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A. Extended Figures  69 

 70 
 71 
Extended Fig. 1. Data processing framework for identifying urban heatwave 72 
events and quantifying public sentiment. 73 
  74 
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 75 

 76 
Extended Fig. 2. Spatial heterogeneity and statistical characteristics of urban 77 
heatwave attributes across China. a–c, Spatial distribution of IMAXh; RPh, and RTh. 78 
The vertical plots to the right of each map display the latitudinal zonal means (solid 79 
lines) with shaded areas representing the standard deviation. d, Statistical distribution 80 
of heat metrics categorized by degree of urbanization: megacity cores, SME city, 81 
other urban areas, and rural areas. e, Statistical distribution categorized by climatic 82 
regions: TSC, WTC, CTC, and PC.   83 
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 84 

 85 
Extended Fig. 3. Spatial heterogeneity and statistical characteristics of emotion 86 
attributes across China. a–c, Spatial distribution of IMAXe; RPe, and RTe. The 87 
vertical plots to the right of each map display the latitudinal zonal means (solid lines) 88 
with shaded areas representing the standard deviation. d, Statistical distribution of 89 
heat metrics categorized by degree of urbanization: megacity cores, SME city, other 90 
urban areas, and rural areas. e, Statistical distribution categorized by climatic regions: 91 
TSC, WTC, CTC, and PC.  92 
  93 
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 94 
 95 
Extended Fig. 4. Scaling relationships of heat and emotional indices with 96 
socioeconomic determinants.Joint density plots of HGI (a, b) and EGI (c, d) against 97 
GDP and population. All axes are log-scaled. Colour gradients represent kernel 98 
density estimation (KDE), red curves show LOESS regression trends, and dashed 99 

lines indicate a reference slope of −1. Marginal histograms display univariate 100 

distributions. 101 
  102 
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 103 

 104 
Extended Fig. 5. Performance evaluation of the LightGBM model across 19 city 105 
clusters. 106 
  107 
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 108 

 109 
Extended Fig. 6. Taylor diagrams evaluating the performance of 13 CMIP6 110 
global climate models. The diagrams assess model fidelity in simulating daily 111 
maximum temperature (Tmax; a, b) and minimum temperature (Tmin; c, d). Models are 112 
divided into two groups for visual clarity. In each plot, the azimuthal angle represents 113 
the correlation coefficient (CC), the radial distance indicates the standard deviation 114 
(SD), and the green dashed contours denote the centred root-mean-square difference 115 
(RMSD).  116 
  117 
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 118 
 119 
Extended Fig. 7. Future projections of decomposed HGI metrics under climate 120 
change scenarios. Maps illustrate the spatial distribution of the 75-year mean values 121 
(2025–2100) for Heat Peak Severity (IMAXh; a), Heat Cumulative Perturbation 122 
Magnitude (RPh; b), and Heat Recovery Time (RTh; c). Columns correspond to 123 
SSP1-2.6 (left), SSP2-4.5 (middle), and SSP5-8.5 (right) scenarios.  124 
  125 
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 126 
 127 
Extended Fig. 8. Future projections of decomposed EGI metrics under climate 128 
change scenarios. Maps illustrate the spatial distribution of the 75-year mean values 129 
(2025–2100) for Emotion Peak Severity (IMAXe; a–c), Emotion Cumulative 130 
Perturbation Magnitude (RPe; d–f), and Emotion Recovery Time (RTe; g–i). 131 
Columns correspond to SSP1-2.6 (left), SSP2-4.5 (middle), and SSP5-8.5 (right) 132 
scenarios. 133 
  134 
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 135 

 136 
Extended Fig. 9. Projections of normalized resilience indices across climate 137 
scenarios (2025–2100). Plots display the stacked evolution of resilience components 138 
under SSP1-2.6 (a–c), SSP2-4.5 (d–f), and SSP5-8.5 (g–i). Panels represent the 139 
specific contributions of heat metrics (b, e, h: IMAXh; RPh, and RTh) and emotion 140 
metrics (c, f, i: IMAXe; RPe, and RTe), while a, d, and h show the comprehensive 141 
aggregation of all six indicators. The y-axis represents the normalized index value. 142 
  143 
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 144 
 145 
Extended Fig. 10. Divergent temporal trajectories of resilience metrics under 146 
climate change. Time series reconstructions (1980–2100) derived from 13 CMIP6 147 
models. a, R_HE. b, c, HGI (b) and EGI (c). d–f, IMAXh; RPh, and RTh (f). g–i, 148 
IMAXe; RPe, and RTe. Black lines denote historical baselines (1980–2014); coloured 149 
lines represent SSP1-2.6 (blue), SSP2-4.5 (green) and SSP5-8.5 (red); shaded areas 150 
indicate 95% uncertainty bandwidths.  151 
  152 
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B. Supplementary Notes 153 

Note S1: Socio-economic stratification and spatial inequity of urban heat 154 

resilience  155 

The Lorenz curves and Gini coefficients collectively reveal that the distribution of 156 

resilience components is consistent yet diagnostically distinct across economic, 157 

demographic, and spatial weighting contexts (Supplementary Fig. 4). Under GDP 158 

weighting, the Emotional Recovery Time (RTe) exhibits the strongest inequality (Gini 159 

= 0.64). Its curve remains significantly below the line of equality for most of the 160 

range before rising steeply at the tail, suggesting that a minority of high-GDP units 161 

contribute a disproportionate share of the RTe burden. In contrast, shock and 162 

cumulative load indicators show moderate concentration (IMAXe = 0.31, RPe = 0.29), 163 

whereas physical metrics like RTh (0.22) and IMAXh (0.20) are less concentrated. 164 

Notably, the concentration of aggregated indices is significantly compressed by the 165 

"aggregation effect," with HGI at 0.12 and EGI recording the lowest value (0.09). 166 

This proximity to the line of equality implies that composite emotional resilience is 167 

distributed nearly broadly in economic terms. 168 

Weighting by population maintains the overall ranking, indicating that concentration 169 

is not driven solely by economic scale. RTe remains the highest (0.63), confirming its 170 

high concentration even within the context of social equity. While IMAXe (0.31) and 171 

RPe (0.27) maintain moderate deviation, RTh rises to 0.24, suggesting a stronger 172 

demographic clustering of recovery rhythms. Meanwhile, RPh drops to 0.11, and the 173 
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composite indices remain low (HGI = 0.13, EGI = 0.08), indicating that inequality in 174 

comprehensive resilience diminishes significantly under demographic weighting. 175 

When weighted by area, spatial agglomeration features become more explicit. 176 

Although RTe dips slightly, it remains high (0.59). The most critical shift occurs in 177 

shock intensity (IMAXe), which rises to 0.37—surpassing its levels under GDP and 178 

population weighting (~0.31)—pointing to a distinct "spatially clustered" risk profile 179 

for extreme shocks. RPe (0.29) and RTh (0.26) also show slight increases. Conversely, 180 

RPh is lowest under area weighting (0.09), indicating the weakest spatial clustering. 181 

Overall, the three weighting schemes confirm a robust conclusion: RTe is consistently 182 

the most unequal component (0.59–0.64), EGI is consistently the most equal (0.08–183 

0.09), whereas IMAXe is most sensitive to spatial weighting, reflecting its stronger 184 

geographic agglomeration. 185 

The Local Disparity Index (LDI) results reveal that local inequality is characterized 186 

by distinct regional differentiation and transitional zones (Supplementary Fig. 3). In 187 

the physical dimension, high values of IMAXh tend to form patchy hotspots in the arid 188 

Northwest and inland basins, with local abrupt changes appearing at several eastern 189 

coastal endpoints, manifesting as a "shock intensity fracture" relative to surrounding 190 

units. By contrast, medium-to-high values of RTh are more commonly distributed in 191 

bands or sheets across the Southwest mountain-basin transition zone, extending 192 

toward the Central-North China climatic transition belt. This suggests that recovery 193 

rhythm differences unfold continuously along regional gradients rather than being 194 

driven by isolated cities. RPh is generally more fragmented with fewer high values, 195 
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indicating weaker local disparity. At the composite level, the LDI for HGI is 196 

noticeably smoother, with high values concentrated in transitional zones where 197 

topographic and developmental gradients overlap. The emotional dimension presents 198 

a "multi-centered, weakly continuous" pattern: while generally low, IMAXe still 199 

exhibits identifiable high-value patches in the Northeast and along the eastern 200 

urbanization corridor. Disparities in RTe and RPe appear more frequently at urban 201 

agglomeration edges, rural-urban interfaces, and around inland nodes, manifesting as 202 

scattered hotspots against a weak gradient background. Ultimately, EGI is the 203 

smoothest, indicating that peak-like local differences are significantly dampened after 204 

aggregation. 205 

These regional variations can be attributed to distinct spatial control mechanisms 206 

governing physical versus social processes. Hotspots and gradients in physical metrics 207 

are dominated by climatic and topographic contexts: in the arid Northwest and basin 208 

environments, low-moisture substrates and strong sensible heat accumulation amplify 209 

peak shocks, creating abrupt mutations between neighborhoods. Similarly, the banded 210 

disparities in the Southwest basins align with mechanisms where recovery is 211 

constrained by ventilation efficiency and heat dissipation difficulties in high-humidity 212 

backgrounds, leading recovery times to follow continuous gradients along transition 213 

zones. In comparison, inequality on the emotional side is more readily triggered by 214 

abrupt shifts within the urban system—specifically in population exposure, 215 

development levels, public service accessibility, and social support 216 

networks—resulting in discrete "anomaly patches" at urban fringes and rural-urban 217 
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transitions. Methodologically, the composite indices (HGI, EGI) aggregate shock, 218 

cumulative load, and recovery processes, thereby attenuating the peak disparities of 219 

single process variables and rendering spatial patterns more continuous. Thus, the 220 

dual characteristic of "physical gradients versus social fractures" revealed by the LDI 221 

provides direct evidence for tailoring governance priorities and adaptation strategies 222 

across different regions. 223 

  224 
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Note S2: Structural decomposition and component-level analysis of physical and 225 

emotional resilience 226 

To dissect the structural underpinnings of HGI and elucidate adaptive mechanisms 227 

obscured by aggregate analysis, we decomposed the metric into IMAXh, RTh, and RPh, 228 

employing multi-dimensional diagnostics across climate zones and spatial mapping 229 

(Extended Fig.1; Supplementary Fig. 6-7). Statistical analysis revealed a core 230 

resistance-recovery trade-off across environmental gradients. Constrained by inherent 231 

humidity barriers and latent heat retention, TSC regions exhibited a typical chronic 232 

exposure mode where RTh was significantly prolonged despite IMAXh being 233 

moderated by maritime influences. Conversely, CTC and PC regions displayed 234 

characteristics of acute shock, with resilience deficits stemming primarily from 235 

extremely high IMAXh reflecting a lack of load-handling capacity for episodic 236 

heatwaves. Along the urban-rural gradient, megacities leveraged an infrastructure 237 

bonus to effectively blunt immediate heat peaks resulting in low IMAXh, yet the 238 

immense thermal inertia of high-density built environments incurred a significant heat 239 

island penalty causing RTh to lag far behind rural areas that lacked defense but 240 

possessed superior natural ventilation. This mechanistic trade-off projected a distinct 241 

pattern of geographical decoupling. IMAXh followed a pronounced North-High 242 

South-Low gradient, with inland basins and arid Northwest regions forming deep red 243 

shock-susceptible zones. Mirroring this, RTh exhibited a South-High North-Low 244 

distribution where the Yangtze River Basin and South China coast constituted 245 

persistence-susceptible zones due to the dual lock-in effect of high humidity and 246 
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urban heat islands, while high RPh bands precisely delineated climate transition zones. 247 

Collectively, these findings confirmed that physical resilience was not uniformly 248 

distributed but represented a dynamic spatial separation between resistance capacity 249 

and recovery efficiency across climatic and urbanization contexts. 250 

The structural decomposition of EGI further confirmed the existence of a prosperity 251 

penalty at the micro-mechanistic level, revealing the non-linear breakdown of 252 

psychosocial adaptation under extreme climate (Extended Fig.2; Supplementary Fig. 253 

6-8). Unlike the dynamic balance seen in physical resilience, the three components of 254 

emotional resilience IMAXe, RTe, and RPe exhibited a synchronous double deficit 255 

effect across the urban-rural gradient. Megacities not only encountered the highest 256 

IMAXe indicating that negative emotional outbursts among high-density populations 257 

were more intense and prone to breaching psychosocial thresholds, but also recorded 258 

the longest RTe. This extended recovery reflected how rapid social metabolism and 259 

hyper-competitive environments severely compressed the psychological repair 260 

window, causing negative emotions to linger long after heatwaves subsided. Climatic 261 

heterogeneity further modulated this response, with TSC regions again emerging as 262 

the core of emotional vulnerability. Physiological discomfort driven by humid heat 263 

and continuous nocturnal exposure created a potent emotional hysteresis effect, 264 

elevating RTe significantly above arid or cold zones. Spatially, this mechanism 265 

projected a characteristic Core-Periphery dual structure. In sharp contrast to the 266 

physically robust eastern coastal clusters, dense agglomerations like YRD, PRD, and 267 

BTH appeared as extensive low-value emotional heat islands within the EGI map, 268 
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characterized by high-intensity emotional oscillation or high RPe and sustained 269 

suppression or high RTe. Conversely, the ecological southwest periphery and less 270 

developed small-to-medium cities retained higher emotional elasticity, serving as 271 

green sanctuaries for psychological adaptation. This significant spatial mismatch 272 

between physical buffering and psychological experience profoundly underscored that 273 

technical adaptation alone could not neutralize the psychosocial impact of climate 274 

change, suggesting that high-density urban morphology was itself becoming a 275 

structural stressor that eroded human emotional resilience. 276 

  277 
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Note S3: Log-Scale Joint Density Analysis of Resilience–Development 278 

Relationships 279 

To quantify the nonlinear links between resilience indicators and development drivers 280 

across socio-economic gradients spanning multiple orders of magnitude, this study 281 

constructed log-scale joint density plots (Extended Fig.5). The framework combined 282 

bivariate kernel density estimation with marginal histograms, and applied base-10 log 283 

transforms to the highly skewed population and GDP data to correct their heavy-tailed 284 

distributions. This treatment reduced the leverage of extreme outliers from 285 

mega-cities on the inferred patterns and, with a nonlinear smoothed regression overlay, 286 

robustly revealed the underlying structure of how urban resilience varied with 287 

development scale in log space. 288 

The joint-density diagnostics showed that physical and emotional resilience 289 

responded to city size in fundamentally different ways. Physical resilience (HGI) 290 

exhibited only weak, relatively flat associations with log-transformed population and 291 

GDP, with the high-density core concentrated around mid-range values, indicating 292 

scale neutrality in physical heat adaptation—large cities did not display a clear 293 

per-capita defensive advantage despite resource agglomeration. By contrast, 294 

emotional resilience (EGI) showed a pronounced, monotonic negative relationship, 295 

with the fitted curve declining steeply as population density and economic mass 296 

increased. This pattern pointed to a latent prosperity penalty, or density penalty, in 297 

which high-density environments produced by rapid urbanisation concentrated 298 

material wealth while materially eroding psychological buffering capacity against 299 
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climate stress, leaving affluent metropolitan areas as hotspots of emotional 300 

vulnerability. 301 

  302 
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Note S4: Decoupling of resilience patterns revealed by bivariate density plots 303 

Kernel density scatter plots derived from global urban annual means (2020–2024) 304 

reveal that HGI and EGI exhibit only a weak negative correlation across the full 305 

sample—statistically significant yet negligible in effect size (Extended Fig.10-11). 306 

With regression slopes and explanatory power approaching zero, this pattern indicates 307 

that these two resilience dimensions do not form a stable linear coupling at the annual 308 

scale; rather, their relationship is better characterized by structural decoupling and a 309 

multi-modal distribution. The density peak centers on a region where HGI is slightly 310 

positive and EGI hovers near zero. Furthermore, quadrant decomposition shows that 311 

approximately two-thirds of the city-year units record positive HGI values; notably, a 312 

substantial portion of these coincide with negative EGI, suggesting that improvements 313 

on the physical side do not necessarily translate into synchronous emotional recovery. 314 

Stratification by climate zone isolates the Arid and Semi-arid regions as having the 315 

most pronounced negative correlation, whereas associations in WTC, TSC, and CTC 316 

zones remain generally weaker. Structural differences also emerge across quadrants: 317 

the CTC zone exhibits the highest proportion of dual-positive outcomes (positive HGI 318 

and EGI), whereas WTC regions tend to cluster in the combination of positive HGI 319 

but negative EGI. This implies that the climatic background systematically modulates 320 

the synchronization—or desynchronization—between physical and emotional 321 

resilience. 322 
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Further grouping by urbanization level reveals steeper negative slopes in both 323 

megacities and rural areas. In megacities specifically, distinct emotional divergence 324 

occurs even under conditions of positive HGI, reflecting that high-intensity physical 325 

adaptation fails to mitigate psychosocial stress and may instead reinforce adaptive 326 

disparities. Conversely, small and medium-sized cities show near-zero or weak 327 

positive correlations. Collectively, these findings suggest that the HGI–EGI 328 

relationship is co-modulated by climate zones and urbanization processes; thus, it is 329 

more accurately interpreted as evidence of stratified decoupling rather than 330 

synchronous evolution summarized by a single correlation coefficient. 331 

  332 
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Note S5: Robustness checks and trend analysis of emotional time series 333 

To diagnose the stability of emotional shifts across varying temporal aggregation 334 

scales, we employed the Mann–Kendall test to detect monotonic trends within 335 

city-level emotional time series, quantifying their magnitude and direction via Sen’s 336 

slope estimator (Supplementary Table 1; Supplementary Fig.12). The screening 337 

process yielded 1,013 optimal series, all satisfying the 95% significance threshold. 338 

With p-values ranging from 0 to 0.0498 (median: 0.0185; interquartile range: 0.0065–339 

0.0328), these results confirm that the observed trends are not artifacts of stochastic 340 

fluctuation. Directionally, the trends exhibit a near-equilibrium at the national scale: 341 

513 series (50.6%) show an upward trajectory, while 500 (49.4%) exhibit a decline. 342 

This split suggests that emotional evolution is not characterized by a uniform, 343 

unidirectional drift across the country. Temporal resolution within the "optimal 344 

series" displays a distinct hierarchy, with the 3-hour scale dominating (41.6%), 345 

followed by 6-hour (21.1%), 24-hour (20.1%), and 12-hour (17.2%) intervals; 346 

consequently, 3-hour emotional data were selected for constructing resilience indices. 347 

While the overall magnitude of Sen’s slopes is modest, the distribution range 348 

broadens significantly with coarser temporal aggregation. Extreme values in 24-hour 349 

series reach from −0.0222 to 0.0196, indicating that while temporal smoothing 350 

enhances the detection of long-term drifts, it may simultaneously amplify the 351 

influence of persistent local deviations on trend estimation. 352 
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Despite the balanced dichotomy nationwide, a sharp adaptive divergence emerges 353 

within densely populated metropolitan areas. Traditional core cities—typified by 354 

Beijing (Sen ≈ −3.3 × 10−5), Guangzhou (Sen ≈ −3.4 × 10−4), and Chongqing—exhibit 355 

a significant erosion of resilience, reflecting the cumulative toll of high-density heat 356 

stress and fast-paced social burdens. Conversely, Shenzhen (Sen ≈ +2.7 × 10−4) and 357 

Shanghai (Sen ≈ +9.0 × 10−5) display an encouraging positive trajectory, potentially 358 

attributable to superior coastal ventilation or more effective adaptive governance, 359 

such as "park city" initiatives. Notably, the most extreme rates of change are confined 360 

to peripheral zones. Resource-depleted or arid cities like Shuangyashan (Sen = 361 

-0.0223) and Hami (Sen = -0.0094) constitute "vulnerability traps" requiring urgent 362 

intervention, highlighting the compound shock of economic contraction and extreme 363 

climate exposure on socio-psychological capital. In contrast, high-ecological-function 364 

areas such as Ledong (Sen = +0.0197) and Shannan (Sen = +0.0109) serve as "oases" 365 

of rapidly improving resilience, leveraging their superior natural baselines. This 366 

differentiation underscores that the long-term trajectories of urban emotional 367 

resilience are not random walks; rather, they are heavily constrained by path 368 

dependencies rooted in urban function, economic transition pathways, and the stock 369 

of ecological capital. 370 

  371 
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Note S6: Indicator considerations for the estimation models employed in this 372 

study 373 

To attribute the driving mechanisms underlying urban resilience and its spatial 374 

heterogeneity this study developed two categories of non-linear estimation models 375 

specifically designed for the Physical Resilience Index (HGI) and the Emotional 376 

Resilience Index (EGI). Both modeling frameworks are anchored in a standardized set 377 

of explanatory variables capable of robustly characterizing urban structural conditions 378 

and morphological variations at a national scale. This comprehensive feature set 379 

encompasses socio-economic status represented by Gross Domestic Product (GDP) 380 

and Population Count (PopC) topographic context via Elevation (DEM) vegetation 381 

and land cover composition including the Normalized Difference Vegetation Index 382 

(NDVI) alongside fractional cover indicators for Forest (FT) Barren land (BN) 383 

Grassland (GD) Built-up areas (UP) Water bodies (WR) and Cropland (CD) as well 384 

as built environment morphology metrics such as Building Height (BH) Building 385 

Density (BD) and Floor Area Ratio (FAR) thereby capturing the geographic 386 

constraints surface composition and spatial form differences defining distinct urban 387 

environments in a unified framework (Supplementary Table 2). 388 

The configuration of these variables adheres to the critical physical pathways 389 

governing thermal environment formation. Topography and land surface 390 

characteristics constitute the physical baseline where Elevation (DEM) captures the 391 

background modulation of thermal lapse rates and local circulation. Regarding surface 392 

energy partitioning the Normalized Difference Vegetation Index (NDVI) alongside 393 
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specific land use categories characterizes variances in canopy structure and 394 

evapotranspiration cooling while Water bodies (WR) reflect regulation via high 395 

specific heat capacity and Built-up areas (UP) represent impervious substrates 396 

characterized by low moisture availability and high heat storage potential. Beyond 397 

surface characteristics the three-dimensional morphological structure reshapes the 398 

local thermal environment by altering aerodynamic roughness and radiative transfer 399 

paths. Grid-average Building Height (BH) and Building Density (BD) signify vertical 400 

wind blockage potential and horizontal heat storage surface area respectively while 401 

Floor Area Ratio (FAR) serves as a comprehensive metric of development intensity 402 

directly associated with longwave radiation trapping efficiency. Finally Population 403 

Count (PopC) and Gross Domestic Product (GDP) were employed as critical proxies 404 

for anthropogenic heat emissions representing the intensity of metabolic heat release 405 

and waste heat discharge associated with high-energy economic activities. 406 

As illustrated by the correlation heatmap (Extended Data Fig. 5), the pairwise Pearson 407 

correlation coefficients (r) among the selected independent variables were 408 

predominantly low. Specifically, the absolute correlation values (|r|) for all variable 409 

pairs remained well below the strict threshold of 0.8, signifying a lack of strong linear 410 

dependence across the morphological, climatic, and socio-economic predictors. 411 

Complementing this diagnostic, the Variance Inflation Factor (VIF) analysis offered a 412 

quantitative evaluation of multicollinearity severity. As detailed in Supplementary 413 

Table 2, the VIF values for all input features consistently fell beneath the conservative 414 

threshold of 5. Collectively, these findings confirm the satisfactory orthogonality of 415 
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the feature set, validating its suitability for attributing the drivers of urban resilience 416 

without significant interference. 417 

  418 
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Note S7: Cross-regional generalizability and model calibration 419 

We utilized "city-year" observational units from 2020–2024 to validate the model, 420 

partitioning the dataset into 80% training and 20% validation subsets. Kernel density 421 

scatter plots were generated for 19 distinct city clusters to visualize the agreement 422 

between predicted and actual values; in these plots, color gradients represent sample 423 

density, while linear regression fits are superimposed on the 1:1 identity line to 424 

characterize directional deviation (Extended Fig. 5). Overall, the point clouds adhere 425 

closely to the 1:1 line with high-density regions clustering along the diagonal, 426 

indicating robust model calibration across the full value spectrum. Validation metrics 427 

for the full sample (N=619,996) yield an R2 of 0.95, a mean absolute error (MAE) of 428 

0.014, and a bias of −0.002, reflecting minimal error magnitudes and negligible 429 

systematic bias. Importantly, these performance patterns remain consistent across 430 

disaggregated city clusters, demonstrating that LightGBM maintains stable 431 

generalizability in cross-regional contexts. This consistency underscores the 432 

algorithm’s capacity to precisely capture the localized emotional baselines and 433 

fluctuation dynamics intrinsic to diverse geographical units. 434 

  435 
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Note S8: Attribution of driving mechanisms for Best Lag (BL) 436 

SHAP-based attribution analysis identified heat hazard characteristics as the 437 

predominant drivers determining the Best Lag (BL) for public emotional response, 438 

significantly outweighing other explanatory categories (Supplementary Fig. 15). 439 

Specifically, GDP made the largest contribution at 16.52%, followed sequentially by 440 

RPh (13.11%), BL (12.86%), IMAXh (12.08%), and RTh (11.93%). In contrast, 441 

topographic and ecological contexts represented by DEM (7.33%) and NDVI (5.19%) 442 

provided secondary yet stable boundary constraints, while land cover and 443 

morphological variables generally functioned as subtle regulators of local 444 

microclimatic conditions. 445 

Dependence analysis further elucidated the distinct operational modes of these key 446 

factors. GDP exhibited a robust non-linear attenuation pattern where its influence on 447 

the lag structure diminished rapidly within lower GDP ranges and plateaued at higher 448 

levels, indicating a diminishing marginal effect of economic capacity on optimizing 449 

lag configuration. Conversely, RPh displayed a fluctuating response characterized by 450 

multiple inflection points, suggesting that cumulative heat load altered the lag window 451 

by triggering distinct recovery states rather than through monotonic accumulation. 452 

Notably, the positive contribution of IMAXh intensified significantly within the 453 

extreme high-temperature range, implying that once peak heat shock surpassed a 454 

critical threshold, it fundamentally reshaped the optimal lag structure. 455 

456 
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Note S9: Temporal trajectories and component-level drivers of physical and 457 

emotional resilience (2025–2100) 458 

Time series reconstructions derived from an ensemble of 13 CMIP6 models indicated 459 

that under three SSP pathways, both HGI and EGI evolved with a distinct non-linear 460 

morphology characterized by moderate mid-term changes followed by accelerated 461 

late-term shifts (Extended Fig.7-9; Supplementary Fig.16-17). However, a temporal 462 

mismatch existed in their sensitivity to emission intensities. EGI exhibited 463 

quasi-plateau characteristics between 2025 and 2050, where the SSP1-2.6 scenario 464 

registered a slight uptake of approximately 0.1% and SSP5-8.5 remained largely static 465 

with a marginal decline of 0.1%. It was only after 2050 that a deep downward 466 

trajectory initiated, resulting in declines of 7.8%, 17.1%, and 20.3% relative to the 467 

baseline by the end of the century. In contrast, the attenuation of HGI displayed a 468 

marked early onset. Cumulative declines of 3.1% to 4.8% emerged within the first 469 

half of the century, accelerating further in the latter half as high-emission pathways 470 

locked in; by 2100, reductions reached 13.9%, 16.1%, and 25.4% relative to 2025. 471 

These scenario-dependent trajectories suggested that high-emission pathways not only 472 

significantly amplified the magnitude of long-term decay but also widened the 473 

uncertainty bandwidth of predictions. Consequently, the structure of systemic risk 474 

diverged drastically in the second half of the century driven by scenario disparities. 475 

The evolution of six structural components further elucidated the micro-dynamic 476 

sources of this index attenuation. Across all scenarios, the sustained rise in IMAXh, 477 
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RTh, and RPh confirmed a synchronous deterioration in physical heat shock intensity, 478 

recovery lag, and process volatility, while the parallel elevation of IMAXe, RTe, and 479 

RPe signaled a systemic amplification of negative emotional peaks and hysteresis 480 

effects. This deteriorating trend presented a clear gradient differentiation across 481 

scenarios, driven primarily by incremental changes post-2050. Under SSP5-8.5, the 482 

magnitude of deterioration for physical and emotional components reached its zenith: 483 

IMAXh and RTh surged by 35.9% and 50.1% respectively, while IMAXe and RTe rose 484 

by 25.6% and 46.4%, far exceeding the moderate increases observed under SSP1-2.6. 485 

Notably, among all components, RTh and RTe exhibited the highest scenario 486 

sensitivity. This revealed that structural degradation at the recovery end, rather than 487 

mere peak elevation, constituted the dominant channel driving resilience collapse in a 488 

high-emission future. Furthermore, the physical and emotional linkages displayed 489 

stronger synergistic amplification characteristics in the latter half of the century. 490 

  491 
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C. Supplementary Tables 492 

Supplementary Table 1. Statistical significance and magnitude of emotional trends 493 

in 40 representative cities: Z-values, P-values, Sen’s slopes and Best lag days derived 494 

from 3-hour scale observations.   495 

City Z Value P Value Sen Slope Best Lag days  

Beijing -2.3683 0.0179 -0.000023 3.6 

Shanghai 7.8170 5.33e-15 0.000078 2.9 

Guangzhou -4.0572 0.00005 -0.000059 2.5 

Shenzhen 2.3623 0.0182 0.000028 2.9 

Tianjin 3.0763 0.0021 0.000054 3.8 

Chongqing -1.9819 0.0475 -0.000037 3.4 

Nanjing 3.8714 0.0001 0.000025 2.6 

Suzhou 9.5870 0.0000 0.000146 3.0 

Hangzhou -2.7953 0.0052 -0.000041 2.6 

Wuhan -2.3090 0.0209 -0.000032 3.0 

Xian -2.0535 0.0400 -0.000035 3.2 

Wuxi -4.4134 0.00001 -0.000073 2.9 

Ningbo -5.6040 2.09e-08 -0.000114 2.9 

Changsha -6.0617 1.35e-09 -0.000033 2.8 

Hefei -6.8170 9.30e-12 -0.000183 3.4 

Fuzhou 3.0925 0.0020 0.000086 2.4 

Jinan -2.3610 0.0182 -0.000054 3.5 

Shenyang 2.3145 0.0206 0.000044 3.3 
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Haerbin 2.0689 0.0386 0.000019 2.9 

Dalian -4.8353 1.33e-06 -0.000072 3.3 

Xiamen -3.2981 0.0010 -0.000042 2.2 

Foshan 2.3862 0.0170 0.000023 2.8 

Nanning -2.5295 0.0114 -0.000054 2.0 

Haikou 2.5018 0.0124 0.000115 2.2 

Guiyang 2.6206 0.0088 0.000032 2.6 

Lanzhou -2.7202 0.0065 -0.000124 3.3 

Nanchang -2.7852 0.0053 -0.000040 3.2 

Huhehaote -3.7197 0.0002 -0.000084 3.2 

Wulumuqi 2.3429 0.0191 0.000055 3.6 

Changzhou -8.4626 0.0000 -0.000326 3.3 

Dongguan 3.5582 0.0004 0.000072 3.1 

Huizhou -2.9159 0.0035 -0.000088 2.5 

Jiaxing -2.3576 0.0184 -0.000031 2.8 

Nantong -2.5822 0.0098 -0.000045 2.2 

Quanzhou -4.8088 1.52e-06 -0.000094 2.3 

Wenzhou -2.0244 0.0429 -0.000042 2.2 

Xuzhou 3.4753 0.0005 0.000111 3.4 

Yantai 2.0603 0.0394 0.000037 2.9 

Zhongshan 2.2163 0.0267 0.000070 2.3 

  496 
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Supplementary Table 2. Summary of explanatory variables, physical mechanisms, 497 

and variance inflation factors (VIF) 498 

Category Variable 
Abbreviat
ion 

Physical Mechanism & 
Rationale 

VIF 

Physical Resilience 

Metrics 

Heat Recovery Time RTh 

Duration required for the thermal 

environment to return to baseline 

levels 

1.11 

Peak Heat Severity IMAXh 
Maximum intensity of the heatwave 

event relative to the baseline 
1.40 

Cumulative Heat 

Magnitude 
RPh 

Total accumulated thermal stress 

(area under the curve) during the 

event 

1.33 

Emotional Resilience 

Metrics 

Emotion Recovery Time RTe 
Duration for public sentiment to 

recover to baseline levels after heat  
1.11 

Peak Emotional Severity IMAXe 

Maximum intensity of negative 

emotional expression during the 

heatwave 

1.16 

Cumulative Emotional 

Perturbation 
RPe 

Total accumulated emotional stress 

load during the event 
1.19 

Socio-economic 

Status 

Gross Domestic Product GDP 
Proxy for anthropogenic waste heat 

discharge from economic activities 
2.94 

Population Count PopC 
Represents metabolic heat release 

and human activity intensity 
3.26 

Topographic Context Elevation DEM 
Background modulation of thermal 

lapse rates and local circulation 
2.32 

Vegetation & Land 

Cover 

Normalized Difference 

Vegetation Index 
NDVI 

Characterizes vegetation vitality and 

surface energy partitioning 
4.76 

Forest / Grassland / 

Cropland 
FT / GD / CD 

Capture canopy structures and 

evapotranspiration cooling 

capacities 

4.88 / 

4.27 / 

4.94 

Water Bodies WR 
Reflects thermal regulation via high 

specific heat capacity 
1.34 

Barren Land / Built-up 

Areas 
BN / UP 

Impervious substrates with low 

moisture and high heat storage 

4.17 / 

4.60 

Built Environment 

Grid-average Building 

Height 
BH 

Signifies vertical wind blockage 

potential and aerodynamic  
4.75 

Grid-average Building 

Density 
BD 

Horizontal surface area available for 

solar heat storage 
4.55 

Floor Area Ratio FAR Metric of development intensity  4.42 

499 
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Supplementary Table 3. The CMIP6 models used in the analysis. Listed are the 500 
ensemble size of the ALLforcing, NAT-forcing, GHG-forcing, segments of piControl 501 
simulations, SSP1-2.6, SSP2-4.5, andSSP5-8.5 experiments, and the equilibrium 502 
climate sensitivity (ECS) of climate models. The ECS estimatesare from Zelinka et 503 
al.(2020) 504 

MODEL ALL NAT GHG 
piC
ont
rol 

SSP
1-2.
6 

SSP
2-4.5 

SS
P5-
8.5 

ECS 
(K) 

ACCESS-CM2 3 3 3 1 3 3 3 4.72 

ACCESS-ESM

1-5 
3 3 3 1 3 3 3 3.88 

BCC-CSM2-M

R 
3 3 3 1 1 1 1 3.02 

CanESM5 10 10 10 1 25 25 25 5.64 

CESM2 3 3 3 1 3 3 3 5.15 

CNRM-CM6-1 6 6 6 1 6 6 6 4.83 

FGOALS-g3 3 3 3 1 1 1 1 2.87 

GFDL-ESM4 3 3 3 1 1 1 1 2.65 

GISS-E2-1-G 5 5 5 1 5 5 5 2.72 

IPSL-CM6A-L

R 
6 6 6 1 6 6 6 4.56 

MIROC6 3 3 3 1 3 3 3 2.60 

MRI-ESM2-0 3 3 3 1 1 1 1 3.15 

NorESM2-LM 3 3 3 1 1 1 1 2.54 

SUM (runs) 54 54 54 13 59 59 59 — 

  505 
  506 
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D. Supplementary Figures 507 

 508 
 509 
Supplementary Fig. 1. Spatial coverage of social emotion data.a, Density of 510 
geolocated Weibo comments used in the analysis. b, Spatial distribution of calculated 511 
sentiment scores. 512 
  513 
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 514 
 515 
Supplementary Fig. 2. Computational framework for quantifying heat and 516 
emotional resilience metrics. 517 
  518 
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 519 

 520 
Supplementary Fig. 3. Spatial patterns of local inequality characterized by the 521 
Local Disparity Index (LDI). a, c, HGI (a) and EGI (c). b, Heat components (IMAXh; 522 
RPh, and RTh). d, Emotion components (IMAXe; RPe, and RTe). Darker shades indicate 523 
higher disparity. 524 
  525 
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 526 

 527 
Supplementary Fig.4. Lorenz curves quantifying inequality in resilience metrics. 528 
a, Population-weighted; b, GDP-weighted; and c, Area-weighted. The diagonal line 529 
represents perfect equality. 530 
  531 
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 532 

 533 

Supplementary Fig. 5. Geographical distribution of the 19 urban 534 

agglomerations. 535 

  536 
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 537 
 538 
Supplementary Fig. 6. Interannual variability of resilience components across 539 
city clusters (2020–2024). a–c, Heat components: IMAXh (a), RPh and RTh (c). d–540 
f, Emotion components: IMAXe(d), RPe (e), and RTe (f). Coloured lines represent 541 
individual city clusters; shaded areas denote 95% confidence intervals. 542 
  543 
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 544 

 545 
Supplementary Fig. 7. Interannual variability of resilience metrics across climate 546 
zones (2020–2024). a, Heat metrics: HGI, IMAXh; RPh, and RTh. b, Emotion metrics: 547 
EGI, IMAXe; RPe, and RTe. Coloured lines represent climatic regions (TSC, WTC, 548 
CTC, PC); shaded areas denote 95% confidence intervals. 549 
  550 
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 551 

 552 
Supplementary Fig. 8. Interannual variability of resilience metrics across 553 
urbanization levels (2020–2024). a, Heat metrics: HGI, IMAXh; RPh, and RTh. b, 554 
Emotion metrics: EGI, IMAXe; RPe, and RTe. Coloured lines represent urbanization 555 
categories (Megacity, SME City, Urban Areas, Rural Areas); shaded areas denote 95% 556 
confidence intervals. 557 
  558 
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 559 
 560 
Supplementary Fig. 9. Pentagonal scatter plots mapping 357 cities based on 561 
population weighting. a, b, Classification of Heat Intensity (a) and Emotion Intensity 562 
(b). Bubble sizes indicate population magnitude, while colours represent the 19 city 563 
clusters. 564 
  565 
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 566 

Supplementary Fig.10. Bivariate KDE analysis of HGI and EGI decoupling. 567 

  568 
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 569 
 570 
Supplementary Fig.11. Bivariate KDE analysis of HGI and EGI decoupling 571 
across climatic zones. a, Climatic regions: tropical–subtropical (TSC); b, warm 572 
temperate (WTC); c, cold temperate (CTC); d, plateau climate (PC).  573 
  574 
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 575 
 576 
Supplementary Fig.12. Bivariate KDE analysis of HGI and EGI decoupling 577 
across city scale and urban contexts. a, megacity; b, SME City; c, urban areas; d, 578 
rural areas. 579 
  580 
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 581 
 582 
Supplementary Fig.13. Mann–Kendall trend detection and Sen’ s slope 583 
quantification for twelve representative cities.Bars are colour-coded to indicate the 584 
trend direction: red represents a positive Sen’s slope (associated with active recovery 585 
or increasing resilience), whereas blue represents a negative Sen’s slope (indicating 586 
persistent stress accumulation or decreasing resilience). The asterisk (*) denotes 587 
statistical significance at the 0.05 level. 588 
   589 
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 590 
Supplementary Fig.14. Regional heterogeneity in the lag response of emotional 591 
sentiment across 19 major urban agglomerations. The bar chart displays the 592 
estimated Best Lag (BL) days for each city cluster, derived from Distributed Lag 593 
Non-linear Models (DLNM). The height of each bar represents the regional mean, 594 
while error bars denote the 95% confidence intervals (95% CI). 595 
  596 
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 597 
 598 
Supplementary Fig.15. Daily time series of maximum temperature and emotion 599 
scores across six representative urban agglomerations.  600 
  601 
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 602 
 603 
Supplementary Fig.16. Global importance and local effect of each feature in the 604 
ensemble learning models for BL. 605 
  606 
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 607 
 608 
Supplementary Fig.17. Projected spatiotemporal evolution of HGI under 609 
different SSP–RCP scenarios. The maps visualize the projected mean HGI across 610 
Chinese cities for the near-term (2025–2050) and long-term (2050–2100) periods. a, 611 
b, Spatial distribution of mean HGI under the SSP1-2.6 scenario for 2025–2050 (a) 612 
and 2050–2100 (b). c, d, Projections under the SSP2-4.5 scenario for the same time 613 
periods. e, f, Projections under the SSP5-8.5 scenario.  614 
  615 
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 616 

 617 
Supplementary Fig.18. Projected spatiotemporal evolution of EGI under 618 
different SSP–RCP scenarios. The maps visualize the projected mean EGI across 619 
Chinese cities for the near-term (2025–2050) and long-term (2050–2100) periods. a, 620 
b, Spatial distribution of mean EGI under the SSP1-2.6 scenario for 2025–2050 (a) 621 
and 2050–2100 (b). c, d, Projections under the SSP2-4.5 scenario for the same time 622 
periods. e, f, Projections under the SSP5-8.5 scenario.  623 
  624 



55 
 

 625 
Supplementary Fig.19. Pearson correlation matrix of urban drivers and 626 
resilience metrics. 627 
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