1 Table of Content

2 A. Extended Figures 3

3 Extended Fig. 1. Data processing framework for identifying urban heatwave events and

4 QUantifying PUbliC SENEIMENL........ccciiiiiierieeiieecte e este et eesee et e e saeeetaeeteeebaeetaeesaeesaeensaeesnennes 3

5 Extended Fig. 2. Spatial heterogeneity and statistical characteristics of urban heatwave attributes

6 ACTOSS CIINA ...ttt ettt ettt s e s bt e s bt et e bt eateeb e e et e e nbeenbeenbeenaesseenae 4

7 Extended Fig. 3. Spatial heterogeneity and statistical characteristics of emotion attributes across

8 L] 30 - OO OO USSR ROP 5

9 Extended Fig. 4. Scaling relationships of heat and emotional indices with socioeconomic
10 AEEETIMINANES ...ttt ettt ettt b e b et e et e s et e sheesb e e bt e bt eateea e e ebee et e e beenbeenbesntesaeenaie 6
11 Extended Fig. 5. Performance evaluation of the LightGBM model across 19 city clusters............. 7
12 Extended Fig. 6. Taylor diagrams evaluating the performance of 13 CMIP6 global climate models8
13 Extended Fig. 7. Future projections of decomposed HGI metrics under climate change scenarios. 9
14 Extended Fig. 8. Future projections of decomposed EGI metrics under climate change scenarios 10
15 Extended Fig. 9. Projections of normalized resilience indices across climate scenarios (2025 -
16 B 00 OSSPSR 11
17 Extended Fig. 10. Divergent temporal trajectories of resilience metrics under climate change..... 12
18 B. Supplementary Notes 13
19 Note S1: Socio-economic stratification and spatial inequity of urban heat resilience ................... 13
20 Note S2: Structural decomposition and component-level analysis of physical and emotional
21 TESTIIEIICE ..ttt ettt e e e e a e s bt e bt et e et e ea e e sbeesbe e bt et enteeateeaeenbeenrean 17
22 Note S3: Log-Scale Joint Density Analysis of Resilience—Development Relationships ............... 20
23 Note S4: Decoupling of resilience patterns revealed by bivariate density plots .........ccccceevverenennne 22
24 Note S5: Robustness checks and trend analysis of emotional time Series..........ccceevveerveerveennenns 24
25 Note S6: Indicator considerations for the estimation models employed in this study.................... 26
26 Note S7: Cross-regional generalizability and model calibration............cccceecevienieniencnncnncnene. 29
27 Note S8: Attribution of driving mechanisms for Best Lag (BL) ....cccccovieniiiiniinieniececeicee 30
28 Note S9: Temporal trajectories and component-level drivers of physical and emotional resilience
29 (202572100 ettt ettt ettt ettt a e a e a e ae et et e bttt bt eaeea e en e et e teebe bt eneeneeneenean 31
30 C. Supplementary Tables 33
31 SUpPlemeEntary TabIe 1 ......cc.eeciiiiiiieiieceeeee ettt e sre et seae e tbeesaae e tbeeseeesseesneenes 33
32 SUpPlementary TabIe 2 ......cc.eeeiiiiiieeiie ettt et re et e et e e tb e e sabe e b e esaeetaeenaneenes 35
33 Supplementary TabIe 3 ........oooiiiiiecieceeeee ettt re ettt e et e b e enee e taeeaaeenes 36
34 D. Supplementary Figures 37
35 Supplementary Fig. 1. Spatial coverage of social emotion data...........ccccevevrerveiiiiienieneeneeee 37
36 Supplementary Fig. 2. Computational framework for quantifying heat and emotional resilience
37 100111 o Lo OSSR TP 38
38 Supplementary Fig. 3. Spatial patterns of local inequality characterized by the Local Disparity
39 INAEX (D) 1.ttt ettt ettt s h e bt s e st et et e besheebe e et en s et et e bt ebeebeeneeneeneenean 39
40 Supplementary Fig.4. Lorenz curves quantifying inequality in resilience metrics ............ccccceueeee. 40
41 Supplementary Fig. 5. Geographical distribution of the 19 urban agglomerations. ....................... 41
42 Supplementary Fig. 6. Interannual variability of resilience components across city clusters
43 (2020 7 2024) ettt a et a et et beehe bt e aten e et et e teebe bt eneeneeneenean 42



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Supplementary Fig. 7. Interannual variability of resilience metrics across climate zones (2020 -

2024 ) ettt h et a e a et et b e eh e ekt eR e e Rt et et e bt ehe bt eateneen s et eteebeeneeneeneennenean 43
Supplementary Fig. 8. Interannual variability of resilience metrics across urbanization levels
(2020 7 2024) .ttt h e a et a ettt ehe bt atea e et et e te bt ebeeneeneeneenean 44

Supplementary Fig. 9. Pentagonal scatter plots mapping 357 cities based on population weighting45
Supplementary Fig.10. Bivariate KDE analysis of HGI and EGI decoupling. ..........ccccceveeniennnne 46
Supplementary Fig.11. Bivariate KDE analysis of HGI and EGI decoupling across climatic zones47
Supplementary Fig.12. Bivariate KDE analysis of HGI and EGI decoupling across city scale and
UTDAN COMEEXES ..ettitientientieite ettt et e bt e bt et st shee st e et e em bt es e e et e e ebe e be e bt embeeateseeesaee bt enbeenteeseesbeenbeenbean 48
Supplementary Fig.13. Mann - Kendall trend detection and Sen”’ s slope quantification for twelve
TEPTESENEALIVE CITIES uveeuvriererieriiierieeiteesteesteesteestteesteesareessseessseessseessseessseensseesssaensseessseensseesssesnsees 49
Supplementary Fig.14. Regional heterogeneity in the lag response of emotional sentiment across

19 major urban aggloMETAtiONS .........eocuiriiiieitieieee ettt ettt st st et eae 50
Supplementary Fig.15. Daily time series of maximum temperature and emotion scoresacross six
representative urban agglomerations. ........oueiuiiierieriieiieieetie ettt sttt et 51
Supplementary Fig.16. Global importance and local effect of each feature in the ensemble

learning mMOdels fOr BL ..ot et 52
Supplementary Fig.17. Projected spatiotemporal evolution of HGI under different SSP - RCP
SCRIIATIOS .-t etetteteet et et et e st e e bt et e eat e eu e e eb e e bt en bt embeea e e saeesh e e bt em bt em bt ea e e eb e e b e en bt enbeenbesatesheenaeeteenteeas 53
Supplementary Fig.18. Projected spatiotemporal evolution of EGI under different SSP - RCP
SCRIIATIOS 1.ttt etteteete et et sitesh e e bt et e e st e eu e e eb e e bt et e embeea e e saeesb e e bt em et em bt ea e e eb e e bt enbeenbeenbesatesaeenbe e teenteene 54

Supplementary Fig.19. Pearson correlation matrix of urban drivers and resilience metrics.......... 55



69 A. Extended Figures

a Urban Heatwave Raster Data Processing

1980-2100 Daily Maximum Temperature Raster Dataset

HE_0 “ ) ) [ Rasterl ][ Raster2 ][ Raster3 ][ Rasters ][ — ][ RasterN ]
\ Daily Maximum Temperature
@ SERE SR | | | | | |
@ _C.’,{Jll__ Identifying Urban Heatwave Events & Extract Raster Series
1 Y Statistics Daily Maximum
So%o Tperatis e Rt ity
Administrative District
Threshold Definition for § I
Urban Heatwave Disaster e . Fliter2: Daily Maximum Temperature
TF'""L Dally M“"';';'% exceeding 95% threshold of the same
e pove period (1980 - 2010) Continuous 3
Continuous 3 days days

Extraction Heatwave Raster

l

City2: Raster Series1 |

Data Series for Urban Areas

Cityl: Raster Series1.
- L[ ]

Cityl: Raster Series2 |

==

City2: Raster Series2___|

Cityl: Raster Series3
City1: Raster Seriesk

City2: Raster Series3

=

Social Media Comments Processing

b

w Location Based Social Media Token

Dy Comments
§ egmen

e Embeddings

| @8

Chinese Sentiment Scoring

l

—

9
kY

Comments Geocoding

N

Generating Emotional
Spatial-temporal Grided
Series Data

—

70
71

72
73
74

events and quantifying public sentiment.

==

[CLS]

0 60 0 O

Input Token 0 Input Token 1 Input Token 2 Input Token 3 Input Token 4 Input Token 5
o H " ] s [ s H w H s ]
T

ransformer Encoder Block

[SEP]

—

[

Multi-head Self-Attention

Add & Norm

[1 Feed-Forward Network

[ Add & Layer Norm

)
)
]
T Lo
COCICJCICd0

Oulput Vector 0 Output Vector 1 Output Vector 2 Output Vector 3 Output Vector 4 OUtput Vector 5

|
—

Encoder BJocks

Sentiment Head
(FC + tanh)

Sentiment Score
[1,1]

[CLS] Vector
(Pooled)

[ J

Extended Fig. 1. Data processing framework for identifying urban heatwave
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Extended Fig. 2. Spatial heterogeneity and statistical characteristics of urban
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Extended Fig. 3. Spatial heterogeneity and statistical characteristics of emotion
attributes across China. a—c, Spatial distribution of /IMAX.; RP., and RT.. The
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Extended Fig. 5. Performance evaluation of the LightGBM model across 19 city
clusters.



108

109
110
111
112
113
114
115
116
117

a GCMs Performance on Tmax (Group 1)

GCMs Performance on Tmax (Group 2)

o
o

4 Access.cM2
@ ACCESS-ESM1-5
X BCC-CSM2-MR
CanEsMs
CESM2
CNRM-CM6-1
VW rooals-g3

>
o

ACCESS-CM2
GFDL-ESM4

F
(]
X GIss-E2-1-G

Standard Deviation

IPSL-CM6A-LR
MIROCE

Standard Deviation

MRI-ESM2-0
\ ALY

e
o

4 Access-cM2

@ ACCESS-ESM1-5

X BCC-CSM2-MR
CanEsMs

? o
CNRM-CM6-1

WV FeoaLs-g3

4 AcCEss-cM2
@ GFDLESM4
X GissE21G
IPSL-CM6A-LR
MIROCE
MRIESM2-0
WV NorEsmz-m

Standard Deviation
Standard Deviation

Extended Fig. 6. Taylor diagrams evaluating the performance of 13 CMIP6
global climate models. The diagrams assess model fidelity in simulating daily
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Extended Fig. 7. Future projections of decomposed HGI metrics under climate
change scenarios. Maps illustrate the spatial distribution of the 75-year mean values
(2025 - 2100) for Heat Peak Severity (IMAXj; a), Heat Cumulative Perturbation
Magnitude (RPp; b), and Heat Recovery Time (R7%; c¢). Columns correspond to
SSP1-2.6 (left), SSP2-4.5 (middle), and SSP5-8.5 (right) scenarios.
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Extended Fig. 8. Future projections of decomposed EGI metrics under climate
change scenarios. Maps illustrate the spatial distribution of the 75-year mean values
(2025 - 2100) for Emotion Peak Severity (IMAX.; a - c¢), Emotion Cumulative
Perturbation Magnitude (RP.; d - f), and Emotion Recovery Time (R7.; g - 1).
Columns correspond to SSP1-2.6 (left), SSP2-4.5 (middle), and SSP5-8.5 (right)
scenarios.

10



12 12
20 I 1.0 10 I
H
8 ... Eos I 2o
o I l. W £
2 . n | | 2 04 2 04
5] EEE 11 I -
sRERNR . o o
=== ‘
d 2025 2030 2040 2050 2060 2070 2080 2090 2100 o 2025 2030 f 2025 2030 2040 2050 2060 2070 2080 2090 2100
4 I l 20 20
. m . . il
B | lIII §s I I $s I
E =l= H i
I, il B o R .. I
f ..-ii 11 | | H am®ER N
4 | | --=. lI ll 05 i I 05 I. ..
==EEENES 11 -
= o.
g 2025 2030 2040 2050 2080 2070 2080 2090 2100 h 2025 2030 2050 2070 H 20252030 2040 0% 2060
6 30 30
5 li 25 25
g4 =I =l gzn II gzo
L III I I
gz --.= ... I 210 . l II 210
--- -..=...l I 05 I 05 l=.
| <EEERERRRRNRNN
L TR e e Y~ 20 2100 O s o 2% W w0 20 w0 2o
135 RT (Heat) IMAX (Heat) RP (Heat) RT (Emo) IMAX (Emo) RP (Emo)

136

137  Extended Fig. 9. Projections of normalized resilience indices across climate
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Extended Fig. 10. Divergent temporal trajectories of resilience metrics under
climate change. Time series reconstructions (1980 - 2100) derived from 13 CMIP6
models. a, R HE. b, ¢, HGI (b) and EGI (c). d - f, IMAX); RP;, and RT) (f). g -1,
IMAX.; RP., and RT.. Black lines denote historical baselines (1980 - 2014); coloured
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indicate 95% uncertainty bandwidths.
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B. Supplementary Notes

Note S1: Socio-economic stratification and spatial inequity of urban heat

resilience

The Lorenz curves and Gini coefficients collectively reveal that the distribution of
resilience components is consistent yet diagnostically distinct across economic,
demographic, and spatial weighting contexts (Supplementary Fig. 4). Under GDP
weighting, the Emotional Recovery Time (R7¢) exhibits the strongest inequality (Gini
= 0.64). Its curve remains significantly below the line of equality for most of the
range before rising steeply at the tail, suggesting that a minority of high-GDP units
contribute a disproportionate share of the R7e burden. In contrast, shock and
cumulative load indicators show moderate concentration (/MAX, = 0.31, RP. = 0.29),
whereas physical metrics like R7, (0.22) and IMAX, (0.20) are less concentrated.
Notably, the concentration of aggregated indices is significantly compressed by the
"aggregation effect," with HGI at 0.12 and EGI recording the lowest value (0.09).
This proximity to the line of equality implies that composite emotional resilience is

distributed nearly broadly in economic terms.

Weighting by population maintains the overall ranking, indicating that concentration
is not driven solely by economic scale. R, remains the highest (0.63), confirming its
high concentration even within the context of social equity. While IMAX, (0.31) and
RP. (0.27) maintain moderate deviation, R7} rises to 0.24, suggesting a stronger

demographic clustering of recovery rhythms. Meanwhile, RP; drops to 0.11, and the
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composite indices remain low (HGI = 0.13, EGI = 0.08), indicating that inequality in
comprehensive resilience diminishes significantly under demographic weighting.
When weighted by area, spatial agglomeration features become more explicit.
Although RT. dips slightly, it remains high (0.59). The most critical shift occurs in
shock intensity (IMAX.), which rises to 0.37—surpassing its levels under GDP and
population weighting (~0.31)—pointing to a distinct "spatially clustered" risk profile
for extreme shocks. RP. (0.29) and RT} (0.26) also show slight increases. Conversely,
RPy, is lowest under area weighting (0.09), indicating the weakest spatial clustering.
Overall, the three weighting schemes confirm a robust conclusion: R7. is consistently
the most unequal component (0.59-0.64), EGI is consistently the most equal (0.08—
0.09), whereas IMAX. is most sensitive to spatial weighting, reflecting its stronger

geographic agglomeration.

The Local Disparity Index (LDI) results reveal that local inequality is characterized
by distinct regional differentiation and transitional zones (Supplementary Fig. 3). In
the physical dimension, high values of IMAXj, tend to form patchy hotspots in the arid
Northwest and inland basins, with local abrupt changes appearing at several eastern
coastal endpoints, manifesting as a "shock intensity fracture" relative to surrounding
units. By contrast, medium-to-high values of R7) are more commonly distributed in
bands or sheets across the Southwest mountain-basin transition zone, extending
toward the Central-North China climatic transition belt. This suggests that recovery
rhythm differences unfold continuously along regional gradients rather than being

driven by isolated cities. RP; is generally more fragmented with fewer high values,
14
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indicating weaker local disparity. At the composite level, the LDI for HGI is
noticeably smoother, with high values concentrated in transitional zones where
topographic and developmental gradients overlap. The emotional dimension presents
a "multi-centered, weakly continuous" pattern: while generally low, IMAX. still
exhibits identifiable high-value patches in the Northeast and along the eastern
urbanization corridor. Disparities in R7. and RP. appear more frequently at urban
agglomeration edges, rural-urban interfaces, and around inland nodes, manifesting as
scattered hotspots against a weak gradient background. Ultimately, EGI is the
smoothest, indicating that peak-like local differences are significantly dampened after

aggregation.

These regional variations can be attributed to distinct spatial control mechanisms
governing physical versus social processes. Hotspots and gradients in physical metrics
are dominated by climatic and topographic contexts: in the arid Northwest and basin
environments, low-moisture substrates and strong sensible heat accumulation amplify
peak shocks, creating abrupt mutations between neighborhoods. Similarly, the banded
disparities in the Southwest basins align with mechanisms where recovery is
constrained by ventilation efficiency and heat dissipation difficulties in high-humidity
backgrounds, leading recovery times to follow continuous gradients along transition
zones. In comparison, inequality on the emotional side is more readily triggered by
abrupt shifts within the urban system—specifically in population exposure,
development levels, public service accessibility, and social support

networks—resulting in discrete "anomaly patches" at urban fringes and rural-urban
15
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transitions. Methodologically, the composite indices (HGI, EGI) aggregate shock,
cumulative load, and recovery processes, thereby attenuating the peak disparities of
single process variables and rendering spatial patterns more continuous. Thus, the
dual characteristic of "physical gradients versus social fractures" revealed by the LDI
provides direct evidence for tailoring governance priorities and adaptation strategies

across different regions.
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Note S2: Structural decomposition and component-level analysis of physical and

emotional resilience

To dissect the structural underpinnings of HGI and elucidate adaptive mechanisms
obscured by aggregate analysis, we decomposed the metric into IMAXj, RT;, and RPj,
employing multi-dimensional diagnostics across climate zones and spatial mapping
(Extended Fig.l1; Supplementary Fig. 6-7). Statistical analysis revealed a core
resistance-recovery trade-off across environmental gradients. Constrained by inherent
humidity barriers and latent heat retention, TSC regions exhibited a typical chronic
exposure mode where R7, was significantly prolonged despite IMAX, being
moderated by maritime influences. Conversely, CTC and PC regions displayed
characteristics of acute shock, with resilience deficits stemming primarily from
extremely high IMAX; reflecting a lack of load-handling capacity for episodic
heatwaves. Along the urban-rural gradient, megacities leveraged an infrastructure
bonus to effectively blunt immediate heat peaks resulting in low IMAX;, yet the
immense thermal inertia of high-density built environments incurred a significant heat
island penalty causing R7), to lag far behind rural areas that lacked defense but
possessed superior natural ventilation. This mechanistic trade-off projected a distinct
pattern of geographical decoupling. IMAX) followed a pronounced North-High
South-Low gradient, with inland basins and arid Northwest regions forming deep red
shock-susceptible zones. Mirroring this, R7, exhibited a South-High North-Low
distribution where the Yangtze River Basin and South China coast constituted

persistence-susceptible zones due to the dual lock-in effect of high humidity and
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urban heat islands, while high RP;, bands precisely delineated climate transition zones.
Collectively, these findings confirmed that physical resilience was not uniformly
distributed but represented a dynamic spatial separation between resistance capacity

and recovery efficiency across climatic and urbanization contexts.

The structural decomposition of EGI further confirmed the existence of a prosperity
penalty at the micro-mechanistic level, revealing the non-linear breakdown of
psychosocial adaptation under extreme climate (Extended Fig.2; Supplementary Fig.
6-8). Unlike the dynamic balance seen in physical resilience, the three components of
emotional resilience IMAX., RT., and RP. exhibited a synchronous double deficit
effect across the urban-rural gradient. Megacities not only encountered the highest
IMAX. indicating that negative emotional outbursts among high-density populations
were more intense and prone to breaching psychosocial thresholds, but also recorded
the longest R7.. This extended recovery reflected how rapid social metabolism and
hyper-competitive environments severely compressed the psychological repair
window, causing negative emotions to linger long after heatwaves subsided. Climatic
heterogeneity further modulated this response, with TSC regions again emerging as
the core of emotional vulnerability. Physiological discomfort driven by humid heat
and continuous nocturnal exposure created a potent emotional hysteresis effect,
elevating RT. significantly above arid or cold zones. Spatially, this mechanism
projected a characteristic Core-Periphery dual structure. In sharp contrast to the
physically robust eastern coastal clusters, dense agglomerations like YRD, PRD, and

BTH appeared as extensive low-value emotional heat islands within the EGI map,
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characterized by high-intensity emotional oscillation or high RP. and sustained
suppression or high R7.. Conversely, the ecological southwest periphery and less
developed small-to-medium cities retained higher emotional elasticity, serving as
green sanctuaries for psychological adaptation. This significant spatial mismatch
between physical buffering and psychological experience profoundly underscored that
technical adaptation alone could not neutralize the psychosocial impact of climate
change, suggesting that high-density urban morphology was itself becoming a

structural stressor that eroded human emotional resilience.
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Note S3: Log-Scale Joint Density Analysis of Resilience-Development

Relationships

To quantify the nonlinear links between resilience indicators and development drivers
across socio-economic gradients spanning multiple orders of magnitude, this study
constructed log-scale joint density plots (Extended Fig.5). The framework combined
bivariate kernel density estimation with marginal histograms, and applied base-10 log
transforms to the highly skewed population and GDP data to correct their heavy-tailed
distributions. This treatment reduced the leverage of extreme outliers from
mega-cities on the inferred patterns and, with a nonlinear smoothed regression overlay,
robustly revealed the underlying structure of how urban resilience varied with

development scale in log space.

The joint-density diagnostics showed that physical and emotional resilience
responded to city size in fundamentally different ways. Physical resilience (HGI)
exhibited only weak, relatively flat associations with log-transformed population and
GDP, with the high-density core concentrated around mid-range values, indicating
scale neutrality in physical heat adaptation—Ilarge cities did not display a clear
per-capita defensive advantage despite resource agglomeration. By contrast,
emotional resilience (EGI) showed a pronounced, monotonic negative relationship,
with the fitted curve declining steeply as population density and economic mass
increased. This pattern pointed to a latent prosperity penalty, or density penalty, in
which high-density environments produced by rapid urbanisation concentrated

material wealth while materially eroding psychological buffering capacity against
20



300 climate stress, leaving affluent metropolitan areas as hotspots of emotional

301  vulnerability.
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Note S4: Decoupling of resilience patterns revealed by bivariate density plots

Kernel density scatter plots derived from global urban annual means (2020-2024)
reveal that HGI and EGI exhibit only a weak negative correlation across the full
sample—statistically significant yet negligible in effect size (Extended Fig.10-11).
With regression slopes and explanatory power approaching zero, this pattern indicates
that these two resilience dimensions do not form a stable linear coupling at the annual
scale; rather, their relationship is better characterized by structural decoupling and a
multi-modal distribution. The density peak centers on a region where HGI is slightly
positive and EGI hovers near zero. Furthermore, quadrant decomposition shows that
approximately two-thirds of the city-year units record positive HGI values; notably, a
substantial portion of these coincide with negative EGI, suggesting that improvements

on the physical side do not necessarily translate into synchronous emotional recovery.

Stratification by climate zone isolates the Arid and Semi-arid regions as having the
most pronounced negative correlation, whereas associations in WTC, TSC, and CTC
zones remain generally weaker. Structural differences also emerge across quadrants:
the CTC zone exhibits the highest proportion of dual-positive outcomes (positive HGI
and EGI), whereas WTC regions tend to cluster in the combination of positive HGI
but negative EGI. This implies that the climatic background systematically modulates
the synchronization—or desynchronization—between physical and emotional

resilience.
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Further grouping by urbanization level reveals steeper negative slopes in both
megacities and rural areas. In megacities specifically, distinct emotional divergence
occurs even under conditions of positive HGI, reflecting that high-intensity physical
adaptation fails to mitigate psychosocial stress and may instead reinforce adaptive
disparities. Conversely, small and medium-sized cities show near-zero or weak
positive correlations. Collectively, these findings suggest that the HGI-EGI
relationship is co-modulated by climate zones and urbanization processes; thus, it is
more accurately interpreted as evidence of stratified decoupling rather than

synchronous evolution summarized by a single correlation coefficient.
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Note S5: Robustness checks and trend analysis of emotional time series

To diagnose the stability of emotional shifts across varying temporal aggregation
scales, we employed the Mann—Kendall test to detect monotonic trends within
city-level emotional time series, quantifying their magnitude and direction via Sen’s
slope estimator (Supplementary Table 1; Supplementary Fig.12). The screening
process yielded 1,013 optimal series, all satisfying the 95% significance threshold.
With p-values ranging from 0 to 0.0498 (median: 0.0185; interquartile range: 0.0065—
0.0328), these results confirm that the observed trends are not artifacts of stochastic
fluctuation. Directionally, the trends exhibit a near-equilibrium at the national scale:
513 series (50.6%) show an upward trajectory, while 500 (49.4%) exhibit a decline.
This split suggests that emotional evolution is not characterized by a uniform,
unidirectional drift across the country. Temporal resolution within the "optimal
series" displays a distinct hierarchy, with the 3-hour scale dominating (41.6%),
followed by 6-hour (21.1%), 24-hour (20.1%), and 12-hour (17.2%) intervals;
consequently, 3-hour emotional data were selected for constructing resilience indices.
While the overall magnitude of Sen’s slopes is modest, the distribution range
broadens significantly with coarser temporal aggregation. Extreme values in 24-hour
series reach from —0.0222 to 0.0196, indicating that while temporal smoothing
enhances the detection of long-term drifts, it may simultaneously amplify the

influence of persistent local deviations on trend estimation.
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Despite the balanced dichotomy nationwide, a sharp adaptive divergence emerges
within densely populated metropolitan areas. Traditional core cities—typified by
Beijing (Sen = —3.3 x 107°), Guangzhou (Sen = —3.4 x 107%), and Chongqing—exhibit
a significant erosion of resilience, reflecting the cumulative toll of high-density heat
stress and fast-paced social burdens. Conversely, Shenzhen (Sen =~ +2.7 x 107#) and
Shanghai (Sen = +9.0 x 107°) display an encouraging positive trajectory, potentially
attributable to superior coastal ventilation or more effective adaptive governance,
such as "park city" initiatives. Notably, the most extreme rates of change are confined
to peripheral zones. Resource-depleted or arid cities like Shuangyashan (Sen =
-0.0223) and Hami (Sen = -0.0094) constitute "vulnerability traps" requiring urgent
intervention, highlighting the compound shock of economic contraction and extreme
climate exposure on socio-psychological capital. In contrast, high-ecological-function
areas such as Ledong (Sen = +0.0197) and Shannan (Sen = +0.0109) serve as "oases"
of rapidly improving resilience, leveraging their superior natural baselines. This
differentiation underscores that the long-term trajectories of urban emotional
resilience are not random walks; rather, they are heavily constrained by path
dependencies rooted in urban function, economic transition pathways, and the stock

of ecological capital.
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Note S6: Indicator considerations for the estimation models employed in this

study

To attribute the driving mechanisms underlying urban resilience and its spatial
heterogeneity this study developed two categories of non-linear estimation models
specifically designed for the Physical Resilience Index (HGI) and the Emotional
Resilience Index (EGI). Both modeling frameworks are anchored in a standardized set
of explanatory variables capable of robustly characterizing urban structural conditions
and morphological variations at a national scale. This comprehensive feature set
encompasses socio-economic status represented by Gross Domestic Product (GDP)
and Population Count (PopC) topographic context via Elevation (DEM) vegetation
and land cover composition including the Normalized Difference Vegetation Index
(NDVI) alongside fractional cover indicators for Forest (FT) Barren land (BN)
Grassland (GD) Built-up areas (UP) Water bodies (WR) and Cropland (CD) as well
as built environment morphology metrics such as Building Height (BH) Building
Density (BD) and Floor Area Ratio (FAR) thereby capturing the geographic
constraints surface composition and spatial form differences defining distinct urban

environments in a unified framework (Supplementary Table 2).

The configuration of these variables adheres to the critical physical pathways
governing thermal environment formation. Topography and land surface
characteristics constitute the physical baseline where Elevation (DEM) captures the
background modulation of thermal lapse rates and local circulation. Regarding surface

energy partitioning the Normalized Difference Vegetation Index (NDVI) alongside
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specific land use categories characterizes variances in canopy structure and
evapotranspiration cooling while Water bodies (WR) reflect regulation via high
specific heat capacity and Built-up areas (UP) represent impervious substrates
characterized by low moisture availability and high heat storage potential. Beyond
surface characteristics the three-dimensional morphological structure reshapes the
local thermal environment by altering aerodynamic roughness and radiative transfer
paths. Grid-average Building Height (BH) and Building Density (BD) signify vertical
wind blockage potential and horizontal heat storage surface area respectively while
Floor Area Ratio (FAR) serves as a comprehensive metric of development intensity
directly associated with longwave radiation trapping efficiency. Finally Population
Count (PopC) and Gross Domestic Product (GDP) were employed as critical proxies
for anthropogenic heat emissions representing the intensity of metabolic heat release

and waste heat discharge associated with high-energy economic activities.

As illustrated by the correlation heatmap (Extended Data Fig. 5), the pairwise Pearson
correlation coefficients () among the selected independent variables were
predominantly low. Specifically, the absolute correlation values (|r|) for all variable
pairs remained well below the strict threshold of 0.8, signifying a lack of strong linear
dependence across the morphological, climatic, and socio-economic predictors.
Complementing this diagnostic, the Variance Inflation Factor (VIF) analysis offered a
quantitative evaluation of multicollinearity severity. As detailed in Supplementary
Table 2, the VIF values for all input features consistently fell beneath the conservative

threshold of 5. Collectively, these findings confirm the satisfactory orthogonality of
27



416  the feature set, validating its suitability for attributing the drivers of urban resilience

417  without significant interference.
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Note S7: Cross-regional generalizability and model calibration

We utilized "city-year" observational units from 2020-2024 to validate the model,
partitioning the dataset into 80% training and 20% validation subsets. Kernel density
scatter plots were generated for 19 distinct city clusters to visualize the agreement
between predicted and actual values; in these plots, color gradients represent sample
density, while linear regression fits are superimposed on the 1:1 identity line to
characterize directional deviation (Extended Fig. 5). Overall, the point clouds adhere
closely to the 1:1 line with high-density regions clustering along the diagonal,
indicating robust model calibration across the full value spectrum. Validation metrics
for the full sample (N=619,996) yield an R? of 0.95, a mean absolute error (MAE) of
0.014, and a bias of —0.002, reflecting minimal error magnitudes and negligible
systematic bias. Importantly, these performance patterns remain consistent across
disaggregated city clusters, demonstrating that LightGBM maintains stable
generalizability in cross-regional contexts. This consistency underscores the
algorithm’s capacity to precisely capture the localized emotional baselines and

fluctuation dynamics intrinsic to diverse geographical units.
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Note S8: Attribution of driving mechanisms for Best Lag (BL)

SHAP-based attribution analysis identified heat hazard characteristics as the
predominant drivers determining the Best Lag (BL) for public emotional response,
significantly outweighing other explanatory categories (Supplementary Fig. 15).
Specifically, GDP made the largest contribution at 16.52%, followed sequentially by
RP;, (13.11%), BL (12.86%), IMAX, (12.08%), and RT, (11.93%). In contrast,
topographic and ecological contexts represented by DEM (7.33%) and NDVI (5.19%)
provided secondary yet stable boundary constraints, while land cover and
morphological variables generally functioned as subtle regulators of local

microclimatic conditions.

Dependence analysis further elucidated the distinct operational modes of these key
factors. GDP exhibited a robust non-linear attenuation pattern where its influence on
the lag structure diminished rapidly within lower GDP ranges and plateaued at higher
levels, indicating a diminishing marginal effect of economic capacity on optimizing
lag configuration. Conversely, RP;, displayed a fluctuating response characterized by
multiple inflection points, suggesting that cumulative heat load altered the lag window
by triggering distinct recovery states rather than through monotonic accumulation.
Notably, the positive contribution of IMAX) intensified significantly within the
extreme high-temperature range, implying that once peak heat shock surpassed a

critical threshold, it fundamentally reshaped the optimal lag structure.
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Note S9: Temporal trajectories and component-level drivers of physical and

emotional resilience (2025-2100)

Time series reconstructions derived from an ensemble of 13 CMIP6 models indicated
that under three SSP pathways, both HGI and EGI evolved with a distinct non-linear
morphology characterized by moderate mid-term changes followed by accelerated
late-term shifts (Extended Fig.7-9; Supplementary Fig.16-17). However, a temporal
mismatch existed in their sensitivity to emission intensities. EGI exhibited
quasi-plateau characteristics between 2025 and 2050, where the SSP1-2.6 scenario
registered a slight uptake of approximately 0.1% and SSP5-8.5 remained largely static
with a marginal decline of 0.1%. It was only after 2050 that a deep downward
trajectory initiated, resulting in declines of 7.8%, 17.1%, and 20.3% relative to the
baseline by the end of the century. In contrast, the attenuation of HGI displayed a
marked early onset. Cumulative declines of 3.1% to 4.8% emerged within the first
half of the century, accelerating further in the latter half as high-emission pathways
locked in; by 2100, reductions reached 13.9%, 16.1%, and 25.4% relative to 2025.
These scenario-dependent trajectories suggested that high-emission pathways not only
significantly amplified the magnitude of long-term decay but also widened the
uncertainty bandwidth of predictions. Consequently, the structure of systemic risk

diverged drastically in the second half of the century driven by scenario disparities.

The evolution of six structural components further elucidated the micro-dynamic

sources of this index attenuation. Across all scenarios, the sustained rise in IMAX,
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RTh, and RP; confirmed a synchronous deterioration in physical heat shock intensity,
recovery lag, and process volatility, while the parallel elevation of IMAX,, RT,, and
RP. signaled a systemic amplification of negative emotional peaks and hysteresis
effects. This deteriorating trend presented a clear gradient differentiation across
scenarios, driven primarily by incremental changes post-2050. Under SSP5-8.5, the
magnitude of deterioration for physical and emotional components reached its zenith:
IMAX), and RT), surged by 35.9% and 50.1% respectively, while IMAX. and RT, rose
by 25.6% and 46.4%, far exceeding the moderate increases observed under SSP1-2.6.
Notably, among all components, R7, and RT. exhibited the highest scenario
sensitivity. This revealed that structural degradation at the recovery end, rather than
mere peak elevation, constituted the dominant channel driving resilience collapse in a
high-emission future. Furthermore, the physical and emotional linkages displayed

stronger synergistic amplification characteristics in the latter half of the century.
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492 C. Supplementary Tables

493  Supplementary Table 1. Statistical significance and magnitude of emotional trends
494 in 40 representative cities: Z-values, P-values, Sen’s slopes and Best lag days derived

495  from 3-hour scale observations.

City Z Value P Value Sen Slope Best Lag days
Beijing -2.3683 0.0179 -0.000023 3.6
Shanghai 7.8170 5.33e-15 0.000078 2.9
Guangzhou -4.0572 0.00005 -0.000059 2.5
Shenzhen 2.3623 0.0182 0.000028 2.9
Tianjin 3.0763 0.0021 0.000054 3.8
Chongqing -1.9819 0.0475 -0.000037 34
Nanjing 3.8714 0.0001 0.000025 2.6
Suzhou 9.5870 0.0000 0.000146 3.0
Hangzhou -2.7953 0.0052 -0.000041 2.6
Wuhan -2.3090 0.0209 -0.000032 3.0
Xian -2.0535 0.0400 -0.000035 32
Wuxi -4.4134 0.00001 -0.000073 2.9
Ningbo -5.6040 2.09e-08 -0.000114 2.9
Changsha -6.0617 1.35e-09 -0.000033 2.8
Hefei -6.8170 9.30e-12 -0.000183 34
Fuzhou 3.0925 0.0020 0.000086 2.4
Jinan -2.3610 0.0182 -0.000054 3.5
Shenyang 2.3145 0.0206 0.000044 33
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Haerbin

Dalian

Xiamen

Foshan

Nanning

Haikou

Guiyang

Lanzhou
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Huhehaote

Wulumugqi

Changzhou

Dongguan
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Jiaxing

Nantong
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Wenzhou
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Zhongshan

2.0689

-4.8353

-3.2981

2.3862

-2.5295

2.5018

2.6206

-2.7202

-2.7852

-3.7197

2.3429

-8.4626

3.5582

-2.9159

-2.3576

-2.5822

-4.8088

-2.0244

3.4753

2.0603

2.2163

0.0386

1.33e-06

0.0010

0.0170

0.0114

0.0124

0.0088

0.0065

0.0053

0.0002

0.0191

0.0000

0.0004

0.0035

0.0184

0.0098

1.52e-06

0.0429

0.0005

0.0394

0.0267

0.000019

-0.000072

-0.000042

0.000023

-0.000054

0.000115

0.000032

-0.000124

-0.000040

-0.000084

0.000055

-0.000326

0.000072

-0.000088

-0.000031

-0.000045
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499

Supplementary Table 2. Summary of explanatory variables, physical mechanisms,

and variance inflation factors (VIF)

Abbreviat Physical Mechanism &

Category Variable . ] VIF
ion Rationale
Duration required for the thermal
Heat Recovery Time RTh environment to return to baseline  1.11
levels
Physical Resilience ) Maximum intensity of the heatwave
Peak Heat Severity IMAXh 1.40
Metrics event relative to the baseline
Total accumulated thermal stress
Cumulative Heat .
) RPn (area under the curve) during the 1.33
Magnitude
event
Duration for public sentiment to
Emotion Recovery Time RTe 1.11
recover to baseline levels after heat
Maximum intensity of negative
Emotional Resilience . . . . .
Peak Emotional Severity IMAXe emotional expression during the 1.16
Metrics
heatwave
Cumulative Emotional Total accumulated emotional stress L19
RP .
Perturbation ‘ load during the event
Proxy for anthropogenic waste heat
Gross Domestic Product ~ GDP . . .. 294
Socio-economic discharge from economic activities
Status ) Represents metabolic heat release
Population Count PopC o ) 3.26
and human activity intensity
) Background modulation of thermal
Topographic Context Elevation DEM ) ) 2.32
lapse rates and local circulation
Normalized Difference Characterizes vegetation vitality and
) NDVI o 4
Vegetation Index surface energy partitioning
Capture canopy structures and 4.88/
Forest / Grassland / o .
FT/GD/CD evapotranspiration cooling 427/
Vegetation & Land  Cropland "
capacities 4.94
Cover
) Reflects thermal regulation via high
Water Bodies WR ) ) 1.34
specific heat capacity
Barren Land / Built-up Impervious substrates with low 417/
BN/ UP ] )
Areas moisture and high heat storage 4.60
Grid-average Building Signifies vertical wind blockage
) BH ) ) 4.75
Height potential and aerodynamic
Built Environment  Grid-average Building BD Horizontal surface area available for
Density solar heat storage
Floor Area Ratio FAR Metric of development intensity 4.42
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506

Supplementary Table 3. The CMIP6 models used in the analysis. Listed are the
ensemble size of the ALLforcing, NAT-forcing, GHG-forcing, segments of piControl

simulations, SSP1-2.6, SSP2-4.5, andSSP5-8.5 experiments, and the equilibrium

climate sensitivity (ECS) of climate models. The ECS estimatesare from Zelinka et

al.(2020)
piC SSP SS
SSP ECS
MODEL ALL NAT GHG ont 1-2. P5-
2-4.5 (K)
rol 6 8.5

ACCESS-CM2 3 3 3 1 3 3 3 4.72
ACCESS-ESM

3 3 3 1 3 3 3 3.88
1-5
BCC-CSM2-M

3 3 3 1 1 1 1 3.02
R
CanESM5 10 10 10 1 25 25 25 5.64
CESM2 3 3 3 1 3 3 3 5.15
CNRM-CM6-1 6 6 6 1 6 6 6 4.83
FGOALS-g3 3 3 3 1 1 1 1 2.87
GFDL-ESM4 3 3 3 1 1 1 1 2.65
GISS-E2-1-G 5 5 5 1 5 5 5 2.72
IPSL-CM6A-L

6 6 6 1 6 6 6 4.56
R
MIROC6 3 3 3 1 3 3 3 2.60
MRI-ESM2-0 3 3 3 1 1 1 1 3.15
NorESM2-LM 3 3 3 1 1 1 1 2.54
SUM (runs) 54 54 54 13 59 59 59 —
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so07  D. Supplementary Figures

508 B SN — ———
509

510 Supplementary Fig. 1. Spatial coverage of social emotion data.a, Density of
511  geolocated Weibo comments used in the analysis. b, Spatial distribution of calculated
512  sentiment scores.
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Supplementary Fig. 2. Computational framework for quantifying heat and

emotional resilience metrics.
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Supplementary Fig. 3. Spatial patterns of local inequality characterized by the
Local Disparity Index (LDI). a, c, HGI (a) and EGI (¢). b, Heat components (/MAXjx;
RPj, and RT}). d, Emotion components (IMAX.; RP., and RT.). Darker shades indicate
higher disparity.

39



a Resilience Concentration Analysis (Weighted by AREA) Resilience Concentration Analysis (Weighted by AREA)

of EGI ion of HGI K Lmax W1 max
T mathate ity y T maietea oy e ey T meinetea ity
§ § H B
i £ § £
& s K H
H $ ¥ H
) oo 200 Fae
H H H
3 < g S
w (G comtient =60887) . (Gricasmcenr=o1108) - G Casticent =63738) . G cosricrt =019%9
Cumdative Share o AREA Cumustive shrs o R Cumaive Shre o AREA Cumstiv Shrs o A
Resilience Concentration Analysis (Weighted by AREA) Resilience Concentration Analysis (Weighted by AREA)
N Concentration of Rp . Concentration of HRp " Concentration of Rt . Concentration of HRt
T2 ot s Gty T ettt vty
& H &
Sood os Foo
H H H
¢ j H
" (anicoemaent =02977) w (GiCocticnt = 00917 (Gricostcent=03567] (GriCocticiet = 02633)
Cumctve shre o A Cumative Shre of R Cumtv Share o AEA Cumuativ Shre o AEA
b Resilience Concentration Analysis (Weighted by GDP) Resilience Concentration Analysis (Weighted by GDP)
. Concentration of EGI Concentration of HGI , Concentration of 1 max - Concentration of Hi_max
e / 4 T et oy T e oty
g€ g
H s
H §
Foe Foe
5 5
02 (Gini Coefficient = 0.0908 ) 02 Tt Coetncient = 0.1290) 02 ‘Gini Coettcient = 0.3122) 02
Cumulative Share of GO Cumulative Share of GOP Cumulative Share of GOP : Cumulative Share of GOP
Resilience Concentration Analysis (Weighted by GDP) Resilience Concentration Analysis (Weighted by GDP)
" HRp. X Rt
2 £ & i
Soe L See Fos]
§ ¥ : ;
3 ] H 5
2o foe foe HS
3 3 S 8
@ (@iCormant=7975) aal (i commamnt=o1174) “ aal
0 w o W W ) ' @ o o e o o g @ o o e} i @ W o e )
Cumdtive shre o GO Cumtve hore o GO Cumtiveshare o GO Cumdotie hore o GO
c Rosilionce Concantration Analysis (Weighted by popCount) Resilionce Concantration Analysis (Welghted by popCount)
of EGI [ ion of HGI . 1 max W1 max
froserinateny e ey
: $o o
& H g
H z H
) ¥ ]
Foe 2o0 Zo
£ H i
o o o euconcmoS1zl o
Comuauve horeof sopCaunt Cumulte shoe of oot Cumuive shreof ppcount Cmatv shaeof pocoumt
Resilience Concentration Analysis (Weighted by popCount) Resilience Concentration Analysis (Weighted by popCount)
Rt Hee

e o ot ity o Ueof Pttty

Cumuiative Share of HRp.
Cumutie share of Rt

(G Coothcient = 02751 w (G Cooicient = 02424

Gk Coofficient = 01127

(G Coeticient = 0.6385 o

526 oot st s comiate s st s Comshive St cont comise et ot

527

528  Supplementary Fig.4. Lorenz curves quantifying inequality in resilience metrics.
529  a, Population-weighted; b, GDP-weighted; and ¢, Area-weighted. The diagonal line
530 represents perfect equality.
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539  Supplementary Fig. 6. Interannual variability of resilience components across
540  city clusters (2020 - 2024). a - ¢, Heat components: IMAX}, (a), RPy and RT}, (¢). d -
541 f, Emotion components: IMAX.(d), RP. (e¢), and RT. (f). Coloured lines represent
542  individual city clusters; shaded areas denote 95% confidence intervals.
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Supplementary Fig. 7. Interannual variability of resilience metrics across climate
zones (2020 - 2024). a, Heat metrics: HGI, IMAX); RPy, and RTj. b, Emotion metrics:
EGI, IMAX.; RP., and RT.. Coloured lines represent climatic regions (TSC, WTC,
CTC, PC); shaded areas denote 95% confidence intervals.
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Supplementary Fig. 9. Pentagonal scatter plots mapping 357 cities based on
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567  Supplementary Fig.10. Bivariate KDE analysis of HGI and EGI decoupling.
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Supplementary Fig.13. Mann - Kendall trend detection and Sen’ s slope
quantification for twelve representative cities.Bars are colour-coded to indicate the
trend direction: red represents a positive Sen’ s slope (associated with active recovery
or increasing resilience), whereas blue represents a negative Sen’ s slope (indicating
persistent stress accumulation or decreasing resilience). The asterisk (*) denotes
statistical significance at the 0.05 level.
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591  Supplementary Fig.14. Regional heterogeneity in the lag response of emotional
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593  estimated Best Lag (BL) days for each city cluster, derived from Distributed Lag
594  Non-linear Models (DLNM). The height of each bar represents the regional mean,
595  while error bars denote the 95% confidence intervals (95% CI).
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scores across six representative urban agglomerations.
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Supplementary Fig.17. Projected spatiotemporal evolution of HGI under
different SSP - RCP scenarios. The maps visualize the projected mean HGI across
Chinese cities for the near-term (2025 - 2050) and long-term (2050 - 2100) periods. a,
b, Spatial distribution of mean HGI under the SSP1-2.6 scenario for 2025 - 2050 (a)
and 2050 - 2100 (b). ¢, d, Projections under the SSP2-4.5 scenario for the same time
periods. e, f, Projections under the SSP5-8.5 scenario.
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Supplementary Fig.18. Projected spatiotemporal evolution of EGI under
different SSP - RCP scenarios. The maps visualize the projected mean EGI across
Chinese cities for the near-term (2025 - 2050) and long-term (2050 - 2100) periods. a,
b, Spatial distribution of mean EGI under the SSP1-2.6 scenario for 2025 - 2050 (a)
and 2050 - 2100 (b). ¢, d, Projections under the SSP2-4.5 scenario for the same time
periods. e, f, Projections under the SSP5-8.5 scenario.
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626  Supplementary Fig.19. Pearson correlation matrix of urban drivers and

627 resilience metrics.
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