applied to an arbitrary N -qubit input state ρ0,

the generated state can be reformulated by the trigonometric expansion under the PTM form, which is

ρ(x) = U(x)ρ0U(x)† =
∑
ω

Φω(x)⟨⟨ρ0|U†
ω.

Here the notation Φω(x) with ω ∈ {0, 1,−1}d refers to the trigonometric monomial basis

Φω(x) =

d∏
j=1


1 if ωj = 0

cos (xj) if ωj = 1

sin (xj) if ωj = −1

.

In addition, the matrix Uω is a combination of permutation and masking matrices. The expectation value Tr(ρ(x)O)
can also be expressed using the trigonometric monomial bases, i.e.,

f(ρ(x), O) ≡ Tr(ρ(x)O) =
∑
ω

Φω(x)⟨⟨ρ0|U†
ω|O⟩⟩. (A2)

Trigonometric expansion in the noisy scenario. Ref. [2] generalizes the above mathematical expression into the
noisy scenario. Denote a single-qubit Pauli channel and a multi-qubit Pauli channel by NP and M, respectively. The
parametrized ansatz in U(x) under the Pauli channel can be represented as

Ũ(x) =

d∏
l=1

(
C̃lR̃Z(xl)

)
C̃0, (A3)

where R̃Z(xl) = NP ◦RZ(xl) and C̃l = Ml ◦Cl with Ml being a multi-qubit Pauli channel applied to the l-th Clifford
operation Cl.

As with the noiseless case, this noisy unitary can be effectively converted into the PTM representation. This is
because under PTM, both single-qubit and multi-qubit Pauli channels can be rewritten as fixed diagonal matrices.
More specifically, recall the definition of a single-qubit Pauli channel, i.e.,

NP [ρ] = (1− pX − pY − pZ)ρ+ pXXρX + pY Y ρY + pZZρZ, (A4)

where pX , pY , and pZ denote the Pauli error rates along X, Y , and Z axes. Under the PTM representation, the
single-qubit Pauli channel transforms into a diagonal matrix with

N = diag(1, qX , qY , qZ), (A5)

where qX = 1− 2(pZ + pY ), qY = 1− 2(pZ + pX), and qZ = 1− 2(pX + pY ). Similarly, an arbitrary multi-qubit Pauli
channel M can be rewritten as a diagonal matrix under PTM representation.
Following the previous noiseless result, the noisy expectation value of Eq. (A2) can still be expanded into a set of

trigonometric monomial bases, i.e.,

f(ρ̃(x), O) ≡ Tr(ρ̃(x)O) =
∑
ω

Φω(x)⟨⟨O|Ũω|ρ0⟩⟩. (A6)

Compared to the noiseless case, the only difference is that {Ũω} depends on the noisy rate of Pauli channels.
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2. Classical learning surrogates

In this subsection, we provide implementation details of two classical learning surrogates employed in S-ZNE,
which are kernel-based and regression-based surrogates. Without loss of generality, we focus on elucidating the
implementation of both classical learning surrogates when predicting the noisy expectation value at the j-th level,
i.e., f(x, O, λj).

Kernel-based surrogate hcs. The kernel-based learning surrogate is designed for circuits containing independent
parameters x and supporting varied observables with bounded locality. At the j-th noise level, when the unitary
folding method is adopted, the explicit form of the circuit implementation under the Pauli channel is

Ũ(x;λj) =

λj∏
k=1

(
d∏

l=1

(
C̃lR̃Z(xl,k)

)
C̃0

)
. (A7)

In other words, we repeat the implementation of U(x) with λj times. As a result, the total number of classical controls
in the circuit increases to λj × d.

During the data collection phase, the classical input x is randomly and uniformly sampled from [−π, π]λj×d, and
the Pauli-based classical shadows [3] are used to acquire the classical representations of the resulting state prepared

by Ũ(x;λj). The collected shadow state is denoted by ρ̃T (x) with T being the number of snapshots. In this way, we

can construct the training dataset T (λj) = {x(i,j), ρ̃T (x
(i,j))}nj

i=1 with nj training examples.
Given access to the established training dataset T (λj), the kernel-based learning surrogate with respect to the

observable O yields

hcs(x, O, λj) =
1

nj

nj∑
i=1

κΛ(x,x
(i)) Tr(ρ̃T (x

(i))O), (A8)

where κΛ(x,x
(i)) =

∑
ω∈C(Λ) 2

∥ω∥0Φω(x)Φω(x
(i)) is the truncated trigonometric monomial kernel and the truncated

frequency set is C(Λ) = {ω ∈ {0,±1}d | ∥ω∥0 ≤ Λ}. The feature map Φω(x) is defined as:

Φω(x) =

d∏
l=1


1 if ωl = 0,

cos(xl) if ωl = 1,

sin(xl) if ωl = −1.

(A9)

The prediction performance of the kernel-based learning surrogate is warranted by the following lemma.

Lemma 1 ([2, Adapted from Theorem 1]). Assume Ex∼Unif[−π,π]d∥∇x Tr(ρ̃(x, λj)O)∥22 ≤ C. Let O =
∑

iOi be a K-
local observable with

∑
i ∥Oi∥∞ ≤ B. Consider a quantum circuit affected by a Pauli noise channel NP (pX , pY , pZ),

characterized by p = min{pX , pY } and pZ . Let hcs(x, O, λj) be the learning surrogate in Eq. (A8) trained on nj
samples with Λ = min{ΛC ,Λp}, where ΛC = 4C/ϵj and Λp = 1

2(p+pZ) log(2B/
√
ϵj).

When the number of training examples satisfies

nj ≥ |C(Λ)| 2B
29K

ϵj
log

(
2 · |C(Λ)|

δ

)
, (A10)

with probability at least 1− δ, the average prediction error of the kernel-based learning surrogate is bounded by

Ex∼Unif[−π,π]d×λj |hcs(x, O, λj)− f(x, O, λj)|2 ≤ ϵj . (A11)

We remark that ZNE with unitary folding requires the classical input to be correlated among λj blocks. However,
the performance guarantee of kernel-based learning surrogate rests on the independence of different entries. As such,
when kernel-based learning surrogates are employed, the error bound of S-ZNE additionally depends on the domain
generalization capability during inference. To this end, we conduct systematic numerical simulations to validate the
capabilities of hcs in S-ZNE. Refer to SI D for more details.

Regression-based surrogate hqs. The regression-based surrogate applies to the scenario in which the classical
controls are correlated. More specifically, the explored noisy quantum circuit at the λj-th level takes the form of

Ũ(x;λj) =

λj∏
k=1

(
d∏

l=1

(
C̃lR̃Z(xl)

)
C̃0

)
, (A12)
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where the l-th entry xl in x repeats across λj blocks. This formalism aligns with ZNE with unitary folding, as classical
input x is correlated in the circuit.

The training dataset for the regression-based learning surrogate is defined as T (λj) = {x(i,j), y(i,j)}nj

i=1. Here the

input x(i,j) is sampled from an arbitrary distribution D within a bounded interval [−R,R]d, and y(i) is the estimated
mean value of the observable O with T shots. The mathematical expression of the regression-based surrogate is

hqs(x, O, λj ;wj) = ⟨ΦC(Λ)(x),wj⟩, (A13)

where the high frequency terms with ||ω||0 > Λ is truncated. The weight wj is obtained by solving the following ridge
regression optimization problem, i.e.,

min
wj

{
1

nj

nj∑
i=1

(
y(i,j) − ⟨ΦC(Λ)(x

(i,j)),wj⟩
)2

+ γ∥wj∥22

}
, (A14)

where γ > 0 is a regularization hyperparameter. To explicitly capture parameter correlations, we partition the d-
dimensional parameter vector x into S groups x1, . . . , xS , where parameters in each group are identical. For each
frequency vector ω ∈ C(Λ), let ωs,k denote the component of ω corresponding to the k-th parameter in group s. The
feature map is then defined as:

Φω(x) =

S∏
s=1

[
cos(xs)

N+
s (ω) · sin(xs)N

−
s (ω)

]
, (A15)

where N+
s (ω) =

∑ds

k=1 1{ωs,k = 1} and N−
s (ω) =

∑ds

k=1 1{ωs,k = −1} count the occurrences of cosine and sine terms
in group s, respectively, with ds being the number of parameters in group s.

The performance error of the regression-based learning surrogate is provided in the following lemma.

Lemma 2 ([2, Adapted from Theorem 2]). Following notations in Eq. (A13), let q = 1 − 2(p + pZ) with p =
min{pX , pY }, Λ be the threshold of the truncated frequency set C(Λ), and ϵl be the maximal estimation error of {y(i,j)}
in T (λj), namely, maxi∈[n] |y(i,j)− f(x(i,j))| ≤ ϵl. Assume q(1+R) < 1/e. Define ϵ = 16B2(deq(1+R)/Λ)2Λ. When

the following conditions are satisfied: (i) ϵl ≤
√
ϵ/4, (ii) the frequency is truncated to Λ > deq(1+R), (iii) the number

of training examples satisfies

nj =

(
1

q(1 +R)

)4Λ

· log(1/δ)
9

, (A16)

the predictive surrogate hqs(x) achieves with probability at least 1− δ,

Ex∼D|hqs(x, O, λj)− f(x, O, λj)|2 ≤ ϵj . (A17)

Remark. Throughout the remainder of this study, we sometimes use hqs and hcs to specify which surrogate model is
being referenced, so as to avoid confusion.

3. A summary of the employed noisy models

This subsection details the standard noise models employed in numerical simulations, which include depolarization
noise, thermal noise, and coherent noise.

Depolarizing noise. We consider both local and global depolarizing noisy channels, both of which fall within the
class of Pauli channels.

For an N -qubit system, the local depolarizing channel acts independently on each qubit. It is defined as the tensor
product of single-qubit depolarizing channels applied to each qubit. The single-qubit depolarizing channel is described
by the Kraus operators

K0 =
√
1− 3pd

4 I, K1 =
√

pd

4 X, K2 =
√

pd

4 Y, K3 =
√

pd

4 Z, (A18)

where pd ∈ [0, 1] is the depolarizing rate per qubit. The corresponding map for one qubit is Ed(ρ) = (1− pd)ρ+ pd
I
2 .

For N qubits, the local depolarizing channel is E⊗N
d .
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The global depolarizing channel acts collectively on all N qubits. Its CPTP map is given by

K0 =

√
1− pg +

pg
4N

I⊗N , (A19)

Kα =

√
pg
4N

Pα, α = 1, 2, . . . , 4N − 1, (A20)

where {Pα} denotes the set of all non-identity N -qubit Pauli operators, and pg ∈ [0, 1] is the global depolarizing rate.
This channel can be equivalently expressed as Ng(ρ) = (1− pg)ρ+ pg(I/2)⊗N .

Thermal noise. Thermal relaxation noise combines energy dissipation (T1 decay) and pure dephasing (T2 decoher-
ence). Let tg denote the gate duration. We define the reset probability and dephasing probability as pr = 1− e−tg/T1

and pz = 1
2

(
1 − e−tg/Tϕ

)
, respectively. The pure dephasing time satisfies T−1

ϕ = T−1
2 − (2T1)

−1. The following
describes the single-qubit thermal relaxation channel, which is applied independently to each qubit in multi-qubit
simulations.

Case T2 ≤ T1. The single-qubit thermal noisy channel is implemented via six Kraus operators

K0 =
√
1− pz − pr I, K1 =

√
pz Z, K2 =

√
pr(1− pe) |0⟩⟨0|,

K3 =
√
pr(1− pe) |0⟩⟨1|, K4 =

√
prpe |1⟩⟨0|, K5 =

√
prpe |1⟩⟨1|, (A21)

where pe ∈ [0, 1] is the excited state population determined by the thermal equilibrium.

Case T1 < T2. The single-qubit thermal noisy channel is implemented via the Choi matrix:

Λ =


1− pepr 0 0 e−tg/T2

0 pepr 0 0
0 0 (1− pe)pr 0

e−tg/T2 0 0 1− (1− pe)pr

 .
This thermal noise model is specifically used in the experiments reported in SI E.

Coherent noise. We model coherent errors as small, stochastic miscalibrations of rotation angles in single-qubit
rotation gates. For an ideal rotational gate RP (x) = e−ixP/2 with P ∈ {X,Y, Z}, its noisy implementation is given
by

RP (x) 7→ e−i(x+θP )P/2, (A22)

where the angular offset θP for each gate is drawn independently from a uniform distribution. This model captures
both over-/under-rotation and axis misalignment effects.

4. Complementary with other sampling reduction methods

Prior studies relevant to S-ZNE can be broadly classified into two categories: (i) approaches that aim to reduce the
sampling overhead of zero-noise extrapolation (ZNE) itself, and (ii) methods that mitigate sampling costs in specific
quantum tasks, especially for variational quantum algorithms (VQAs). We discuss each in turn.

ZNE variants. To the best of our knowledge, only one study has explicitly sought to reduce the measurement
overhead of conventional ZNE. In particular, Liao et al. [4] introduced random forest ZNE (RF-ZNE), which trains a
random forest model to predict the noiseless expectation value directly from circuit descriptors and noisy outcomes,
thereby bypassing explicit noise scaling and extrapolation at inference time. A key distinction between S-ZNE and
RF-ZNE lies in their theoretical grounding: S-ZNE retains the rigorous physical interpretability of extrapolation
under controlled noise scaling, whereas RF-ZNE operates as a data-driven surrogate without explicit noise modeling.

Task-specific sampling overhead reduction. While general-purpose strategies for reducing ZNE’s measurement
cost remain scarce, substantial progress has been made in curbing sampling overhead in VQAs, whose optimization
typically demands extensive quantum measurements due to non-convex loss landscapes [5] and the forbidding of back-
propagation [6]. To date, three principal lines of research have emerged to address this challenge: smart initialization,
intelligent optimizers, and measurement grouping.
Smart initialization techniques. Smart initialization techniques aim to reduce the number of quantum measurements
by selecting high-quality initial parameters, rather than initializing randomly. These methods can be broadly divided
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into heuristic and informative approaches. Heuristic initializers are implemented entirely classically and do not require
access to a quantum processor; a common example is small-angle or “identity” initialization, where parameters are
set near zero so that the initial circuit closely approximates the identity operation [7–11]. In contrast, informative
initializers leverage either prior quantum data or classical surrogate models to construct informed initial parame-
ters. These include warm-start methods [12, 13], parameter transfer across related problem instances [14–16], and
pre-training strategies that use classical emulators, such as Lie-algebraic surrogates [17], matrix product state–based
models [18, 19], and neural-network approaches [20, 21], to perform substantial portions of the optimization classi-
cally before any quantum execution. By reducing the distance to a high-quality solution in parameter space, such
initialization schemes significantly lower the quantum sampling cost of subsequent optimization.
Intelligent optimizers. Intelligent optimizers employ classical machine learning to reduce quantum sampling costs
in variational algorithms by predicting optimization trajectories. For instance, meta-learning with recurrent neural
networks can generate informed parameter initializations, cutting down the number of quantum-classical iterations
needed for convergence [22]. Other approaches include QuACK, which applies Koopman operator theory to create a
linear representation of gradient-based optimization, enabling faster convergence in tasks such as quantum chemistry,
and PALQO, which uses physics-informed neural networks to model VQA training and predict multi-step parameter
updates from limited quantum data [23, 24]. These methods collectively lower sampling overhead by shifting significant
parts of the optimization process to classical computation, while maintaining comparable solution quality.
Measurement grouping strategies. Measurement grouping strategies reduce sampling overhead by exploiting com-
patibility among terms in the target observable (e.g., a Hamiltonian) to jointly estimate multiple terms in a single
measurement setting. The central idea is to partition the observable into subsets of mutually commuting or simul-
taneously measurable operators, thereby minimizing the total number of distinct quantum measurements required.
This approach has been widely adopted as a standard technique for shot-efficient expectation estimation in variational
algorithms [25–27].

The proposed S-ZNE is fully compatible with these broader strategies. We leave their integration for future
investigation.

5. Extrapolation functions used in ZNE

The choice of extrapolation function g(·) significantly influences the performance of ZNE [28]. Following the notation
in the main text, for a given classical input x and observable O, let z = {z1, . . . , zu} be the vector of noisy expectation

value estimates corresponding to noise scales {λj}uj=1, where each zj is either an experimental estimate f̂(x, O, λj) or
a surrogate prediction h(x, O, λj). The extrapolation function g(·) maps z to an estimate of the zero-noise expectation
f(x, O). Below we detail the functional forms of g(·) used in our numerical simulations.

Linear extrapolation. This method assumes an approximately linear dependence of the observable on the noise
scale. For u ≥ 2, the data points {(λj , zj)}uj=1 are used to fit a linear model via ordinary least squares, i.e.,

arg min
a0,a1

u∑
j=1

(
zj − a0 − a1λj

)2
.

The closed-form solution is given by

[
a0
a1

]
=
(
V ⊤V

)−1
V ⊤z, V =

1 λ1
...

...
1 λu

 .
The zero-noise estimate is then obtained by evaluating the fitted model at λ0 = 0, yielding g(z) = a0.

Quadratic extrapolation. To capture possible nonlinear behavior, this method fits a quadratic model when u ≥ 3,
i.e.,

(b0, b1, b2) = arg min
b0,b1,b2

u∑
j=1

(
zj − b0 − b1λj − b2λ

2
j

)2
.

The solution is b0b1
b2

 =
(
V ⊤
2 V2

)−1
V ⊤
2 z, V2 =

1 λ1 λ21
...

...
...

1 λu λ2u

 .
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The zero-noise estimate is again the constant term with g(z) = b0.

Richardson extrapolation. This approach assumes the underlying noise dependence can be modeled by a polyno-
mial of degree at most u − 1. The zero-noise limit is obtained by constructing the unique polynomial of degree at
most u− 1 that interpolates the u points {(λj , zj)}uj=1, and evaluating it at λ0 = 0. Mathematically, the extrapolated
value is given by the Lagrange interpolation formula with

g(z) =

u∑
j=1

γjzj , γj =

u∏
k=1
k ̸=j

λk
λk − λj

.

This yields the exact zero-noise value if the observable varies polynomially with λ of degree less than u.

Appendix B: Proof of Theorem 1

In this section, we analyze the total estimation error of S-ZNE, comparing it to that of conventional ZNE. Following
notations in the main text, we denote f(x, O) ≡ f(x, O, λ0) = Tr(ρ(x)O) as the ideal zero-noise expectation value.
Let g(·) be the extrapolation function mapping a vector of noisy expectation values at different noise levels to an
estimate of the zero-noise value.

Recall that the three types of data vectors used in ZNE or S-ZNE for a given input x, i.e.,

• zI(x) = {f(x, O, λ1), · · · , f(x, O, λu)}: The ideal vector of exact expectation values at with noise levels {λj}uj=1.

• zS(x) = {hqs(x, O, λ1), · · · , hqs(x, O, λu)}: The vector obtained using the classical surrogate predictions
hqs(x, O, λj) for S-ZNE with noise levels {λj}uj=1.

• zC(x) = {f̂(x, O, λ1), · · · , f̂(x, O, λu)}: The vector obtained using experimental estimates f̂(x, O, λj) from M
measurements for conventional ZNE with noise levels {λj}uj=1.

Our goal is to derive the upper bound for the average performance between S-ZNE and noiseless expectation values
in terms of MSE, i.e., Ex∼D|f(x, O)− g(zS(x))|2, as well as the average performance between conventional ZNE and
noiseless expectation values, i.e., Ex∼D|f(x, O) − g(zC(x))|. The expectation is taken over an arbitrary distribution
D supported on the interval [−R,R]. To achieve this goal, we leverage the result of Lemma 2.

Now we are ready to present the formal statement of Theorem 1 and the proof details.

Theorem (Formal statement of Theorem 1). Suppose the explored family of circuits U(x) undergoes Pauli noise
channel in Eq. (A4) and has correlated parameters x ∈ [−R,R]d sampled from a distribution D. Let f(x, O) be
the ideal zero-noise limit and g(·) be the employed extrapolation function with the Lipschitz constant L. Denote
ζ2 = Ex∼D|f(x, O)− g(zI(x))|2 as the intrinsic extrapolation error with zI(x) = {f(x, O, λ1), ..., f(x, O, λu)}, where
D is an arbitrary distribution supported on the interval [−R,R]. When the number of measurements adopted by the
conventional ZNE is fixed to be M , with probability at least 1− 0.05u, its average performance is upper-bounded by

Ex|f(x, O)− g(zC(x))|2 ≤ ζ2 +
4L2uB2

M
ln(40).

Following notations in Lemma 2, when (i) ϵl ≤
√
ϵ/4, (ii) the frequency threshold satisfies Λ > deq(1 + R), and

(iii) the number of training examples for each regression-based surrogate satisfies

nj ≥
64B2M2

3

(
de

Λ

)4Λ

· log(1/δ)
9

, (B1)

with probability at least 1− uδ, the average performance of S-ZNE is upper bounded by

Ex|f(x, O)− g(zS(x))|2 ≤ ζ2 +
4L2uB2

M
ln(40).

Proof of Theorem 1. We first analyze the upper bound of MSE between the ideal results and the outputs of the
conventional ZNE. To achieve this goal, we leverage the extrapolated values under the ideal setting, i.e., g(zI(x)).
Accordingly, the corresponding upper bound is

Ex∼D|f(x, O)− g(zS(x))|2 = Ex∼D|f(x, O)− g(zI(x)) + g(zI(x))− g(zS(x))|2 (B2)

≤ 2Ex∼D|f(x, O)− g(zI(x))|2 + 2Ex∼D|g(zI(x))− g(zS(x))|2 (B3)

= 2ζ2 + 2Ex∼D|g(zI(x))− g(zS(x))|2 (B4)
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where the inequality comes from the triangle inequality, and the last equality follows the definition of ζ2.
Similarly, for S-ZNE, we can apply the same decomposition strategy to obtain the upper bound of MSE between

S-ZNE and the zero-noise limit is

Ex∼D|f(x, O)− g(zC(x))|2 ≤ 2ζ2 + 2Ex∼D|g(zI(x))− g(zS(x))|2. (B5)

For both ZNE and S-ZNE, the term 2ζ2 refers to the intrinsic error induced by the selected extrapolation function.
In this regard, the second term in Eqs. (B4) and (B5) quantifies the error introduced by using finite measurements
(i.e., zC(x)) or the output of the learning surrogate (i.e., zS(x)) instead of the ideal values zI(x). In what follows,
we separately derive the upper bound of these two terms.

Upper bound of the second term. By exploiting the assumption that the extrapolation function g is Lipschitz contin-
uous with the constant L (with respect to the ℓ2 norm). The upper bound of the second term in Eq. (B5) is

2Ex|g(zI(x))− g(zC(x))|2 ≤ 2L2
u∑

j=1

Ex|f(x, O, λj)− f̂(x, O, λj)|2. (B6)

Recall that the difference between f(x, O, λj) and f̂(x, O, λj) is caused by the finite M measurements. Supported
by the Hoeffding inequality, with probability at least 0.95, when the number of measurements is M , the conventional
ZNE at each noise rate j satisfies ∣∣∣f(x, O, λj)− f̂(x, O, λj)

∣∣∣ ≤√2B2

M
ln(

2

0.05
). (B7)

Combining the above two inequalities, the upper bound in Eq. (B5) yields

2Ex∼D|g(zI(x))− g(zC(x))|2 ≤ 2L2 2B
2

M
ln(

2

0.05
) =

4L2uB2

M
ln(40). (B8)

We next derive the upper bound of the second term in Eq. (B4), which amounts to the MSE between the ideal
extrapolation and the extrapolation by the outputs from the regression-based learning surrogates {hqs(x, O, λj)}. As
with the conventional ZNE, the property of Lipschitz continuity of g(·) gives

2Ex∼D|g(zI(x))− g(zS(x))|2 ≤ 2L2Ex∼D∥zI(x)− zS(x)∥22 ≤ 2L2
u∑

j=1

Ex∼D|f(x, O, λj)− hqs(x, O, λj)|2, (B9)

where the last inequality employs the triangular inequality.
To attain a comparable performance with conventional ZNE, it amounts to analyzing the required number of

training examples nj to ensure that at each noise level λj , the prediction error of the regression-based surrogate, i.e.,
ϵj := Ex∼D|f(x, O, λj)− hqs(x, O, λj)|2, is well bounded. More specifically, according to Eq. (B7), such error should
be bounded by 2B2 ln(40)/M . By substituting this quantity into Lemma 2, we need to derive the required number
of training examples nj such that the average prediction error satisfies

ϵj = 16B2(deq(1 +R)/Λ)2Λ ≤ 2B2 ln(40)

M
.

To achieve this goal, we first reformulate the required number of training examples nj of Lemma 2 in terms of ϵj .
Formally, with probability at least 1− δ, the number of training examples yields

nj =

(
1

q(1 +R)

)4Λ

· log(1/δ)
9

=

(
de

Λ

)4Λ(
Λ

deq(1 +R)

)4Λ

· log(1/δ)
9

(B10)

=

(
de

Λ

)4Λ(
deq(1 +R)

Λ

)−4Λ

· log(1/δ)
9

(B11)

=

(
de

Λ

)4Λ [16B2

16B2

(
deq(1 +R)

Λ

)2Λ ]−2

· log(1/δ)
9

(B12)

= 256B4

(
de

Λ

)4Λ
1

ϵ2j
· log(1/δ)

9
. (B13)
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When the error threshold is 2B2 ln(40)/M , with probability at least 1 − δ, the corresponding number of training
examples is

nj ≥ 256B4

(
de

Λ

)4Λ
M2

12B2
· log(1/δ)

9
=

64B2M2

3

(
de

Λ

)4Λ

· log(1/δ)
9

.

Supported by the union bound, when the number of training examples nj used in each regression-based learning
surrogate exceeds the above threshold, with probability at least 1− uδ, we have

Ex∼D|f(x, O)− g(zC(x))|2 ≤ 2ζ2 +
4L2uB2

M
ln(40). (B14)

1. The Lipschitz constant of the extrapolation function

Theorem 1 indicates that the performance of both conventional ZNEs and S-ZNE depends on the Lipschitz constant
L. In this subsection, we comprehend the scaling of L when the linear extrapolation function g(·) introduced in SI A 5
is exploited. In addition, the unitary folding is adopted to construct the vectors zI , zC , and zS . Without loss
of generality, we use z to denote these three vectors, where each entry zj is either an ideal result f(x, O, λj), an

experimental estimation f̂(x, O, λj), or a surrogate prediction h(x, O, λj).
When the linear extrapolation function is employed, its output is obtained via least-squares regression. Mathemat-

ically, we have

g(z(x)) = a0 = ⟨s, z⟩ with s⊤ = [1, 0](W⊤W )−1W⊤, (B15)

where W =
[ 1, 1, ··· , 1
1, 2, ··· , u

]⊤
. In this regard, the Lipschitz constant L can be derived by analyzing the upper bounded of

the ℓ2 norm of s, i.e.,

L =

√√√√ u∑
i=1

|si|2.

In what follows, we derive the analytical form of each entry in s. Specifically, the matrix W⊤W ∈ R2×2 equals to

W⊤W =
[ u

∑u
j=1 j∑u

j=1 j
∑u

j=1 j

]
=
[

u u(u+1)
2

u(u+1)
2

u(u+1)(2u+1)
6

]
.

According, its inversion equals to

(
W⊤W

)−1
=

12

u2(u2 − 1)

[u(u+1)(2u+1)
6 −u(u+1)

2

−u(u+1)
2 u

]
.

Combining this result with Eq. (B15), the explicit form of the i-th entry of s is

si =
12

u2(u2 − 1)

(
u(u+ 1)(2u+ 1)

6
− u(u+ 1)

2
i

)
=

2u+ 1− 6i

u(u− 1)
. (B16)

Thereby, we have

L =

√√√√ u∑
i=1

∣∣∣∣2u+ 1− 6i

u(u− 1)

∣∣∣∣2 =

√
(2u+ 1)2

u(u− 1)2
. (B17)

In this regard, we can conclude that the Lipshitz constant L monotonically decreases with increasing u. When u→ ∞,
we have L→

√
4/u.
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Appendix C: Extension of S-ZNE in the hybrid scenario

While the main text focuses on a complete substitution of quantum circuit executions with classical surrogate
predictions within the ZNE framework (termed S-ZNE), we present here an extension involving partial substitution,
yielding a hybrid paradigm for extrapolation. An intuition is illustrated in Fig. 1 of the main text. Compared to
the original S-ZNE, this variant offers a flexible trade-off between the potential accuracy gains from retaining direct
quantum measurements at low noise levels and the substantial resource savings afforded by surrogates, particularly
at high noise levels where surrogate modeling is often more effective.

Methodology. The initial stages of this hybrid approach precisely mirror the full S-ZNE protocol described in the
main text. The implementations of the first two steps are summarized below.

1. Data Acquisition. A training dataset T (λj) = {x(i,j), y(i,j)}nj

i=1 is collected via quantum measurements (e.g.,

using classical shadows or direct expectation value estimation) for parameter samples x(i) across all u noise
levels {λj}uj=1 generated via noise scaling (e.g., unitary folding).

2. Surrogate Training. Based on T (λj), u distinct classical learning surrogates, {h(x, O, λj)}uj=1, are trained. The
surrogate model can be either kernel-based (as hcs in Eq. (A8)) or regression-based (as hqs in Eq. (A13)), where
the training methodology is summarized in SI A 2.

The departure from the full S-ZNE method occurs in the subsequent validation and selection stage.

3. Validation and Thresholding. A separate and small validation set of parameter vectors, Xval, is utilized. For
each noise level λj , we evaluate the Mean Squared Error (MSE) between the surrogate’s predictions and direct
quantum circuit executions (obtained via additional quantum measurements only for the validation set):

MSE(λj) =
1

|Xval|

∣∣∣h(x, O, λj)− f̂(x, O, λj)
∣∣∣2 (C1)

Here, f̂(x, O, λj) represents the expectation value obtained from executing the circuit on the quantum processor
at noise level λj . We consistently observe that this MSE tends to decrease as the noise level λj increases. This
trend is warranted by Lemma 1 and Lemma 2. As such, we establish an MSE threshold, η. After that, the
set of noise levels (typically the highest ones) is identified for which the surrogate model meets this accuracy
criterion: JS = {j | MSE(λj) ≤ η}. Let v = |JS | be the number of noise levels satisfying this condition.

4. Hybrid S-ZNE Construction. For any given inputs x during the inference stage, we construct a hybrid data
vector zH(x) for extrapolation. This vector selectively combines direct quantum measurements with surrogate
predictions, i.e.,

zH(x) = {zj(x)}uj=1, where zj(x) =

{
f̂(x, O, λj) if j /∈ Js

h(x, O, λj) if j ∈ Js
(C2)

5. Extrapolation. Finally, the same extrapolation functions (e.g., polynomial, Richardson) employed in conven-
tional ZNE and full S-ZNE are applied to the hybrid dataset zH(x) to estimate the zero-noise expectation value
f(x, O, λ = 0).

Discussion of trade-offs. The primary motivation for this hybrid protocol stems from scenarios where classical
surrogates might exhibit non-negligible prediction errors, particularly at low noise levels. In such cases, completely

replacing f̂(x, O, λj) with h(x, O, λj) could potentially degrade the final extrapolation accuracy compared to conven-
tional ZNE.

The proposed hybrid approach mitigates this risk by retaining direct quantum measurements for those low-noise data
points where the surrogate’s fidelity might be lower (i.e., where MSE(λj) > η), while still leveraging the efficiency of
surrogates for the higher noise levels where they perform well and where quantum execution (requiring deeper circuits
via folding) is most resource-intensive.

However, this potential accuracy retention comes at the cost of reduced quantum measurement savings during
inference compared to the full S-ZNE approach. For each new parameter vector x evaluated, the hybrid method still
requires executing the quantum circuit at u − v noise levels. Consequently, the reduction in quantum measurement
overhead compared to conventional ZNE is scaled by a factor of v/u, determined by the number of noise levels v
where the surrogate meets the accuracy threshold η set during validation. The choice of η thus directly controls
the balance between potential accuracy preservation and computational resource savings. Refer to SI E for more
simulation results.



11

Appendix D: Additional experimental results of S-ZNE

This section presents more implementation details and simulation results omitted in the main text. In particular,
SI D 1 provides the circuit implementation details for the explored tasks, SI D 2 explains the random feature sampling
strategy for classical learning surrogates, SI D 3 evaluates the robustness of S-ZNE across different extrapolation
models, and SI D4 investigates its data efficiency in quantum metrology.

1. Circuit implementation

a
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...
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N
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RX(x1)

RX(x1)

RX(x1)
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b
H

H

H

H
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YY(x2)
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...
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YY(x2)

...

N
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×l

c
H

... ... ...

H

H

H

H

...

RZ(x)

RZ(x)

RZ(x)

RZ(x)

FIG. D.1. Ansatz circuits used in numerical experiments. a. Trotterized Hamiltonian variational ansatz for the 1D
Transverse Field Ising Model (TFIM). b. Trotterized Hamiltonian variational ansatz for the 1D Heisenberg Model (HM). c.
Circuit implementation for GHZ-state-based quantum metrology.

For the ground state energy estimation tasks, we employ Hamiltonian Variational Ansatz (HVAs) derived from
a first-order Trotter-Suzuki decomposition [29, 30] of the respective problem Hamiltonians, HIsing and HHeisen. For
both Hamiltonians, the ansatz is applied to the uniform superposition state, prepared by applying an initial layer of

Hadamard gates H⊗N to the all-zero state |0⟩⊗N
.

The circuit structure for the 1D TFIM is illustrated in Fig. D.1a. The variational ansatz U(x) is defined by the
unitary:

U(x) =
[
exp
(
− ıx1

∑
⟨i,j⟩∈E

ZiZj

)
exp
(
− ıx2

∑
i

Xi

)]l
H⊗N . (D1)

This represents the Trotterized evolution under the Ising Hamiltonian terms. In all simulations, we set the number
of layers l = 1, as this shallow ansatz structure proves sufficient for approximating the ground state energy with high
fidelity for the models under study.
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The circuit implementation for the 1D Heisenberg model with Jz = 0 (the XY model) is visualized in Fig. D.1b.
Mathematically, the corresponding unitary operator is given by:

U(x) =
[
exp
(
− ıx1

∑
⟨i,j⟩∈E

XiXj

)
exp
(
− ıx2

∑
⟨i,j⟩∈E

YiYj

)]l
H⊗N . (D2)

Analogous to the TFIM case, we fix the layer depth to l = 1 for all simulations.
The circuit implementation for the quantum metrology task is illustrated in Fig. D.1c. This protocol is designed

to achieve Heisenberg-limited sensitivity. The circuit first prepares an N -qubit GHZ state, |GHZ⟩N = (|0⟩⊗N +

|1⟩⊗N )/
√
2, using a Hadamard gate on the first qubit followed by a chain of CNOT gates. Subsequently, the unknown

phase x is encoded via a global RZ(x)⊗N rotation. This operation imparts a collective relative phase between the two
components of the GHZ state:

|ψ(x1)⟩ =
1√
2

(
e−ıNx/2|0⟩⊗N + eıNx/2|1⟩⊗N

)
, (D3)

resulting in a total relative phase of eıNx. To convert this phase information into a measurable signal, the expectation
value of the global observable O = X⊗N is measured. Operationally, this measurement is implemented by applying
a final layer of Hadamard gates (H⊗N ) to all qubits, which rotates the measurement basis, followed by a standard
measurement of the global observable Z⊗N . In the noiseless limit, the measured expectation value is cos(Nx),
achieving the Heisenberg-limited phase sensitivity.

2. Random feature sampling for classical learning surrogates

In our numerical experiments, the construction of the classical learning surrogates {hqs}uj=1 employs a randomized
feature selection strategy to balance model expressiveness with computational efficiency. Each surrogate is imple-
mented as a linear model using a subsampled feature map, specifically h(x, O, λj) = ⟨ΦΩ(Λ)(x),wj⟩, where ΦΩ(Λ)(x)
is constructed by randomly and uniformly sampling nf elements from the complete set of trigonometric monomials
{Φω(x)|ω ∈ C(Λ)} with C(Λ) = {ω ∈ {0,±1}d | ∥ω∥0 ≤ Λ}.
In our experimental implementation, we set nf = 1000 across all simulations. For ground-state energy estimation

tasks, the frequency truncation parameters were set to Λ = 2 for the transverse field Ising model and Λ = 4 for
the Heisenberg model, while for quantum metrology applications with GHZ states, we used Λ = 2. These param-
eter choices were determined through empirical validation to provide an optimal balance between model capacity
and generalization performance for their respective problem domains. The randomized feature sampling approach
significantly reduces computational overhead while maintaining the theoretical approximation guarantees of the full
trigonometric basis, enabling efficient training of surrogates even for high-dimensional parameter spaces.

3. Robustness of S-ZNE across varied extrapolation functions

While the main text employs linear extrapolation for its simplicity, we further investigate the robustness of the
S-ZNE framework by evaluating its compatibility with a diverse set of extrapolation functions. We benchmark S-ZNE
against conventional ZNE under the same setting used for ground-state energy estimation in the transverse-field Ising
model (TFIM) and Heisenberg model (HM), as detailed in the main text. For S-ZNE, we use the regression-based

classical surrogate hqs trained with nj = 200 samples per noise level λj ; for conventional ZNE, we use the estimate f̂
obtained from M = 1× 106 shots per noise level. The only variable in this comparison is the extrapolation function
applied to the surrogate data vector zS(x) and the conventional data vector zC(x).
We compare three common extrapolation strategies in quantum error mitigation: (i) Linear (first-order least-

squares regression), (ii) Quadratic (second-order least-squares regression), and (iii) Richardson extrapolation. Detailed
implementations are provided in SI A 5. To further assess robustness, we perform this comparison under two noise
models: globe depolarizing (DP) noise and a composite noise model combining DP with coherent (CO) noise, consistent
with the main text.

Results are summarized in Fig. D.2, which shows the mitigation residuals for S-ZNE (RS) and conventional ZNE
(RC). Across all extrapolation functions and both noise models, S-ZNE achieves mitigation accuracy comparable
to that of conventional ZNE. Under the mixed DP+CO model, both methods exhibit degraded performance when
using Richardson extrapolation, indicating that the surrogate-based approach faithfully preserves the behavior—and
limitations—of the underlying extrapolation function without introducing significant additional bias. This confirms
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that the surrogate can effectively replace direct quantum measurement in the ZNE pipeline, inheriting both the
advantages and instabilities of the chosen extrapolation method.
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FIG. D.2. Residual distributions of conventional ZNE and S-ZNE for different extrapolation functions. Probability
density of residuals (error-mitigate estimation minus ideal value) for unmitigated, ZNE, and S-ZNE results under depolarizing
(DP) and DP+coherent (CO) noise. Three extrapolation functions are compared: Linear, Quadratic, and Richardson. Results
are aggregated over 1000 test instances.

4. Data efficiency in quantum metrology

FIG. D.3. Surrogate prediction accuracy versus training set size for GHZ metrology. Mean squared error of
surrogate predictions as a function of training sample size nj ∈ {4, 8, 16, 32} and noise factor λj . Results represent averages
over 10 independent experiments.
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To further characterize the data efficiency of S-ZNE in the quantum metrology task, we examine how regression-
based surrogate prediction accuracy depends on the number of training samples nj per noise level λj . All hyperpa-
rameter settings are identical to those introduced in the main text.

Figure D.3 plots the mean squared error (MSE) of surrogate predictions as a function of training set size nj ∈
{4, 8, 16, 32} across u = 5 noise levels. The results demonstrate a sharp, non-linear improvement in accuracy with
nj . For a minimal training set of nj = 4, the surrogate exhibits a high prediction error (e.g., MSE ≈ 0.704 at the
λj = 1 noise level), indicating that this sparse dataset is insufficient to construct the surrogate model and capture the
phase-dependent response. However, a modest increase to nj = 8 reduces the MSE by over three orders of magnitude
(to ∼ 6.17× 10−4 at λj = 1). The error continues to decrease rapidly as nj grows: for nj = 16, the MSE drops to
2.20× 10−4, and at nj = 32, it reaches 1.60× 10−4 (all values reported for λj = 1). This rapid decay in error reveals
a distinct threshold effect, suggesting that once a minimal number of training samples is provided to constrain the
surrogate’s trigonometric feature space, the model generalizes effectively from sparse data.

Appendix E: Simulation results of hybrid S-ZNE

The hybrid S-ZNE framework described in SI C addresses a potential limitation of the S-ZNE approach. That is,
while surrogates can dramatically reduce quantum measurement costs, their predictive accuracy may be insufficient
at low noise levels.

To evaluate the performance of hybrid S-ZNE, we perform numerical simulations using a 6-qubit hardware-efficient
ansatz, as illustrated in Fig. E.4a. We consider both the transverse-field Ising model (TFIM) and the Heisenberg
model (HM)(defined in maintext), with a fixed circuit depth of l = 2 layers. The model parameters are set as follows:
for TFIM, we use a uniform coupling J = −0.1 and a transverse field h = −0.5; for HM, we set Jx = 0.1,Jy = 0.1 and
Jz = 0.5. Noise levels are amplified via unitary folding, and extrapolation is performed over u = 5 such levels using
linear extrapolation. To assess the robustness of the approach, we incorporate three distinct noise models(detailed in
SI A 3): local depolarizing (DP) noise, thermal relaxation (TM), and coherent (CO) over-rotation. The corresponding
noise parameters are provided in Table E.1.

TABLE E.1. Parameter settings for different noisy channels. Notations follow the definitions in SI A 3.

Noise Parameter Value

Local depolarizing pd single-qubit gate: 0.001, two-qubit gate: 0.005

Thermal

T1

T2

tg
pe

100000 us
30000 µs
single-qubit gate:15 µs, two-qubit gate: 20 µs
0.01

Coherent θP Unif[−0.01π, 0.02π]

We trained the kernel-based surrogates hcs, defined in Eq. (A8), with a frequency truncation threshold of Λ = 2.
These surrogates were trained on classical shadow collected at u = 5 distinct noise levels with T = 500. The
validation set Xval, which was used to determine the hybrid data vector zH(x), contained 500 random input points;
the ground-truth expectation values for these points were estimated using 40,000 measurement shots each.

To evaluate the data efficiency of the surrogate, we varied the per-noise-level training set size over nj ∈
{1200, 1400, . . . , 3000}. Figure E.4b shows that the surrogate’s mean squared error (MSE) consistently decreases
as nj increases. Notably, this improvement is more substantial at higher noise levels λj . This trend holds across all
tested noise models, including the composite DP+TM+CO model (Fig. E.4c). For instance, in the transverse-field
Ising model (TFIM) simulation, the MSE drops from approximately 0.23 at λj = 1 to about 0.03 at λj = 5. A similar
reduction is observed for the Heisenberg model (HM), where the MSE falls from about 0.13 to roughly 0.02 over the
same range of noise levels.

Based on this finding, we define a substitution threshold η = 0.1 and observe from our validation that the surrogate
MSE consistently falls below this threshold only for λj ≥ 3. We therefore construct a hybrid data vector zH(x) by
retaining direct quantum measurements (usingM = 40, 000 shots) for the two lowest noise levels (λj = 1, 2) and using
surrogate predictions h(x, O, λj) for the three highest (λj = 3, 4, 5). This hybrid protocol reduces the per-instance
quantum measurement cost by 60% compared to conventional ZNE, while retaining the high-fidelity low-noise data
crucial for stable extrapolation.

We evaluate the end-to-end mitigation performance on 500 test instances selected to have non-trivial ideal expec-
tation values (|f(x, O)| > 0.5). As defined in the main text, we analyze the mitigation residual R = g(z)− f(x, O).
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FIG. E.4. Circuit architecture and surrogate fidelity across noise models and Hamiltonians. a. Hardware-efficient
ansatz with uncorrelated RY and RZ rotations used in simulations. b. Mean squared error (MSE) of surrogate predictions
versus training set size nj and noise scaling factor λj , evaluated on both the 1D transverse-field Ising and Heisenberg models.
MSE decreases with larger nj and higher λj , indicating improved surrogate accuracy in high-noise regimes. c. Residual
distributions (prediction minus measurement) for three composite noise models—depolarizing (DP), DP+thermal (TM), and
DP+TM+coherent (CO)—shown as violin plots; nested bar charts report corresponding MSE values for both Hamiltonians.

Fig. E.5a shows the residual distributions for Hybrid S-ZNE (RH , using zH) and conventional ZNE (RC , using zC)
under the three noise configurations. Both methods produce residuals tightly centered at zero. The corresponding
MSE values reported in Fig. E.5b confirm this quantitatively: Hybrid S-ZNE matches the mitigation accuracy of
conventional ZNE, despite foregoing quantum measurements at the three highest (and most costly) noise levels.

Finally, Fig. E.5c highlights the resource trade-off. Conventional ZNE requires u ×M = 5 × 40, 000 = 200, 000
shots for each evaluation. For 500 test samples, this totals 108 measurements. Hybrid S-ZNE, in contrast, requires
a one-time offline training cost of n × u × T = 3000 × 5 × 500 = 7.5 × 106 measurements (using nj = 3000 for this
example). The per-instance extrapolation cost is reduced to 40% of conventional ZNE (retaining λ = 1, 2), totaling
4 × 107 measurements for the 500 samples. The total hybrid S-ZNE cost is thus 7.5 × 106 + 4 × 107 = 4.75 × 107

measurements, a saving of over 50%. In this specific task, the one-time training cost accounts for ≈ 16% of the total
cost. For applications requiring many repeated evaluations (Neval ≫ n×T/((u−v)M)), this training cost is amortized,
and the cumulative savings asymptotically approach the 60% per-instance reduction. These results demonstrate that
the hybrid S-ZNE framework successfully balances mitigation fidelity with practical resource efficiency.
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FIG. E.5. Error mitigation performance and quantum resource efficiency for Ising and Heisenberg models. a.
Residual distributions (mitigated estimate minus ideal value) for unmitigated, ZNE, and hybrid S-ZNE results across three
noise configurations (DP, DP+TM, and DP+TM+CO), based on 500 test instances with |f(x, O)| > 0.5. b. Corresponding
MSE values confirm that hybrid S-ZNE matches conventional ZNE in accuracy for both Hamiltonians. c. Quantum resource
comparison: hybrid S-ZNE incurs a fixed offline training cost and avoids repeated measurements at high λj , reducing per-
instance quantum overhead by nearly 60% compared to conventional ZNE.
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