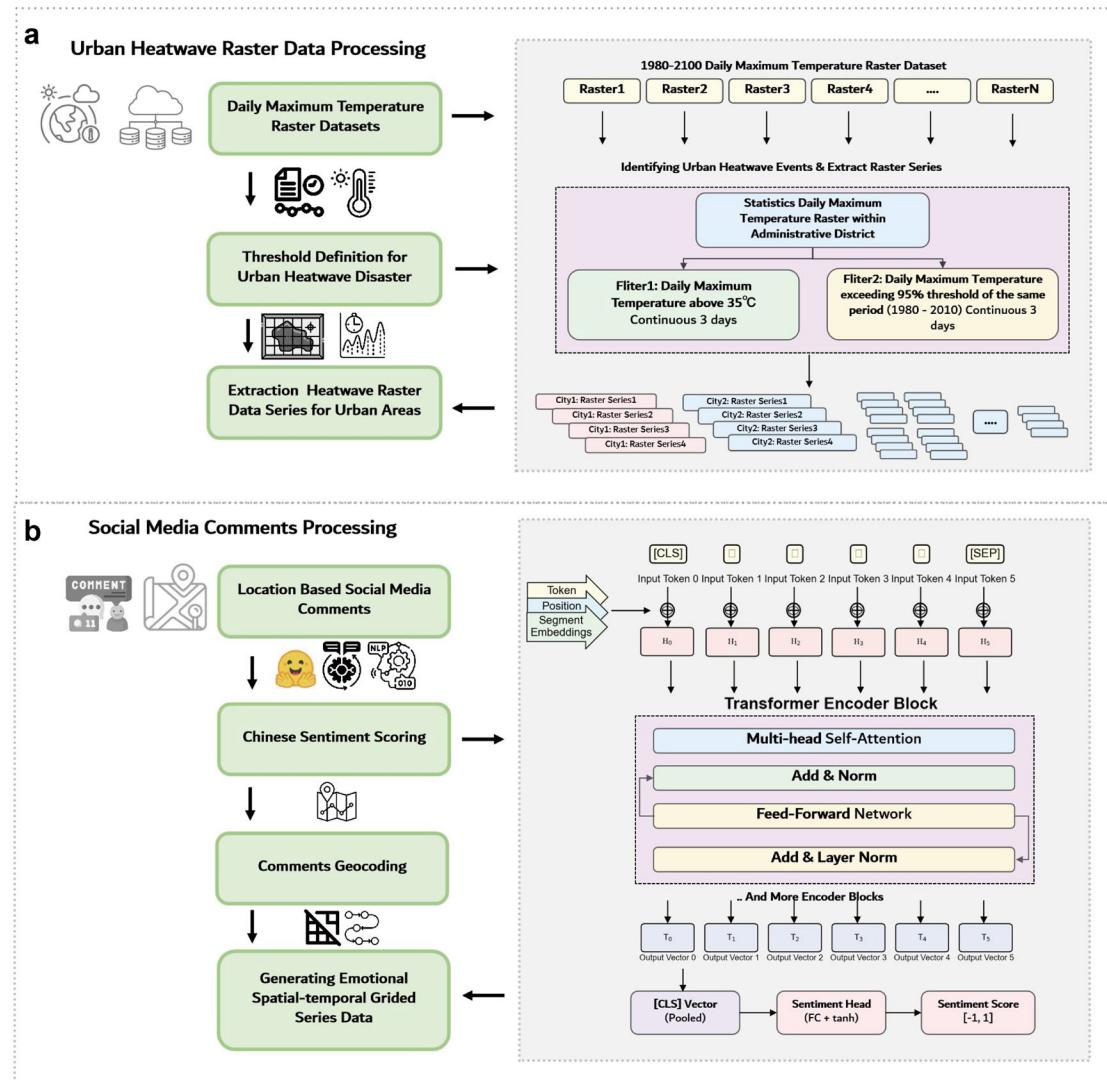


Table of Content

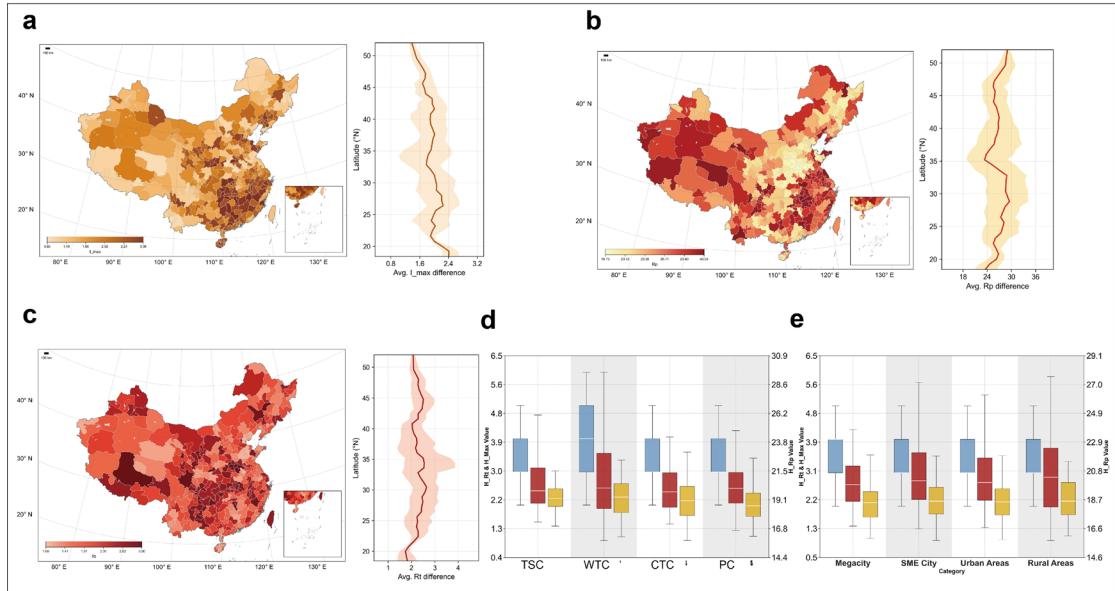
2	A. Extended Figures	3
3	Extended Fig. 1. Data processing framework for identifying urban heatwave events and	
4	quantifying public sentiment.....	3
5	Extended Fig. 2. Spatial heterogeneity and statistical characteristics of urban heatwave attributes	
6	across China	4
7	Extended Fig. 3. Spatial heterogeneity and statistical characteristics of emotion attributes across	
8	China	5
9	Extended Fig. 4. Scaling relationships of heat and emotional indices with socioeconomic	
10	determinants	6
11	Extended Fig. 5. Performance evaluation of the LightGBM model across 19 city clusters.....	7
12	Extended Fig. 6. Taylor diagrams evaluating the performance of 13 CMIP6 global climate models	8
13	Extended Fig. 7. Future projections of decomposed HGI metrics under climate change scenarios.	9
14	Extended Fig. 8. Future projections of decomposed EGI metrics under climate change scenarios	10
15	Extended Fig. 9. Projections of normalized resilience indices across climate scenarios (2025 –	
16	2100)	11
17	Extended Fig. 10. Divergent temporal trajectories of resilience metrics under climate change....	12
18	B. Supplementary Notes.....	13
19	Note S1: Socio-economic stratification and spatial inequity of urban heat resilience	13
20	Note S2: Structural decomposition and component-level analysis of physical and emotional	
21	resilience	17
22	Note S3: Log-Scale Joint Density Analysis of Resilience–Development Relationships	20
23	Note S4: Decoupling of resilience patterns revealed by bivariate density plots	22
24	Note S5: Robustness checks and trend analysis of emotional time series.....	24
25	Note S6: Indicator considerations for the estimation models employed in this study.....	26
26	Note S7: Cross-regional generalizability and model calibration.....	29
27	Note S8: Attribution of driving mechanisms for Best Lag (BL)	30
28	Note S9: Temporal trajectories and component-level drivers of physical and emotional resilience	
29	(2025–2100).....	31
30	C. Supplementary Tables.....	33
31	Supplementary Table 1	33
32	Supplementary Table 2	35
33	Supplementary Table 3	36
34	D. Supplementary Figures	37
35	Supplementary Fig. 1. Spatial coverage of social emotion data.....	37
36	Supplementary Fig. 2. Computational framework for quantifying heat and emotional resilience	
37	metrics	38
38	Supplementary Fig. 3. Spatial patterns of local inequality characterized by the Local Disparity	
39	Index (LDI)	39
40	Supplementary Fig.4. Lorenz curves quantifying inequality in resilience metrics	40
41	Supplementary Fig. 5. Geographical distribution of the 19 urban agglomerations.	41
42	Supplementary Fig. 6. Interannual variability of resilience components across city clusters	
43	(2020 – 2024).....	42

44	Supplementary Fig. 7. Interannual variability of resilience metrics across climate zones (2020 – 2024)	43
45		
46	Supplementary Fig. 8. Interannual variability of resilience metrics across urbanization levels (2020 – 2024)	44
47		
48	Supplementary Fig. 9. Pentagonal scatter plots mapping 357 cities based on population weighting	45
49		
50	Supplementary Fig.10. Bivariate KDE analysis of HGI and EGI decoupling.	46
51		
52	Supplementary Fig.11. Bivariate KDE analysis of HGI and EGI decoupling across climatic zones	47
53		
54	Supplementary Fig.12. Bivariate KDE analysis of HGI and EGI decoupling across city scale and urban contexts	48
55		
56	Supplementary Fig.13. Mann – Kendall trend detection and Sen’ s slope quantification for twelve representative cities	49
57		
58	Supplementary Fig.14. Regional heterogeneity in the lag response of emotional sentiment across 19 major urban agglomerations.....	50
59		
60	Supplementary Fig.15. Daily time series of maximum temperature and emotion scores across six representative urban agglomerations.....	51
61		
62	Supplementary Fig.16. Global importance and local effect of each feature in the ensemble learning models for BL	52
63		
64	Supplementary Fig.17. Projected spatiotemporal evolution of HGI under different SSP – RCP scenarios.....	53
65		
66	Supplementary Fig.18. Projected spatiotemporal evolution of EGI under different SSP – RCP scenarios.....	54
67		
68	Supplementary Fig.19. Pearson correlation matrix of urban drivers and resilience metrics	55

A. Extended Figures



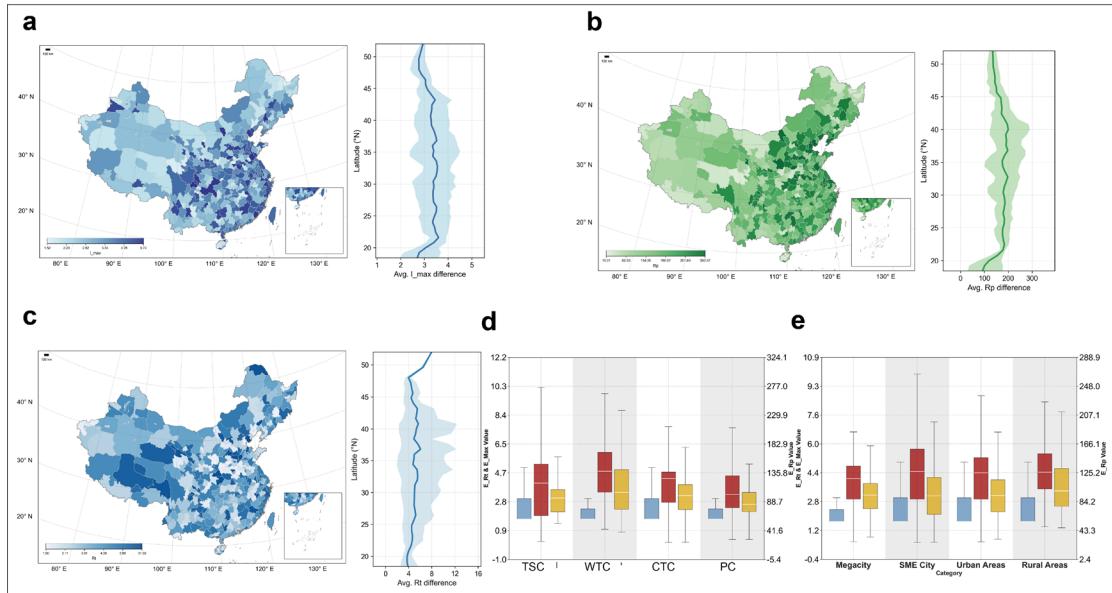
72 **Extended Fig. 1. Data processing framework for identifying urban heatwave
73 events and quantifying public sentiment.**



75

76

77 **Extended Fig. 2. Spatial heterogeneity and statistical characteristics of urban**
 78 **heatwave attributes across China.** a–c, Spatial distribution of $IMAX_h$; RP_h , and RT_h .
 79 The vertical plots to the right of each map display the latitudinal zonal means (solid lines)
 80 with shaded areas representing the standard deviation. d, Statistical distribution
 81 of heat metrics categorized by degree of urbanization: megacity cores, SME city,
 82 other urban areas, and rural areas. e, Statistical distribution categorized by climatic
 83 regions: TSC, WTC, CTC, and PC.

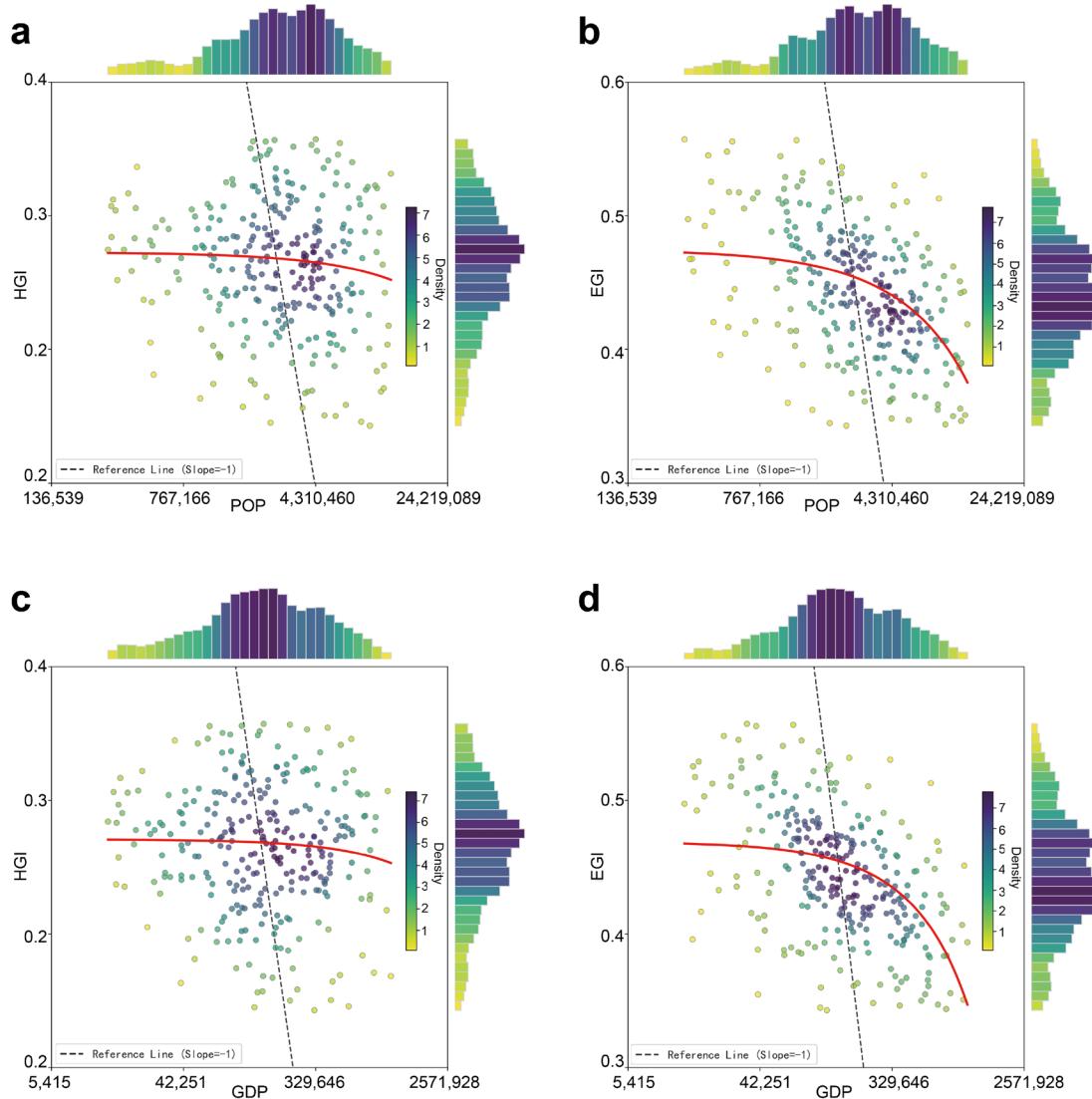


84

85

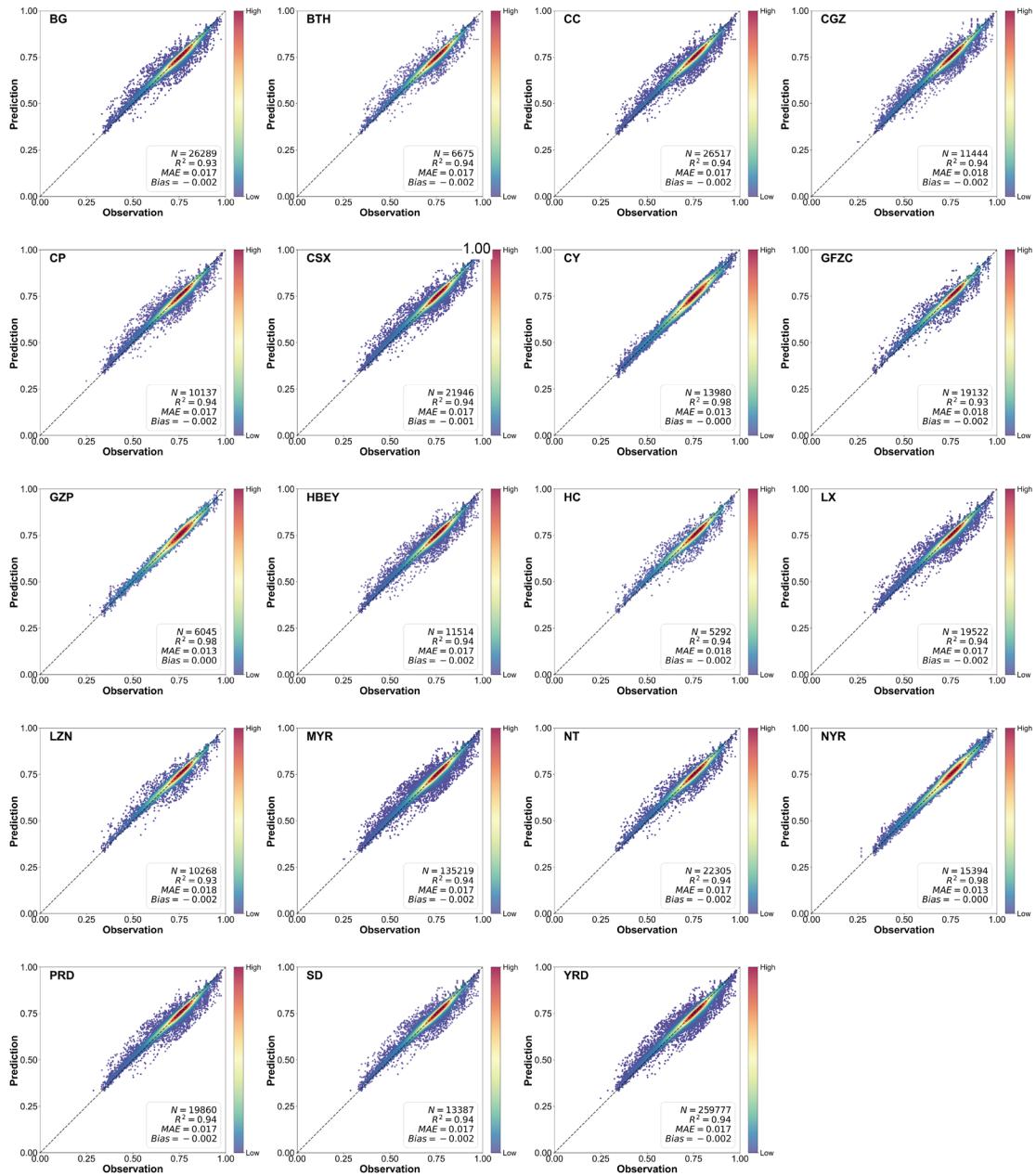
86 **Extended Fig. 3. Spatial heterogeneity and statistical characteristics of emotion**
 87 **attributes across China.** a–c, Spatial distribution of $IMAX_e$, RP_e , and RT_e . The
 88 vertical plots to the right of each map display the latitudinal zonal means (solid lines)
 89 with shaded areas representing the standard deviation. d, Statistical distribution of
 90 heat metrics categorized by degree of urbanization: megacity cores, SME city, other
 91 urban areas, and rural areas. e, Statistical distribution categorized by climatic regions:
 92 TSC, WTC, CTC, and PC.

93



94
95

96 **Extended Fig. 4. Scaling relationships of heat and emotional indices with**
 97 **socioeconomic determinants.** Joint density plots of HGI (a, b) and EGI (c, d) against
 98 GDP and population. All axes are log-scaled. Colour gradients represent kernel
 99 density estimation (KDE), red curves show LOESS regression trends, and dashed
 100 lines indicate a reference slope of -1 . Marginal histograms display univariate
 101 distributions.
 102

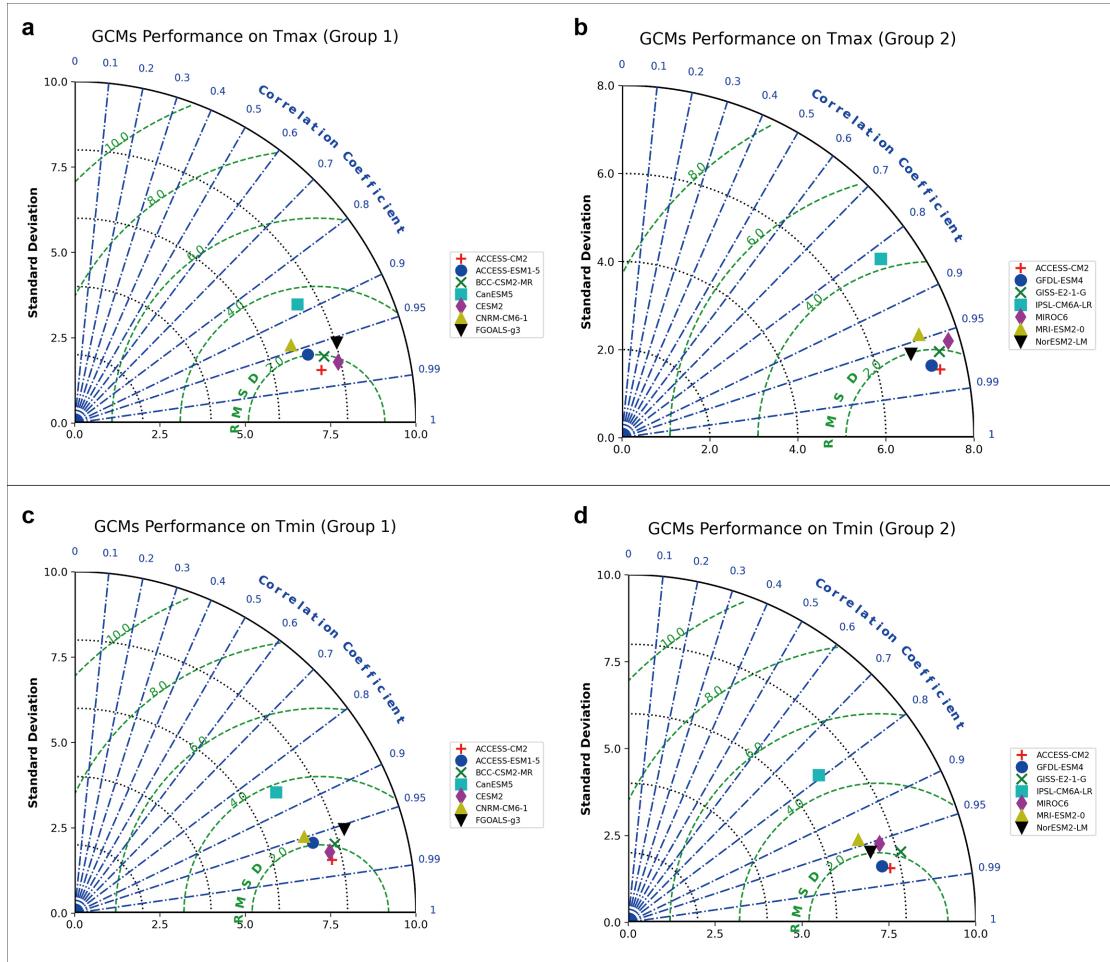


103

104

105 **Extended Fig. 5. Performance evaluation of the LightGBM model across 19 city**
106 **clusters.**

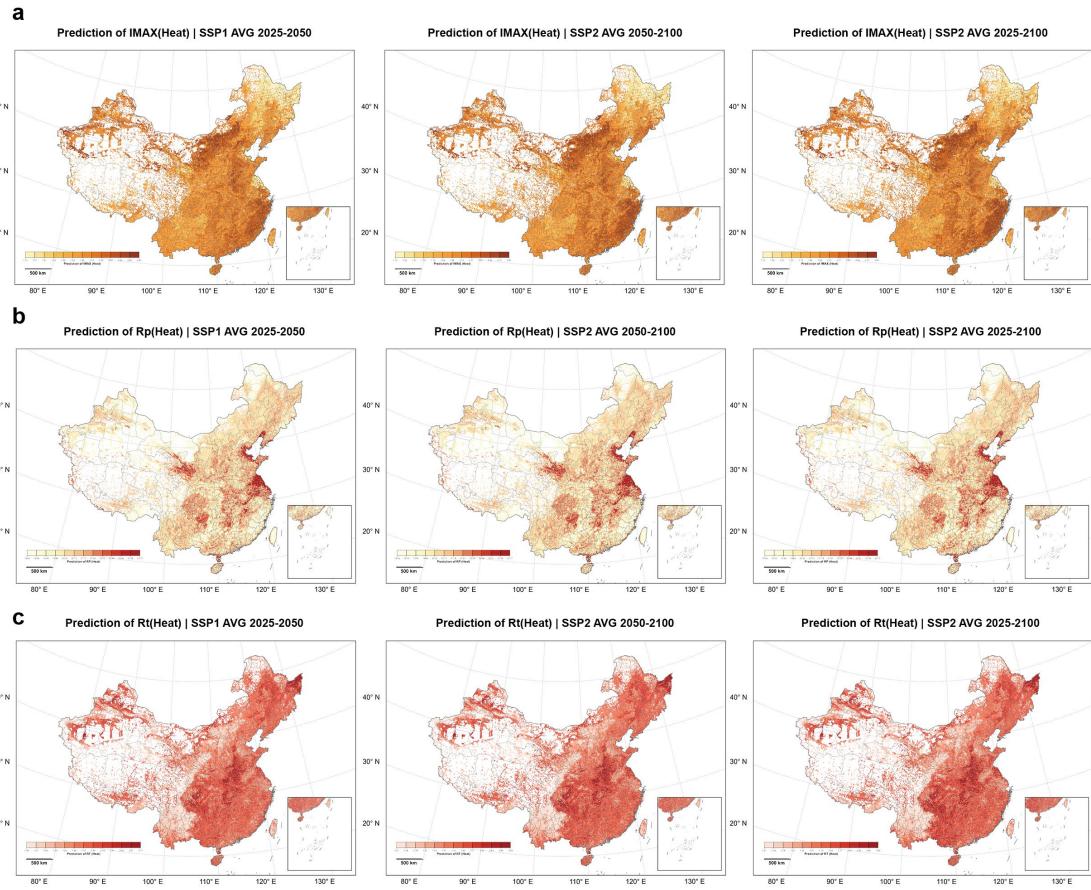
107



108

109

110 **Extended Fig. 6. Taylor diagrams evaluating the performance of 13 CMIP6**
 111 **global climate models.** The diagrams assess model fidelity in simulating daily
 112 maximum temperature (T_{max} ; a, b) and minimum temperature (T_{min} ; c, d). Models are
 113 divided into two groups for visual clarity. In each plot, the azimuthal angle represents
 114 the correlation coefficient (CC), the radial distance indicates the standard deviation
 115 (SD), and the green dashed contours denote the centred root-mean-square difference
 116 (RMSD).
 117



118
119

120 **Extended Fig. 7. Future projections of decomposed HGI metrics under climate**
 121 **change scenarios.** Maps illustrate the spatial distribution of the 75-year mean values

122 (2025 – 2100) for Heat Peak Severity ($IMAX_h$; a), Heat Cumulative Perturbation

123 Magnitude (RP_h ; b), and Heat Recovery Time (Rt_h ; c). Columns correspond to

124 SSP1-2.6 (left), SSP2-4.5 (middle), and SSP5-8.5 (right) scenarios.

125

126

127

128

129

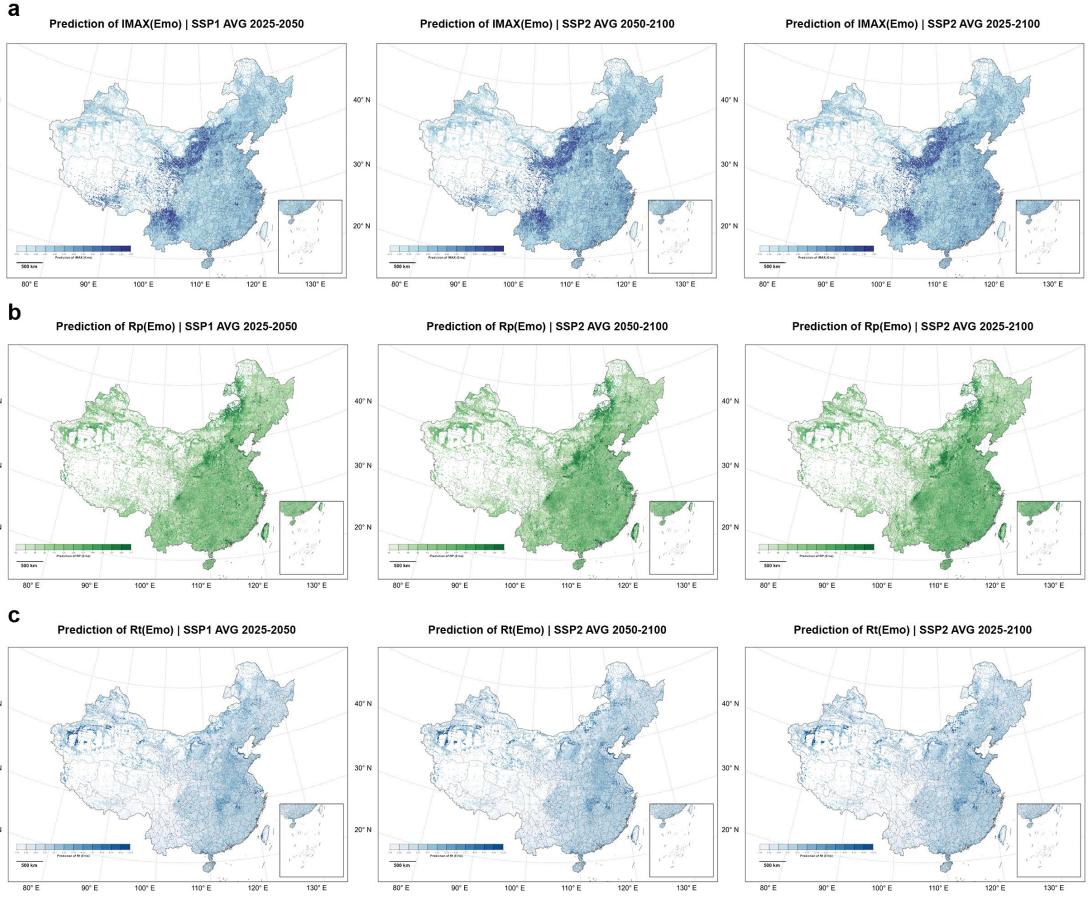
130

131

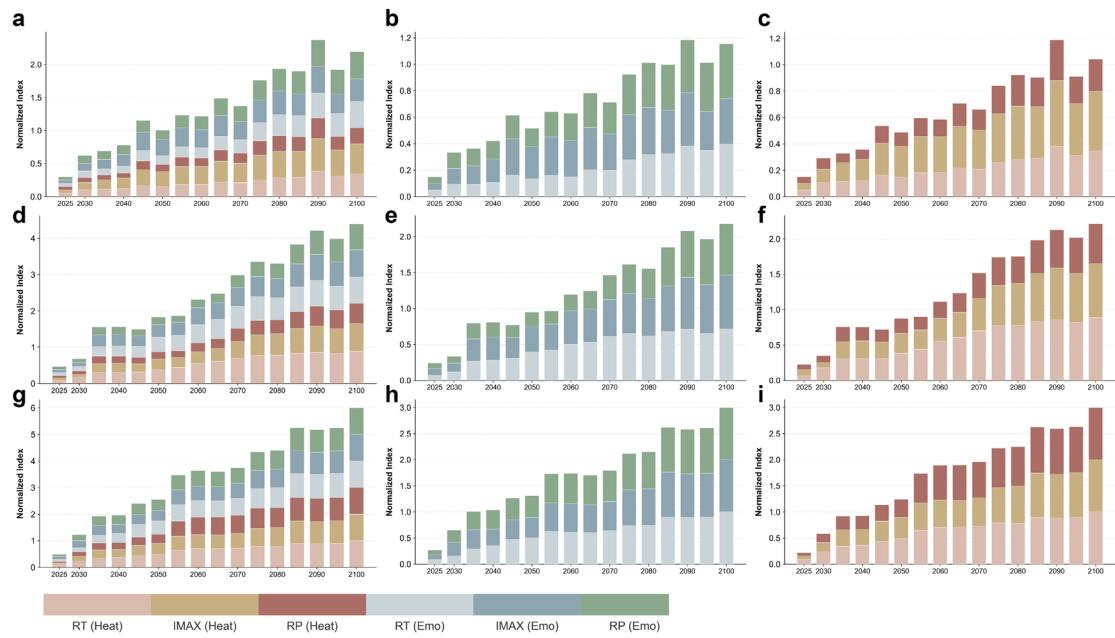
132

133

134



Extended Fig. 8. Future projections of decomposed EGI metrics under climate change scenarios. Maps illustrate the spatial distribution of the 75-year mean values (2025 – 2100) for Emotion Peak Severity ($IMAX_e$; a – c), Emotion Cumulative Perturbation Magnitude (RP_e ; d – f), and Emotion Recovery Time (RT_e ; g – i). Columns correspond to SSP1-2.6 (left), SSP2-4.5 (middle), and SSP5-8.5 (right) scenarios.

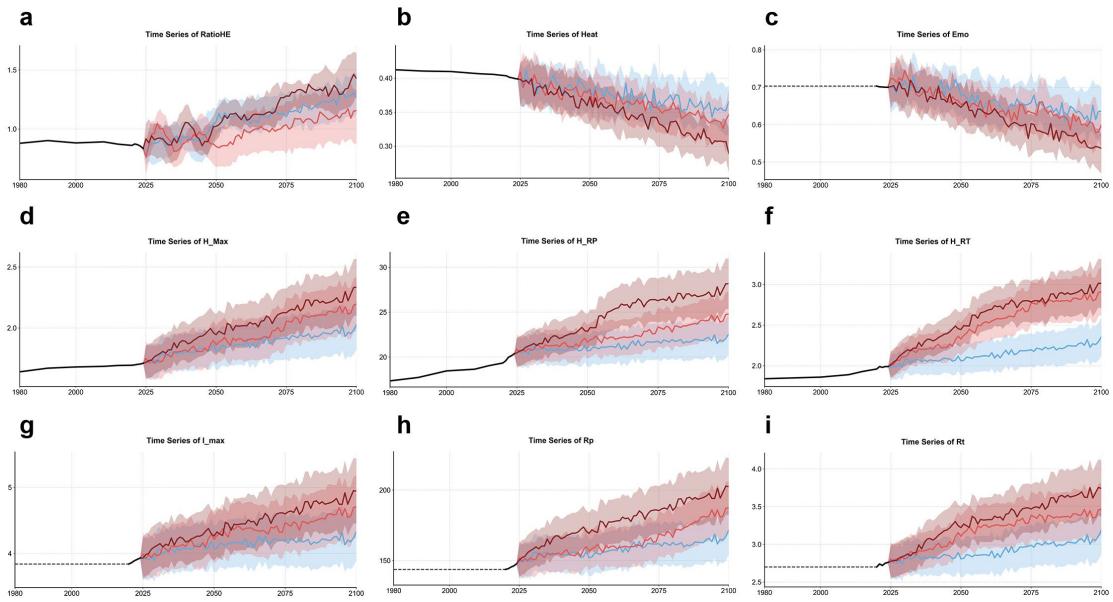


135

136

137 **Extended Fig. 9. Projections of normalized resilience indices across climate**
 138 **scenarios (2025 – 2100).** Plots display the stacked evolution of resilience components
 139 under SSP1-2.6 (a – c), SSP2-4.5 (d – f), and SSP5-8.5 (g – i). Panels represent the
 140 specific contributions of heat metrics (b, e, h: $IMAX_h$; RP_h , and RT_h) and emotion
 141 metrics (c, f, i: $IMAX_e$; RP_e , and RT_e), while a, d, and h show the comprehensive
 142 aggregation of all six indicators. The y-axis represents the normalized index value.

143



144

145

146 **Extended Fig. 10. Divergent temporal trajectories of resilience metrics under**
 147 **climate change.** Time series reconstructions (1980 – 2100) derived from 13 CMIP6
 148 models. a, R_{HE}. b, c, HGI (b) and EGI (c). d – f, $IMAX_h$; RP_h , and RT_h (f). g – i,
 149 $IMAX_e$; RP_e , and RT_e . Black lines denote historical baselines (1980 – 2014); coloured
 150 lines represent SSP1-2.6 (blue), SSP2-4.5 (green) and SSP5-8.5 (red); shaded areas
 151 indicate 95% uncertainty bandwidths.

152

153 **B. Supplementary Notes**

154 **Note S1: Socio-economic stratification and spatial inequity of urban heat
155 resilience**

156 The Lorenz curves and Gini coefficients collectively reveal that the distribution of
157 resilience components is consistent yet diagnostically distinct across economic,
158 demographic, and spatial weighting contexts (Supplementary Fig. 4). Under GDP
159 weighting, the Emotional Recovery Time (RT_e) exhibits the strongest inequality (Gini
160 = 0.64). Its curve remains significantly below the line of equality for most of the
161 range before rising steeply at the tail, suggesting that a minority of high-GDP units
162 contribute a disproportionate share of the RT_e burden. In contrast, shock and
163 cumulative load indicators show moderate concentration ($IMAX_e$ = 0.31, RP_e = 0.29),
164 whereas physical metrics like RT_h (0.22) and $IMAX_h$ (0.20) are less concentrated.
165 Notably, the concentration of aggregated indices is significantly compressed by the
166 "aggregation effect," with HGI at 0.12 and EGI recording the lowest value (0.09).
167 This proximity to the line of equality implies that composite emotional resilience is
168 distributed nearly broadly in economic terms.

169 Weighting by population maintains the overall ranking, indicating that concentration
170 is not driven solely by economic scale. RT_e remains the highest (0.63), confirming its
171 high concentration even within the context of social equity. While $IMAX_e$ (0.31) and
172 RP_e (0.27) maintain moderate deviation, RT_h rises to 0.24, suggesting a stronger
173 demographic clustering of recovery rhythms. Meanwhile, RP_h drops to 0.11, and the

174 composite indices remain low (HGI = 0.13, EGI = 0.08), indicating that inequality in
175 comprehensive resilience diminishes significantly under demographic weighting.
176 When weighted by area, spatial agglomeration features become more explicit.
177 Although RT_e dips slightly, it remains high (0.59). The most critical shift occurs in
178 shock intensity ($IMAX_e$), which rises to 0.37—surpassing its levels under GDP and
179 population weighting (~0.31)—pointing to a distinct "spatially clustered" risk profile
180 for extreme shocks. RP_e (0.29) and RT_h (0.26) also show slight increases. Conversely,
181 RP_h is lowest under area weighting (0.09), indicating the weakest spatial clustering.
182 Overall, the three weighting schemes confirm a robust conclusion: RT_e is consistently
183 the most unequal component (0.59–0.64), EGI is consistently the most equal (0.08–
184 0.09), whereas $IMAX_e$ is most sensitive to spatial weighting, reflecting its stronger
185 geographic agglomeration.

186 The Local Disparity Index (LDI) results reveal that local inequality is characterized
187 by distinct regional differentiation and transitional zones (Supplementary Fig. 3). In
188 the physical dimension, high values of $IMAX_h$ tend to form patchy hotspots in the arid
189 Northwest and inland basins, with local abrupt changes appearing at several eastern
190 coastal endpoints, manifesting as a "shock intensity fracture" relative to surrounding
191 units. By contrast, medium-to-high values of RT_h are more commonly distributed in
192 bands or sheets across the Southwest mountain-basin transition zone, extending
193 toward the Central-North China climatic transition belt. This suggests that recovery
194 rhythm differences unfold continuously along regional gradients rather than being
195 driven by isolated cities. RP_h is generally more fragmented with fewer high values,

196 indicating weaker local disparity. At the composite level, the LDI for HGI is
197 noticeably smoother, with high values concentrated in transitional zones where
198 topographic and developmental gradients overlap. The emotional dimension presents
199 a "multi-centered, weakly continuous" pattern: while generally low, $IMAX_e$ still
200 exhibits identifiable high-value patches in the Northeast and along the eastern
201 urbanization corridor. Disparities in RT_e and RP_e appear more frequently at urban
202 agglomeration edges, rural-urban interfaces, and around inland nodes, manifesting as
203 scattered hotspots against a weak gradient background. Ultimately, EGI is the
204 smoothest, indicating that peak-like local differences are significantly damped after
205 aggregation.

206 These regional variations can be attributed to distinct spatial control mechanisms
207 governing physical versus social processes. Hotspots and gradients in physical metrics
208 are dominated by climatic and topographic contexts: in the arid Northwest and basin
209 environments, low-moisture substrates and strong sensible heat accumulation amplify
210 peak shocks, creating abrupt mutations between neighborhoods. Similarly, the banded
211 disparities in the Southwest basins align with mechanisms where recovery is
212 constrained by ventilation efficiency and heat dissipation difficulties in high-humidity
213 backgrounds, leading recovery times to follow continuous gradients along transition
214 zones. In comparison, inequality on the emotional side is more readily triggered by
215 abrupt shifts within the urban system—specifically in population exposure,
216 development levels, public service accessibility, and social support
217 networks—resulting in discrete "anomaly patches" at urban fringes and rural-urban

218 transitions. Methodologically, the composite indices (HGI, EGI) aggregate shock,
219 cumulative load, and recovery processes, thereby attenuating the peak disparities of
220 single process variables and rendering spatial patterns more continuous. Thus, the
221 dual characteristic of "physical gradients versus social fractures" revealed by the LDI
222 provides direct evidence for tailoring governance priorities and adaptation strategies
223 across different regions.

224

225 **Note S2: Structural decomposition and component-level analysis of physical and**
226 **emotional resilience**

227 To dissect the structural underpinnings of HGI and elucidate adaptive mechanisms
228 obscured by aggregate analysis, we decomposed the metric into $IMAX_h$, RT_h , and RP_h ,
229 employing multi-dimensional diagnostics across climate zones and spatial mapping
230 (Extended Fig.1; Supplementary Fig. 6-7). Statistical analysis revealed a core
231 resistance-recovery trade-off across environmental gradients. Constrained by inherent
232 humidity barriers and latent heat retention, TSC regions exhibited a typical chronic
233 exposure mode where RT_h was significantly prolonged despite $IMAX_h$ being
234 moderated by maritime influences. Conversely, CTC and PC regions displayed
235 characteristics of acute shock, with resilience deficits stemming primarily from
236 extremely high $IMAX_h$ reflecting a lack of load-handling capacity for episodic
237 heatwaves. Along the urban-rural gradient, megacities leveraged an infrastructure
238 bonus to effectively blunt immediate heat peaks resulting in low $IMAX_h$, yet the
239 immense thermal inertia of high-density built environments incurred a significant heat
240 island penalty causing RT_h to lag far behind rural areas that lacked defense but
241 possessed superior natural ventilation. This mechanistic trade-off projected a distinct
242 pattern of geographical decoupling. $IMAX_h$ followed a pronounced North-High
243 South-Low gradient, with inland basins and arid Northwest regions forming deep red
244 shock-susceptible zones. Mirroring this, RT_h exhibited a South-High North-Low
245 distribution where the Yangtze River Basin and South China coast constituted
246 persistence-susceptible zones due to the dual lock-in effect of high humidity and

247 urban heat islands, while high RP_h bands precisely delineated climate transition zones.
248 Collectively, these findings confirmed that physical resilience was not uniformly
249 distributed but represented a dynamic spatial separation between resistance capacity
250 and recovery efficiency across climatic and urbanization contexts.

251 The structural decomposition of EGI further confirmed the existence of a prosperity
252 penalty at the micro-mechanistic level, revealing the non-linear breakdown of
253 psychosocial adaptation under extreme climate (Extended Fig.2; Supplementary Fig.
254 6-8). Unlike the dynamic balance seen in physical resilience, the three components of
255 emotional resilience $IMAX_e$, RT_e , and RP_e exhibited a synchronous double deficit
256 effect across the urban-rural gradient. Megacities not only encountered the highest
257 $IMAX_e$ indicating that negative emotional outbursts among high-density populations
258 were more intense and prone to breaching psychosocial thresholds, but also recorded
259 the longest RT_e . This extended recovery reflected how rapid social metabolism and
260 hyper-competitive environments severely compressed the psychological repair
261 window, causing negative emotions to linger long after heatwaves subsided. Climatic
262 heterogeneity further modulated this response, with TSC regions again emerging as
263 the core of emotional vulnerability. Physiological discomfort driven by humid heat
264 and continuous nocturnal exposure created a potent emotional hysteresis effect,
265 elevating RT_e significantly above arid or cold zones. Spatially, this mechanism
266 projected a characteristic Core-Periphery dual structure. In sharp contrast to the
267 physically robust eastern coastal clusters, dense agglomerations like YRD, PRD, and
268 BTH appeared as extensive low-value emotional heat islands within the EGI map,

269 characterized by high-intensity emotional oscillation or high RP_e and sustained
270 suppression or high RT_e . Conversely, the ecological southwest periphery and less
271 developed small-to-medium cities retained higher emotional elasticity, serving as
272 green sanctuaries for psychological adaptation. This significant spatial mismatch
273 between physical buffering and psychological experience profoundly underscored that
274 technical adaptation alone could not neutralize the psychosocial impact of climate
275 change, suggesting that high-density urban morphology was itself becoming a
276 structural stressor that eroded human emotional resilience.

277

278 **Note S3: Log-Scale Joint Density Analysis of Resilience–Development**
279 **Relationships**

280 To quantify the nonlinear links between resilience indicators and development drivers
281 across socio-economic gradients spanning multiple orders of magnitude, this study
282 constructed log-scale joint density plots (Extended Fig.5). The framework combined
283 bivariate kernel density estimation with marginal histograms, and applied base-10 log
284 transforms to the highly skewed population and GDP data to correct their heavy-tailed
285 distributions. This treatment reduced the leverage of extreme outliers from
286 mega-cities on the inferred patterns and, with a nonlinear smoothed regression overlay,
287 robustly revealed the underlying structure of how urban resilience varied with
288 development scale in log space.

289 The joint-density diagnostics showed that physical and emotional resilience
290 responded to city size in fundamentally different ways. Physical resilience (HGI)
291 exhibited only weak, relatively flat associations with log-transformed population and
292 GDP, with the high-density core concentrated around mid-range values, indicating
293 scale neutrality in physical heat adaptation—large cities did not display a clear
294 per-capita defensive advantage despite resource agglomeration. By contrast,
295 emotional resilience (EGI) showed a pronounced, monotonic negative relationship,
296 with the fitted curve declining steeply as population density and economic mass
297 increased. This pattern pointed to a latent prosperity penalty, or density penalty, in
298 which high-density environments produced by rapid urbanisation concentrated
299 material wealth while materially eroding psychological buffering capacity against

300 climate stress, leaving affluent metropolitan areas as hotspots of emotional
301 vulnerability.

302

303 **Note S4: Decoupling of resilience patterns revealed by bivariate density plots**

304 Kernel density scatter plots derived from global urban annual means (2020–2024)
305 reveal that HGI and EGI exhibit only a weak negative correlation across the full
306 sample—statistically significant yet negligible in effect size (Extended Fig.10-11).
307 With regression slopes and explanatory power approaching zero, this pattern indicates
308 that these two resilience dimensions do not form a stable linear coupling at the annual
309 scale; rather, their relationship is better characterized by structural decoupling and a
310 multi-modal distribution. The density peak centers on a region where HGI is slightly
311 positive and EGI hovers near zero. Furthermore, quadrant decomposition shows that
312 approximately two-thirds of the city-year units record positive HGI values; notably, a
313 substantial portion of these coincide with negative EGI, suggesting that improvements
314 on the physical side do not necessarily translate into synchronous emotional recovery.

315 Stratification by climate zone isolates the Arid and Semi-arid regions as having the
316 most pronounced negative correlation, whereas associations in WTC, TSC, and CTC
317 zones remain generally weaker. Structural differences also emerge across quadrants:
318 the CTC zone exhibits the highest proportion of dual-positive outcomes (positive HGI
319 and EGI), whereas WTC regions tend to cluster in the combination of positive HGI
320 but negative EGI. This implies that the climatic background systematically modulates
321 the synchronization—or desynchronization—between physical and emotional
322 resilience.

323 Further grouping by urbanization level reveals steeper negative slopes in both
324 megacities and rural areas. In megacities specifically, distinct emotional divergence
325 occurs even under conditions of positive HGI, reflecting that high-intensity physical
326 adaptation fails to mitigate psychosocial stress and may instead reinforce adaptive
327 disparities. Conversely, small and medium-sized cities show near-zero or weak
328 positive correlations. Collectively, these findings suggest that the HGI–EGI
329 relationship is co-modulated by climate zones and urbanization processes; thus, it is
330 more accurately interpreted as evidence of stratified decoupling rather than
331 synchronous evolution summarized by a single correlation coefficient.

332

333 **Note S5: Robustness checks and trend analysis of emotional time series**

334 To diagnose the stability of emotional shifts across varying temporal aggregation
335 scales, we employed the Mann–Kendall test to detect monotonic trends within
336 city-level emotional time series, quantifying their magnitude and direction via Sen's
337 slope estimator (Supplementary Table 1; Supplementary Fig.12). The screening
338 process yielded 1,013 optimal series, all satisfying the 95% significance threshold.
339 With p-values ranging from 0 to 0.0498 (median: 0.0185; interquartile range: 0.0065–
340 0.0328), these results confirm that the observed trends are not artifacts of stochastic
341 fluctuation. Directionally, the trends exhibit a near-equilibrium at the national scale:
342 513 series (50.6%) show an upward trajectory, while 500 (49.4%) exhibit a decline.
343 This split suggests that emotional evolution is not characterized by a uniform,
344 unidirectional drift across the country. Temporal resolution within the "optimal
345 series" displays a distinct hierarchy, with the 3-hour scale dominating (41.6%),
346 followed by 6-hour (21.1%), 24-hour (20.1%), and 12-hour (17.2%) intervals;
347 consequently, 3-hour emotional data were selected for constructing resilience indices.
348 While the overall magnitude of Sen's slopes is modest, the distribution range
349 broadens significantly with coarser temporal aggregation. Extreme values in 24-hour
350 series reach from −0.0222 to 0.0196, indicating that while temporal smoothing
351 enhances the detection of long-term drifts, it may simultaneously amplify the
352 influence of persistent local deviations on trend estimation.

353 Despite the balanced dichotomy nationwide, a sharp adaptive divergence emerges
354 within densely populated metropolitan areas. Traditional core cities—typified by
355 Beijing ($\text{Sen} \approx -3.3 \times 10^{-5}$), Guangzhou ($\text{Sen} \approx -3.4 \times 10^{-4}$), and Chongqing—exhibit
356 a significant erosion of resilience, reflecting the cumulative toll of high-density heat
357 stress and fast-paced social burdens. Conversely, Shenzhen ($\text{Sen} \approx +2.7 \times 10^{-4}$) and
358 Shanghai ($\text{Sen} \approx +9.0 \times 10^{-5}$) display an encouraging positive trajectory, potentially
359 attributable to superior coastal ventilation or more effective adaptive governance,
360 such as "park city" initiatives. Notably, the most extreme rates of change are confined
361 to peripheral zones. Resource-depleted or arid cities like Shuangyashan ($\text{Sen} =$
362 -0.0223) and Hami ($\text{Sen} = -0.0094$) constitute "vulnerability traps" requiring urgent
363 intervention, highlighting the compound shock of economic contraction and extreme
364 climate exposure on socio-psychological capital. In contrast, high-ecological-function
365 areas such as Ledong ($\text{Sen} = +0.0197$) and Shannan ($\text{Sen} = +0.0109$) serve as "oases"
366 of rapidly improving resilience, leveraging their superior natural baselines. This
367 differentiation underscores that the long-term trajectories of urban emotional
368 resilience are not random walks; rather, they are heavily constrained by path
369 dependencies rooted in urban function, economic transition pathways, and the stock
370 of ecological capital.

371

372 **Note S6: Indicator considerations for the estimation models employed in this**
373 **study**

374 To attribute the driving mechanisms underlying urban resilience and its spatial
375 heterogeneity this study developed two categories of non-linear estimation models
376 specifically designed for the Physical Resilience Index (HGI) and the Emotional
377 Resilience Index (EGI). Both modeling frameworks are anchored in a standardized set
378 of explanatory variables capable of robustly characterizing urban structural conditions
379 and morphological variations at a national scale. This comprehensive feature set
380 encompasses socio-economic status represented by Gross Domestic Product (GDP)
381 and Population Count (PopC) topographic context via Elevation (DEM) vegetation
382 and land cover composition including the Normalized Difference Vegetation Index
383 (NDVI) alongside fractional cover indicators for Forest (FT) Barren land (BN)
384 Grassland (GD) Built-up areas (UP) Water bodies (WR) and Cropland (CD) as well
385 as built environment morphology metrics such as Building Height (BH) Building
386 Density (BD) and Floor Area Ratio (FAR) thereby capturing the geographic
387 constraints surface composition and spatial form differences defining distinct urban
388 environments in a unified framework (Supplementary Table 2).

389 The configuration of these variables adheres to the critical physical pathways
390 governing thermal environment formation. Topography and land surface
391 characteristics constitute the physical baseline where Elevation (DEM) captures the
392 background modulation of thermal lapse rates and local circulation. Regarding surface
393 energy partitioning the Normalized Difference Vegetation Index (NDVI) alongside

394 specific land use categories characterizes variances in canopy structure and
395 evapotranspiration cooling while Water bodies (WR) reflect regulation via high
396 specific heat capacity and Built-up areas (UP) represent impervious substrates
397 characterized by low moisture availability and high heat storage potential. Beyond
398 surface characteristics the three-dimensional morphological structure reshapes the
399 local thermal environment by altering aerodynamic roughness and radiative transfer
400 paths. Grid-average Building Height (BH) and Building Density (BD) signify vertical
401 wind blockage potential and horizontal heat storage surface area respectively while
402 Floor Area Ratio (FAR) serves as a comprehensive metric of development intensity
403 directly associated with longwave radiation trapping efficiency. Finally Population
404 Count (PopC) and Gross Domestic Product (GDP) were employed as critical proxies
405 for anthropogenic heat emissions representing the intensity of metabolic heat release
406 and waste heat discharge associated with high-energy economic activities.

407 As illustrated by the correlation heatmap (Extended Data Fig. 5), the pairwise Pearson
408 correlation coefficients (r) among the selected independent variables were
409 predominantly low. Specifically, the absolute correlation values ($|r|$) for all variable
410 pairs remained well below the strict threshold of 0.8, signifying a lack of strong linear
411 dependence across the morphological, climatic, and socio-economic predictors.
412 Complementing this diagnostic, the Variance Inflation Factor (VIF) analysis offered a
413 quantitative evaluation of multicollinearity severity. As detailed in Supplementary
414 Table 2, the VIF values for all input features consistently fell beneath the conservative
415 threshold of 5. Collectively, these findings confirm the satisfactory orthogonality of

416 the feature set, validating its suitability for attributing the drivers of urban resilience
417 without significant interference.

418

419 **Note S7: Cross-regional generalizability and model calibration**

420 We utilized "city-year" observational units from 2020–2024 to validate the model,
421 partitioning the dataset into 80% training and 20% validation subsets. Kernel density
422 scatter plots were generated for 19 distinct city clusters to visualize the agreement
423 between predicted and actual values; in these plots, color gradients represent sample
424 density, while linear regression fits are superimposed on the 1:1 identity line to
425 characterize directional deviation (Extended Fig. 5). Overall, the point clouds adhere
426 closely to the 1:1 line with high-density regions clustering along the diagonal,
427 indicating robust model calibration across the full value spectrum. Validation metrics
428 for the full sample (N=619,996) yield an R^2 of 0.95, a mean absolute error (MAE) of
429 0.014, and a bias of -0.002, reflecting minimal error magnitudes and negligible
430 systematic bias. Importantly, these performance patterns remain consistent across
431 disaggregated city clusters, demonstrating that LightGBM maintains stable
432 generalizability in cross-regional contexts. This consistency underscores the
433 algorithm's capacity to precisely capture the localized emotional baselines and
434 fluctuation dynamics intrinsic to diverse geographical units.

435

436 **Note S8: Attribution of driving mechanisms for Best Lag (BL)**

437 SHAP-based attribution analysis identified heat hazard characteristics as the
438 predominant drivers determining the Best Lag (BL) for public emotional response,
439 significantly outweighing other explanatory categories (Supplementary Fig. 15).
440 Specifically, GDP made the largest contribution at 16.52%, followed sequentially by
441 RP_h (13.11%), BL (12.86%), $IMAX_h$ (12.08%), and RT_h (11.93%). In contrast,
442 topographic and ecological contexts represented by DEM (7.33%) and NDVI (5.19%)
443 provided secondary yet stable boundary constraints, while land cover and
444 morphological variables generally functioned as subtle regulators of local
445 microclimatic conditions.

446 Dependence analysis further elucidated the distinct operational modes of these key
447 factors. GDP exhibited a robust non-linear attenuation pattern where its influence on
448 the lag structure diminished rapidly within lower GDP ranges and plateaued at higher
449 levels, indicating a diminishing marginal effect of economic capacity on optimizing
450 lag configuration. Conversely, RP_h displayed a fluctuating response characterized by
451 multiple inflection points, suggesting that cumulative heat load altered the lag window
452 by triggering distinct recovery states rather than through monotonic accumulation.
453 Notably, the positive contribution of $IMAX_h$ intensified significantly within the
454 extreme high-temperature range, implying that once peak heat shock surpassed a
455 critical threshold, it fundamentally reshaped the optimal lag structure.

457 **Note S9: Temporal trajectories and component-level drivers of physical and**
458 **emotional resilience (2025–2100)**

459 Time series reconstructions derived from an ensemble of 13 CMIP6 models indicated
460 that under three SSP pathways, both HGI and EGI evolved with a distinct non-linear
461 morphology characterized by moderate mid-term changes followed by accelerated
462 late-term shifts (Extended Fig.7-9; Supplementary Fig.16-17). However, a temporal
463 mismatch existed in their sensitivity to emission intensities. EGI exhibited
464 quasi-plateau characteristics between 2025 and 2050, where the SSP1-2.6 scenario
465 registered a slight uptake of approximately 0.1% and SSP5-8.5 remained largely static
466 with a marginal decline of 0.1%. It was only after 2050 that a deep downward
467 trajectory initiated, resulting in declines of 7.8%, 17.1%, and 20.3% relative to the
468 baseline by the end of the century. In contrast, the attenuation of HGI displayed a
469 marked early onset. Cumulative declines of 3.1% to 4.8% emerged within the first
470 half of the century, accelerating further in the latter half as high-emission pathways
471 locked in; by 2100, reductions reached 13.9%, 16.1%, and 25.4% relative to 2025.
472 These scenario-dependent trajectories suggested that high-emission pathways not only
473 significantly amplified the magnitude of long-term decay but also widened the
474 uncertainty bandwidth of predictions. Consequently, the structure of systemic risk
475 diverged drastically in the second half of the century driven by scenario disparities.

476 The evolution of six structural components further elucidated the micro-dynamic
477 sources of this index attenuation. Across all scenarios, the sustained rise in $IMAX_h$,

478 RT_h , and RP_h confirmed a synchronous deterioration in physical heat shock intensity,
479 recovery lag, and process volatility, while the parallel elevation of $IMAX_e$, RT_e , and
480 RP_e signaled a systemic amplification of negative emotional peaks and hysteresis
481 effects. This deteriorating trend presented a clear gradient differentiation across
482 scenarios, driven primarily by incremental changes post-2050. Under SSP5-8.5, the
483 magnitude of deterioration for physical and emotional components reached its zenith:
484 $IMAX_h$ and RT_h surged by 35.9% and 50.1% respectively, while $IMAX_e$ and RT_e rose
485 by 25.6% and 46.4%, far exceeding the moderate increases observed under SSP1-2.6.
486 Notably, among all components, RT_h and RT_e exhibited the highest scenario
487 sensitivity. This revealed that structural degradation at the recovery end, rather than
488 mere peak elevation, constituted the dominant channel driving resilience collapse in a
489 high-emission future. Furthermore, the physical and emotional linkages displayed
490 stronger synergistic amplification characteristics in the latter half of the century.

491

492 **C. Supplementary Tables**

493 **Supplementary Table 1.** *Statistical significance and magnitude of emotional trends*
 494 *in 40 representative cities: Z-values, P-values, Sen's slopes and Best lag days derived*
 495 *from 3-hour scale observations.*

City	Z Value	P Value	Sen Slope	Best Lag days
Beijing	-2.3683	0.0179	-0.000023	3.6
Shanghai	7.8170	5.33e-15	0.000078	2.9
Guangzhou	-4.0572	0.00005	-0.000059	2.5
Shenzhen	2.3623	0.0182	0.000028	2.9
Tianjin	3.0763	0.0021	0.000054	3.8
Chongqing	-1.9819	0.0475	-0.000037	3.4
Nanjing	3.8714	0.0001	0.000025	2.6
Suzhou	9.5870	0.0000	0.000146	3.0
Hangzhou	-2.7953	0.0052	-0.000041	2.6
Wuhan	-2.3090	0.0209	-0.000032	3.0
Xian	-2.0535	0.0400	-0.000035	3.2
Wuxi	-4.4134	0.00001	-0.000073	2.9
Ningbo	-5.6040	2.09e-08	-0.000114	2.9
Changsha	-6.0617	1.35e-09	-0.000033	2.8
Hefei	-6.8170	9.30e-12	-0.000183	3.4
Fuzhou	3.0925	0.0020	0.000086	2.4
Jinan	-2.3610	0.0182	-0.000054	3.5
Shenyang	2.3145	0.0206	0.000044	3.3

Haerbin	2.0689	0.0386	0.000019	2.9
Dalian	-4.8353	1.33e-06	-0.000072	3.3
Xiamen	-3.2981	0.0010	-0.000042	2.2
Foshan	2.3862	0.0170	0.000023	2.8
Nanning	-2.5295	0.0114	-0.000054	2.0
Haikou	2.5018	0.0124	0.000115	2.2
Guiyang	2.6206	0.0088	0.000032	2.6
Lanzhou	-2.7202	0.0065	-0.000124	3.3
Nanchang	-2.7852	0.0053	-0.000040	3.2
Huhehaote	-3.7197	0.0002	-0.000084	3.2
Wulumuqi	2.3429	0.0191	0.000055	3.6
Changzhou	-8.4626	0.0000	-0.000326	3.3
Dongguan	3.5582	0.0004	0.000072	3.1
Huizhou	-2.9159	0.0035	-0.000088	2.5
Jiaxing	-2.3576	0.0184	-0.000031	2.8
Nantong	-2.5822	0.0098	-0.000045	2.2
Quanzhou	-4.8088	1.52e-06	-0.000094	2.3
Wenzhou	-2.0244	0.0429	-0.000042	2.2
Xuzhou	3.4753	0.0005	0.000111	3.4
Yantai	2.0603	0.0394	0.000037	2.9
Zhongshan	2.2163	0.0267	0.000070	2.3

497 **Supplementary Table 2.** *Summary of explanatory variables, physical mechanisms,*
 498 *and variance inflation factors (VIF)*

Category	Variable	Abbreviation	Physical Mechanism & Rationale	VIF
Physical Resilience Metrics	Heat Recovery Time	RT _h	Duration required for the thermal environment to return to baseline levels	1.11
	Peak Heat Severity	IMAX _h	Maximum intensity of the heatwave event relative to the baseline	1.40
	Cumulative Heat Magnitude	RP _h	Total accumulated thermal stress (area under the curve) during the event	1.33
Emotional Resilience Metrics	Emotion Recovery Time	RT _e	Duration for public sentiment to recover to baseline levels after heat	1.11
	Peak Emotional Severity	IMAX _e	Maximum intensity of negative emotional expression during the heatwave	1.16
Socio-economic Status	Cumulative Emotional Perturbation	RP _e	Total accumulated emotional stress load during the event	1.19
	Gross Domestic Product	GDP	Proxy for anthropogenic waste heat discharge from economic activities	2.94
Topographic Context	Population Count	PopC	Represents metabolic heat release and human activity intensity	3.26
	Elevation	DEM	Background modulation of thermal lapse rates and local circulation	2.32
Vegetation & Land Cover	Normalized Difference Vegetation Index	NDVI	Characterizes vegetation vitality and surface energy partitioning	4.76
	Forest / Grassland / Cropland	FT / GD / CD	Capture canopy structures and evapotranspiration cooling capacities	4.88 / 4.27 / 4.94
	Water Bodies	WR	Reflects thermal regulation via high specific heat capacity	1.34
Built Environment	Barren Land / Built-up Areas	BN / UP	Impervious substrates with low moisture and high heat storage	4.17 / 4.60
	Grid-average Building Height	BH	Signifies vertical wind blockage potential and aerodynamic	4.75
	Grid-average Building Density	BD	Horizontal surface area available for solar heat storage	4.55
	Floor Area Ratio	FAR	Metric of development intensity	4.42

500 **Supplementary Table 3.** *The CMIP6 models used in the analysis. Listed are the*
 501 *ensemble size of the ALLforcing, NAT-forcing, GHG-forcing, segments of piControl*
 502 *simulations, SSP1-2.6, SSP2-4.5, and SSP5-8.5 experiments, and the equilibrium*
 503 *climate sensitivity (ECS) of climate models. The ECS estimates are from Zelinka et*
 504 *al. (2020)*

MODEL	ALL	NAT	GHG	piC ont rol	SSP 1-2. 6	SSP 2-4.5	SS P5- 8.5	ECS (K)
ACCESS-CM2	3	3	3	1	3	3	3	4.72
ACCESS-ESM 1-5	3	3	3	1	3	3	3	3.88
BCC-CSM2-M R	3	3	3	1	1	1	1	3.02
CanESM5	10	10	10	1	25	25	25	5.64
CESM2	3	3	3	1	3	3	3	5.15
CNRM-CM6-1	6	6	6	1	6	6	6	4.83
FGOALS-g3	3	3	3	1	1	1	1	2.87
GFDL-ESM4	3	3	3	1	1	1	1	2.65
GISS-E2-1-G	5	5	5	1	5	5	5	2.72
IPSL-CM6A-L R	6	6	6	1	6	6	6	4.56
MIROC6	3	3	3	1	3	3	3	2.60
MRI-ESM2-0	3	3	3	1	1	1	1	3.15
NorESM2-LM	3	3	3	1	1	1	1	2.54
SUM (runs)	54	54	54	13	59	59	59	—

505
506

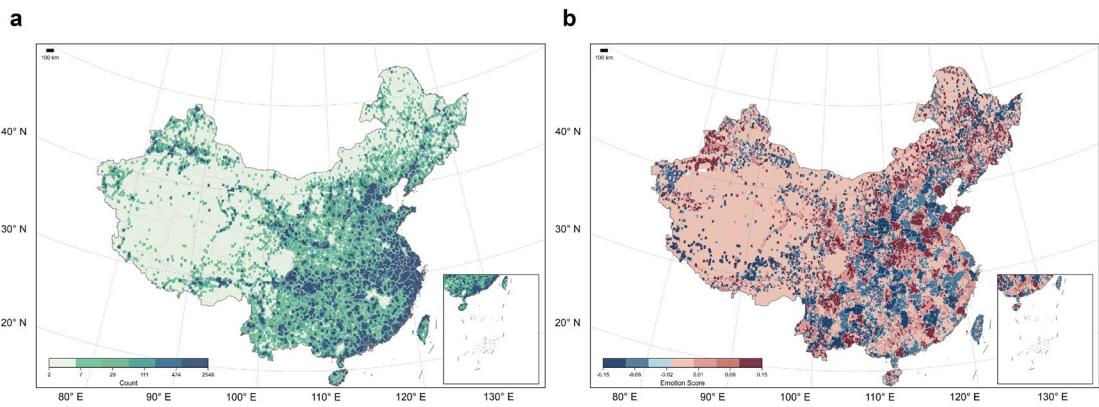
507 **D. Supplementary Figures**

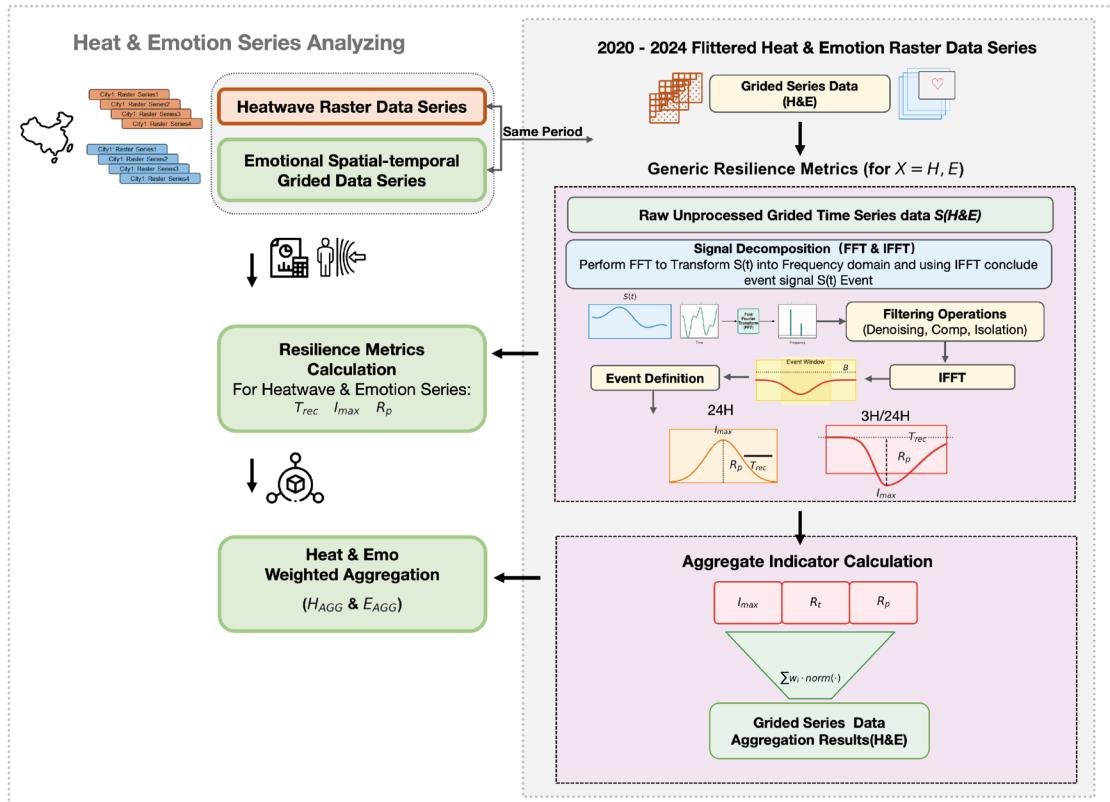
508

509

510 **Supplementary Fig. 1. Spatial coverage of social emotion data.** a, Density of
511 geolocated Weibo comments used in the analysis. b, Spatial distribution of calculated
512 sentiment scores.

513



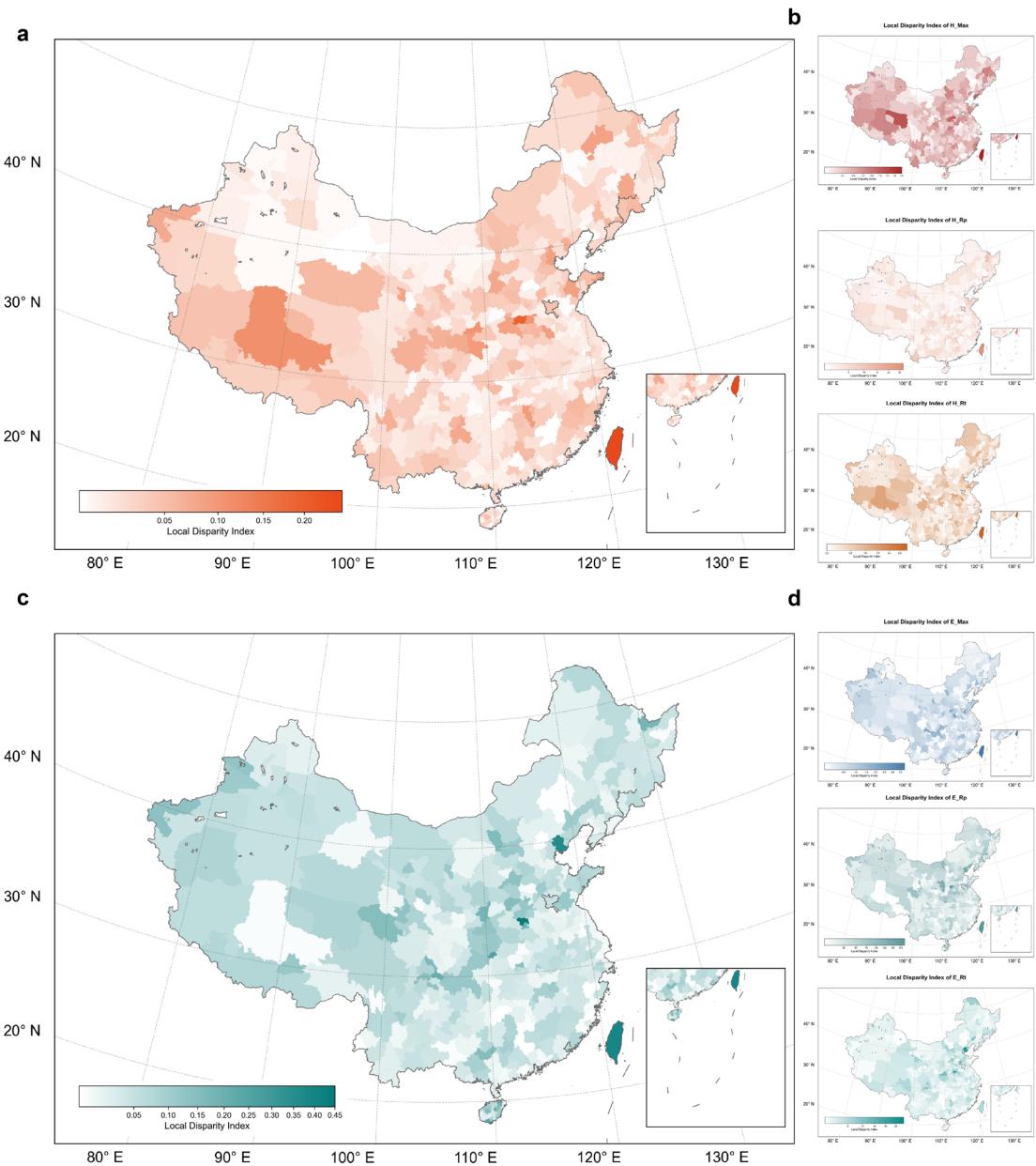


514

515

516 **Supplementary Fig. 2. Computational framework for quantifying heat and**
 517 **emotional resilience metrics.**

518

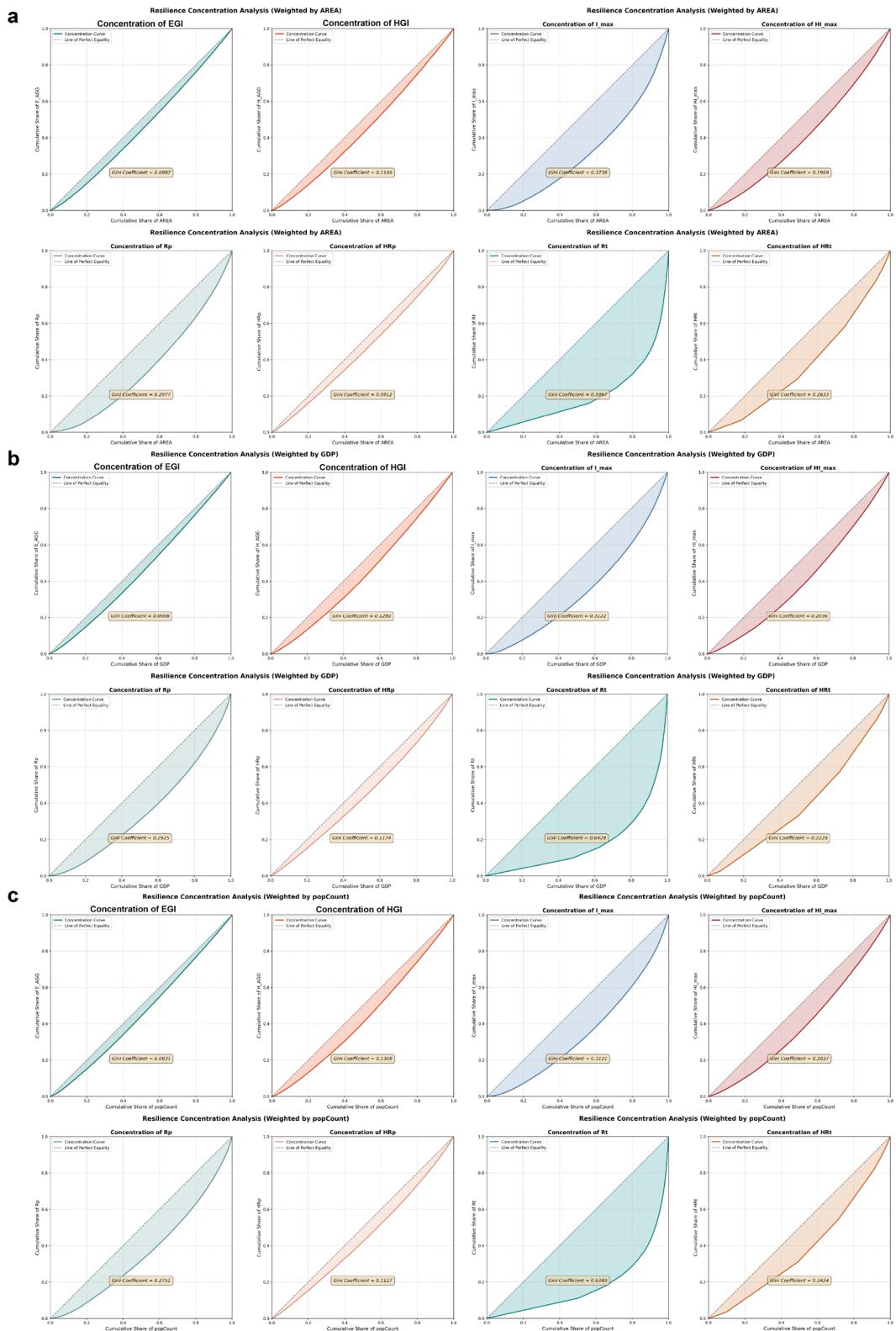


519

520

521 **Supplementary Fig. 3. Spatial patterns of local inequality characterized by the**
 522 **Local Disparity Index (LDI).** a, c, HGI (a) and EGI (c). b, Heat components ($IMAX_h$;
 523 RP_h , and RT_h). d, Emotion components ($IMAX_e$; RP_e , and RT_e). Darker shades indicate
 524 higher disparity.

525



526

527

528 **Supplementary Fig.4. Lorenz curves quantifying inequality in resilience metrics.**
 529 a, Population-weighted; b, GDP-weighted; and c, Area-weighted. The diagonal line
 530 represents perfect equality.

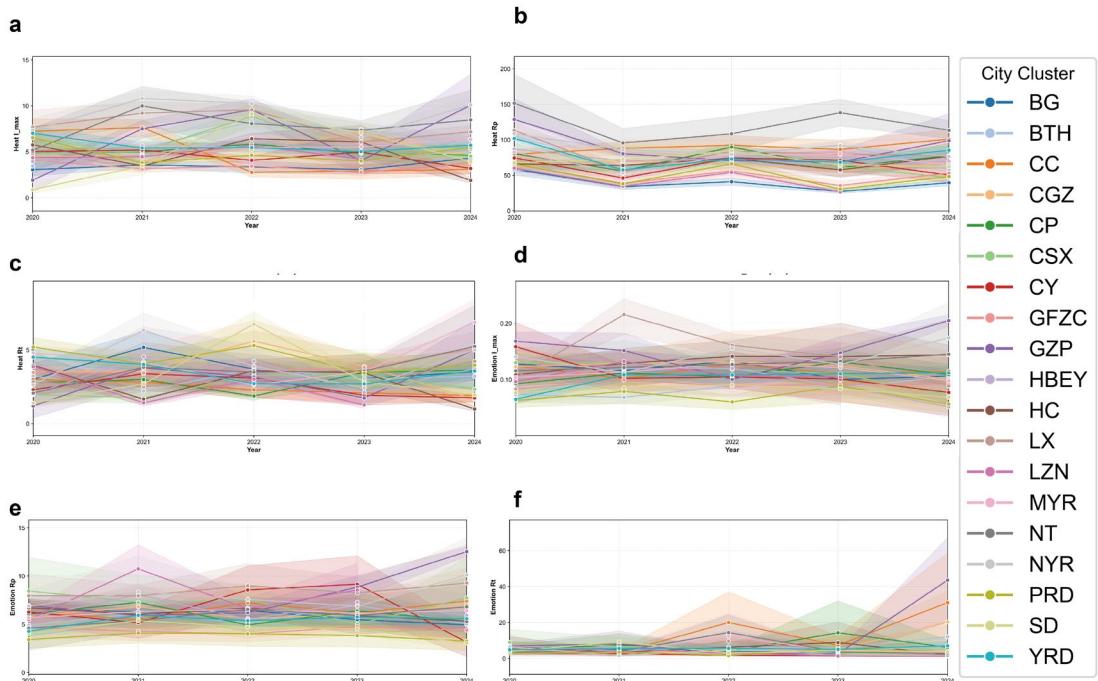
531

532

533

534 **Supplementary Fig. 5. Geographical distribution of the 19 urban**
 535 **agglomerations.**

536

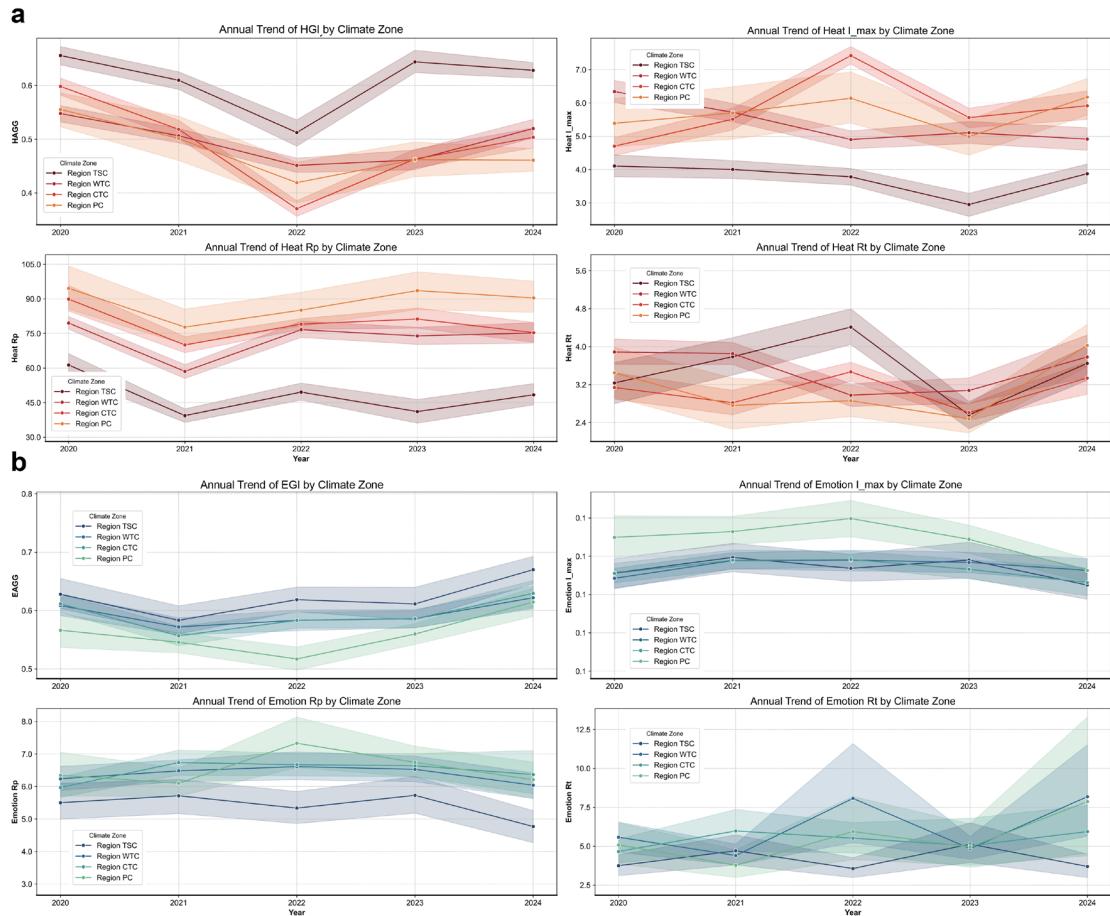


537

538

539 **Supplementary Fig. 6. Interannual variability of resilience components across**
 540 **city clusters (2020 - 2024). a - c, Heat components: $IMAX_h$ (a), RP_h and RT_h (c). d -**
 541 **f, Emotion components: $IMAX_e$ (d), RP_e (e), and RT_e (f). Coloured lines represent**
 542 **individual city clusters; shaded areas denote 95% confidence intervals.**

543

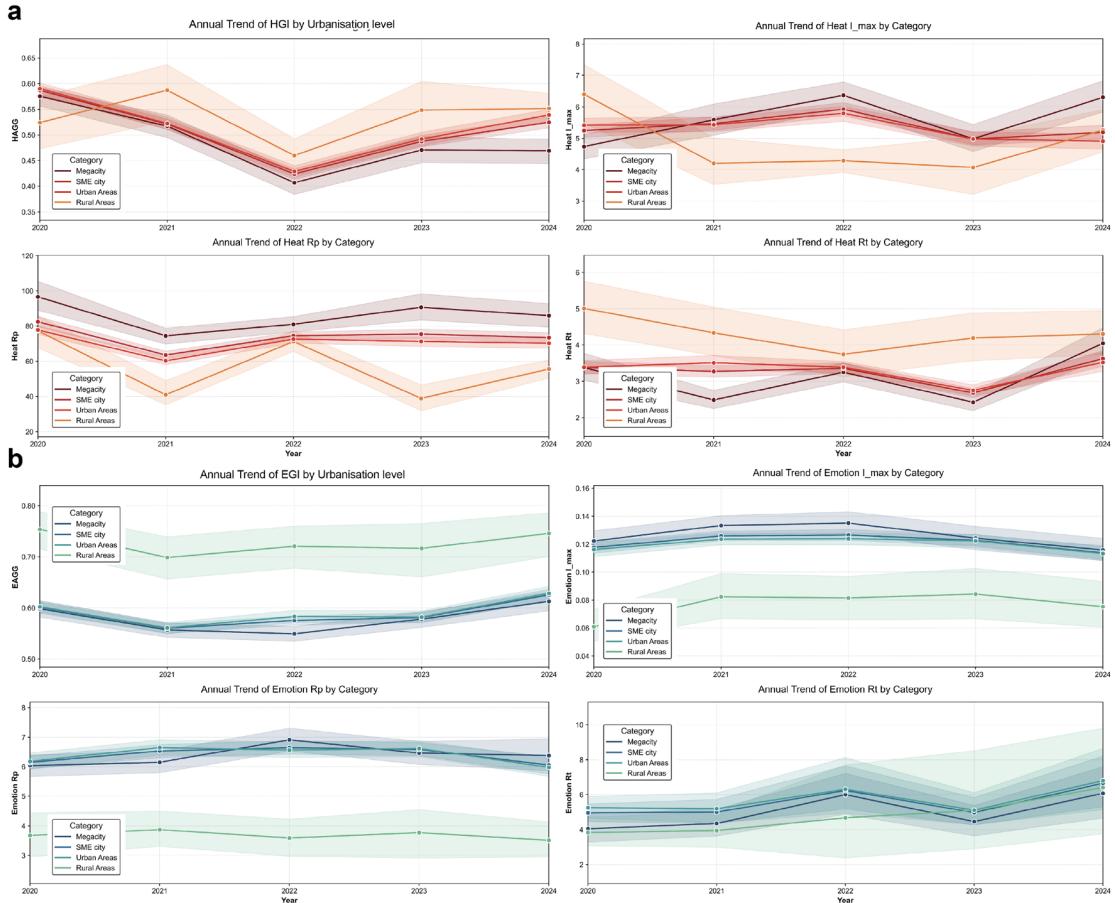


544

545

546 **Supplementary Fig. 7. Interannual variability of resilience metrics across climate**
 547 **zones (2020 – 2024). a, Heat metrics: HGI, $IMAX_h$; RP_h , and RT_h . b, Emotion metrics:**
 548 **EGI, $IMAX_e$; RP_e , and RT_e . Coloured lines represent climatic regions (TSC, WTC,**
 549 **CTC, PC); shaded areas denote 95% confidence intervals.**

550

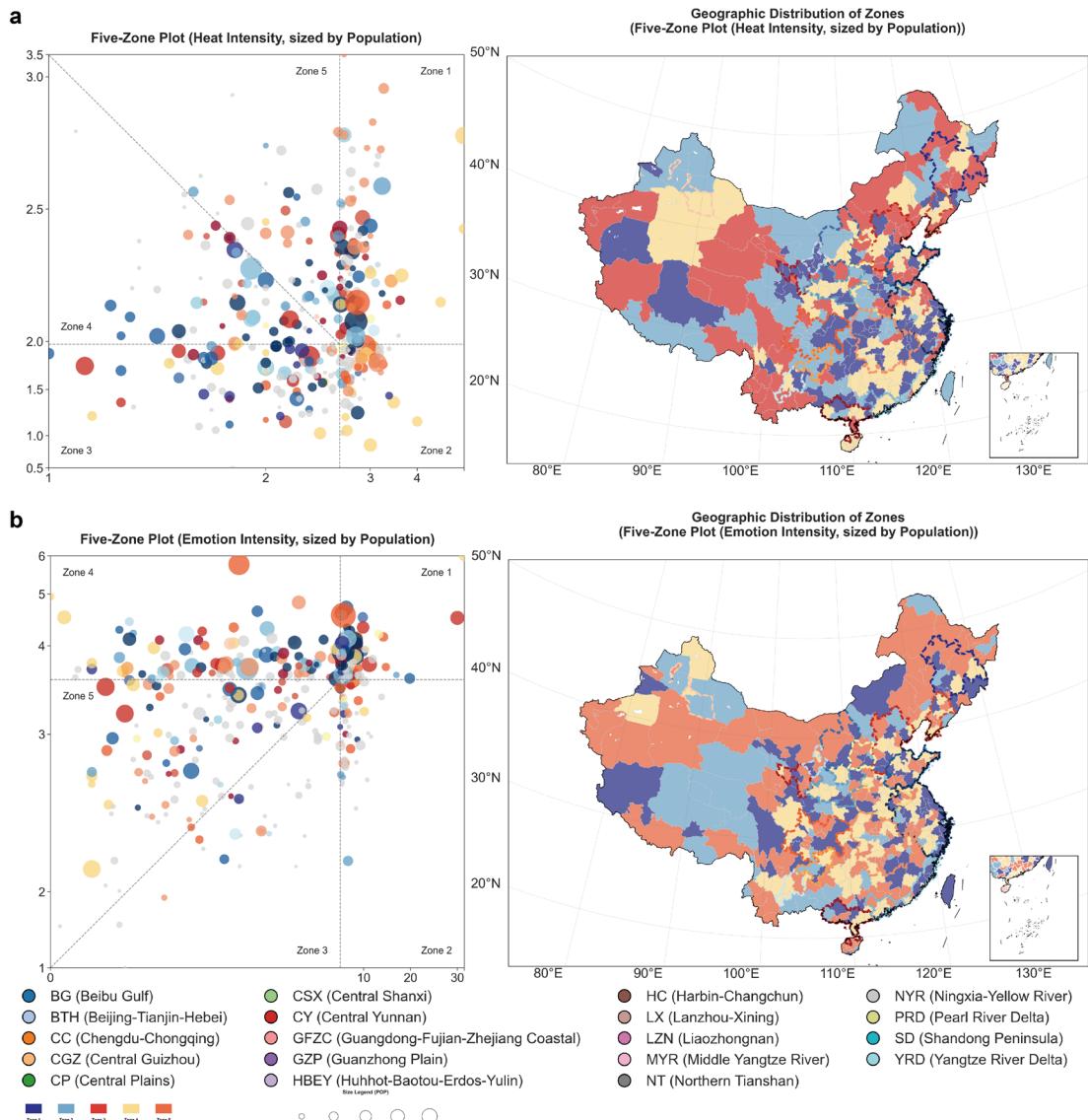


551

552

553 **Supplementary Fig. 8. Interannual variability of resilience metrics across**
 554 **urbanization levels (2020 – 2024). a, Heat metrics: HGI, $IMAX_h$; RP_h , and RT_h . b,**
 555 **Emotion metrics: EGI, $IMAX_e$; RP_e , and RT_e . Coloured lines represent urbanization**
 556 **categories (Megacity, SME City, Urban Areas, Rural Areas); shaded areas denote 95%**
 557 **confidence intervals.**

558



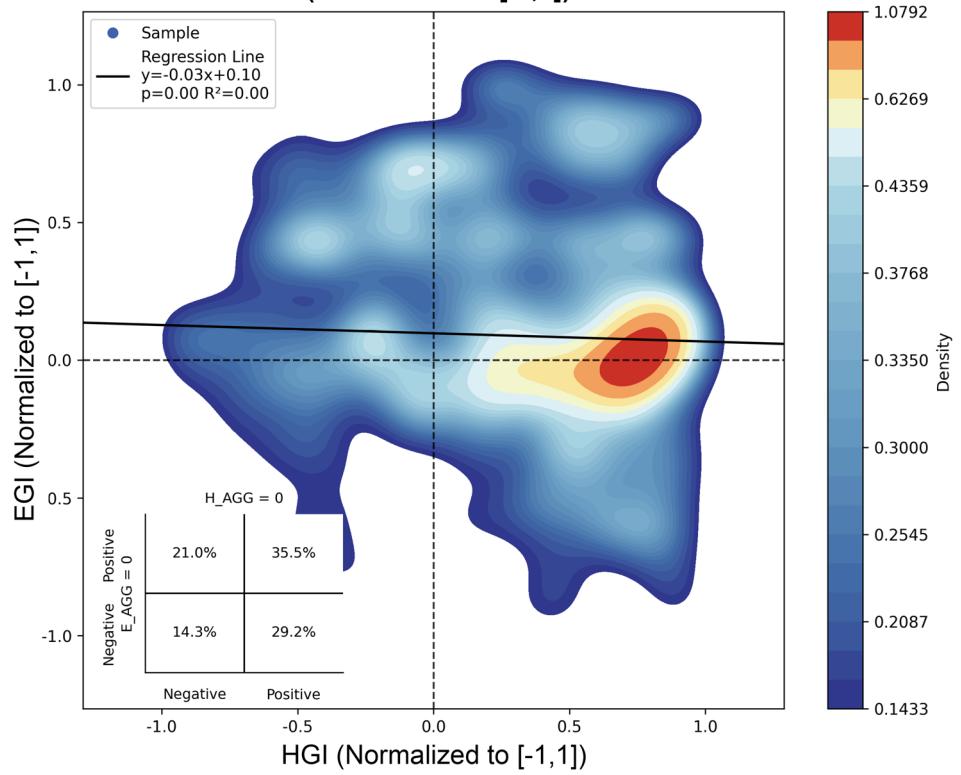
559

560

561 **Supplementary Fig. 9. Pentagonal scatter plots mapping 357 cities based on**
 562 **population weighting.** a, b, Classification of Heat Intensity (a) and Emotion Intensity
 563 (b). Bubble sizes indicate population magnitude, while colours represent the 19 city
 564 clusters.

565

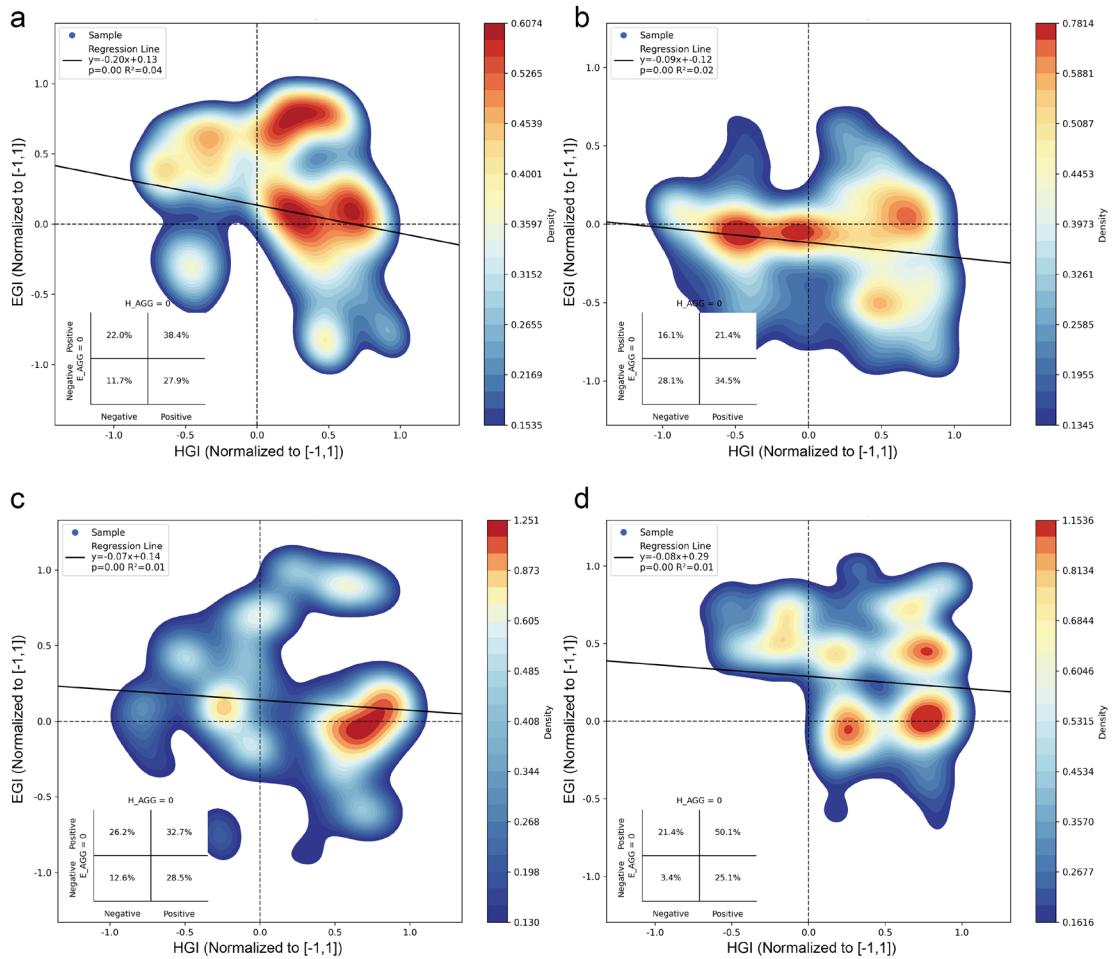
**Correlation Scatter Plot of HGI and EGI (Overall)
(Normalized to [-1,1])**



566

567 **Supplementary Fig.10. Bivariate KDE analysis of HGI and EGI decoupling.**

568

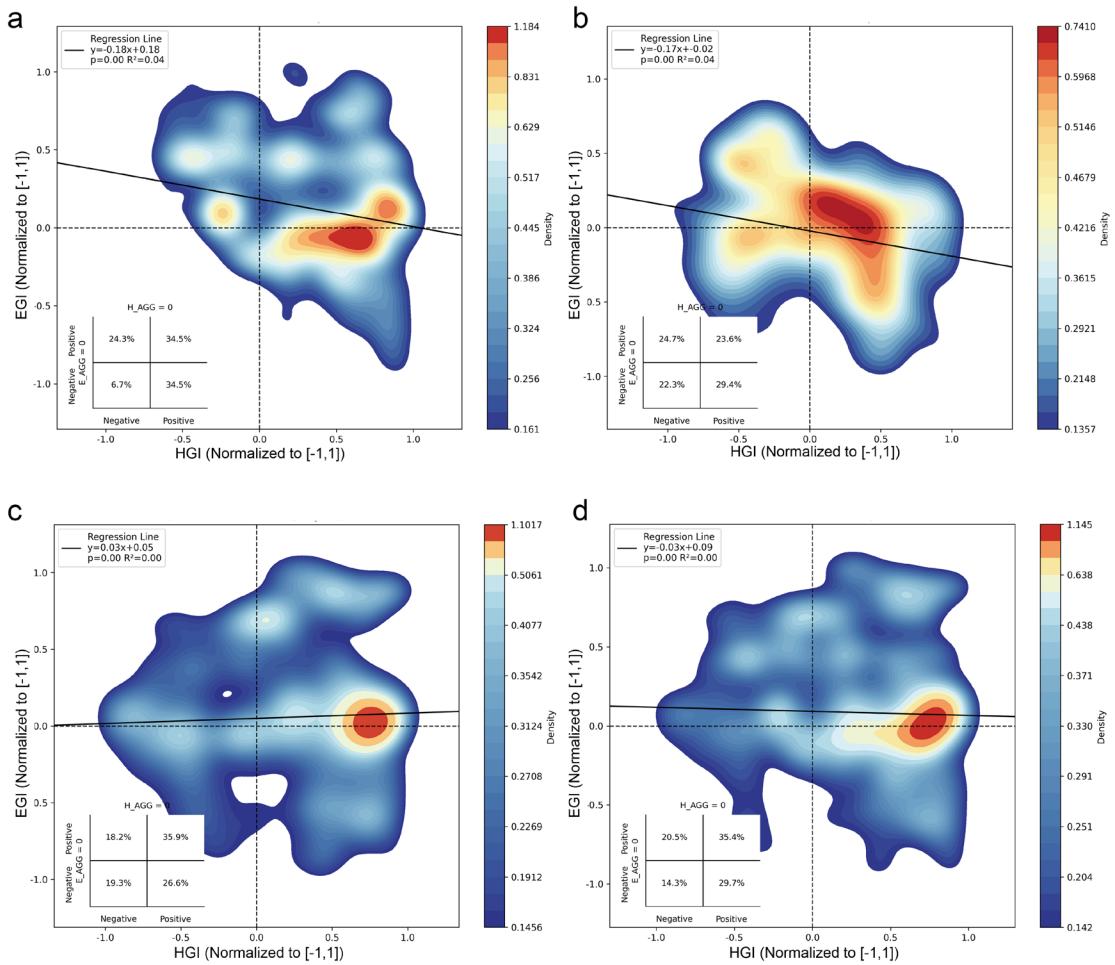


569

570

571 **Supplementary Fig.11. Bivariate KDE analysis of HGI and EGI decoupling**
 572 **across climatic zones.** a, Climatic regions: tropical - subtropical (TSC); b, warm
 573 temperate (WTC); c, cold temperate (CTC); d, plateau climate (PC).

574



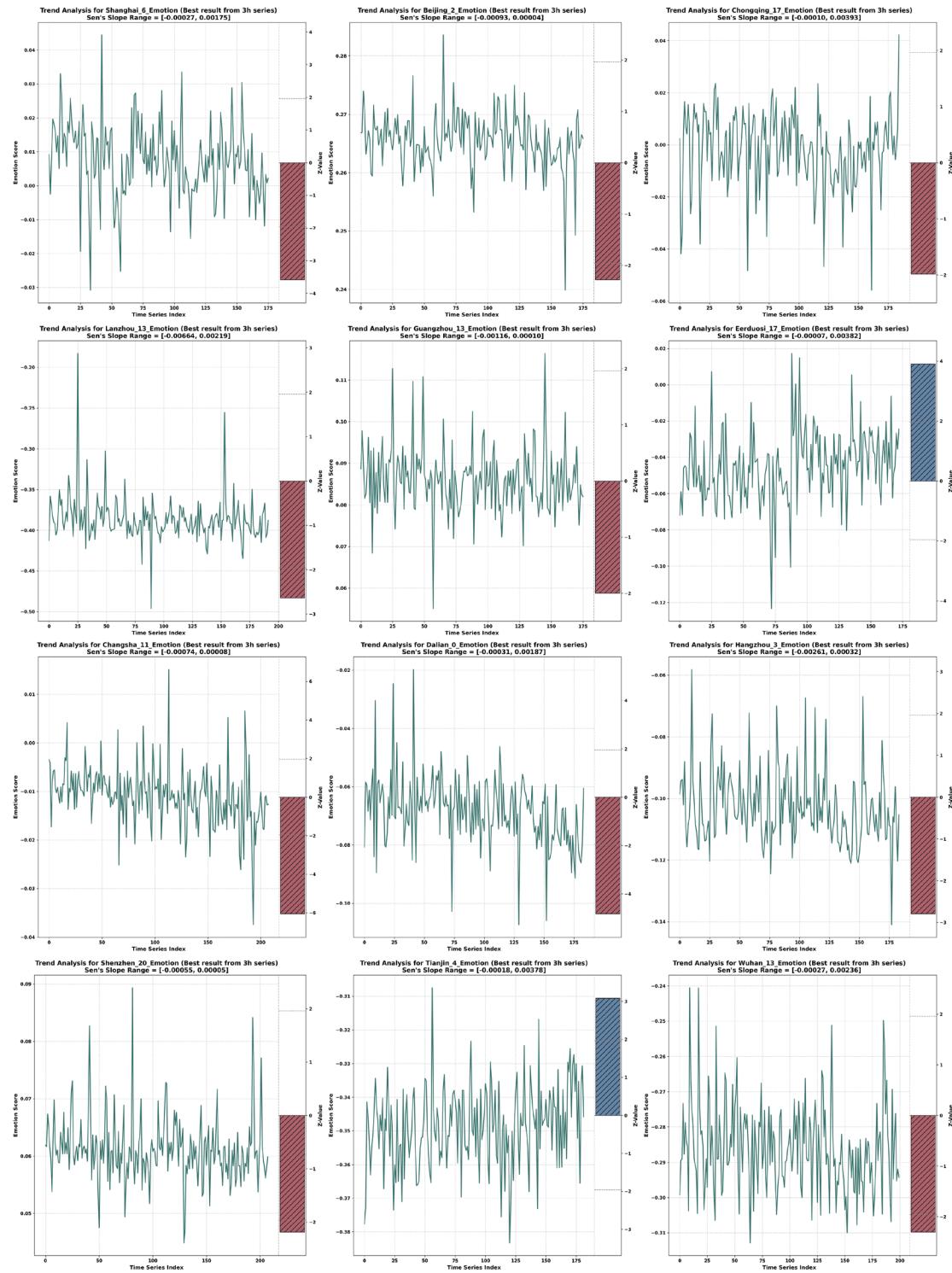
575

576

577 **Supplementary Fig.12. Bivariate KDE analysis of HGI and EGI decoupling**
578 **across city scale and urban contexts.** a, megacity; b, SME City; c, urban areas; d,

579

580



581

582

583 **Supplementary Fig.13. Mann - Kendall trend detection and Sen' s slope**
 584 **quantification for twelve representative cities.** Bars are colour-coded to indicate the
 585 trend direction: red represents a positive Sen' s slope (associated with active recovery
 586 or increasing resilience), whereas blue represents a negative Sen' s slope (indicating
 587 persistent stress accumulation or decreasing resilience). The asterisk (*) denotes
 588 statistical significance at the 0.05 level.

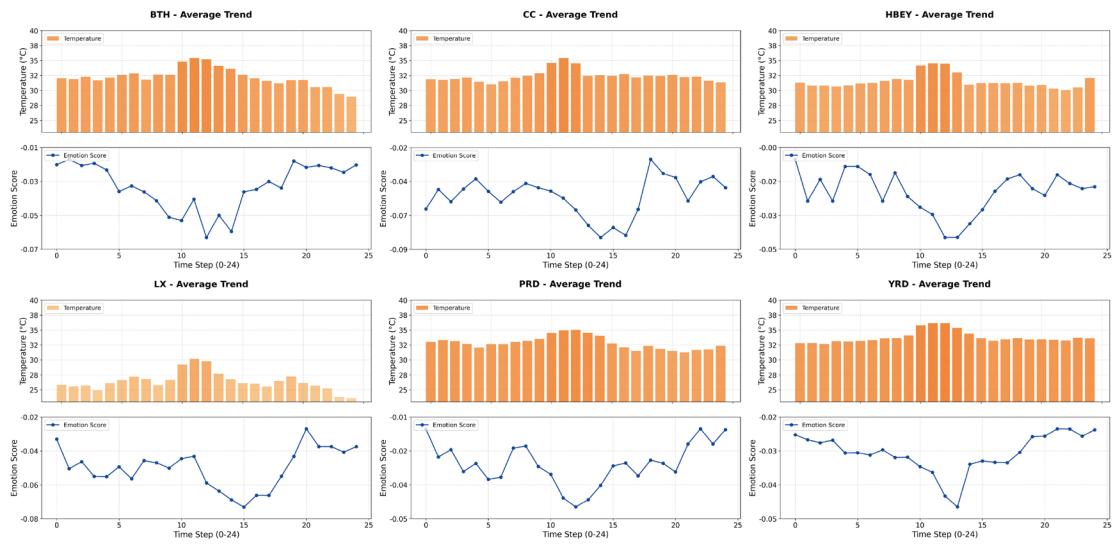
589



590

591 **Supplementary Fig.14. Regional heterogeneity in the lag response of emotional**
 592 **sentiment across 19 major urban agglomerations.** The bar chart displays the
 593 estimated Best Lag (BL) days for each city cluster, derived from Distributed Lag
 594 Non-linear Models (DLNM). The height of each bar represents the regional mean,
 595 while error bars denote the 95% confidence intervals (95% CI).

596

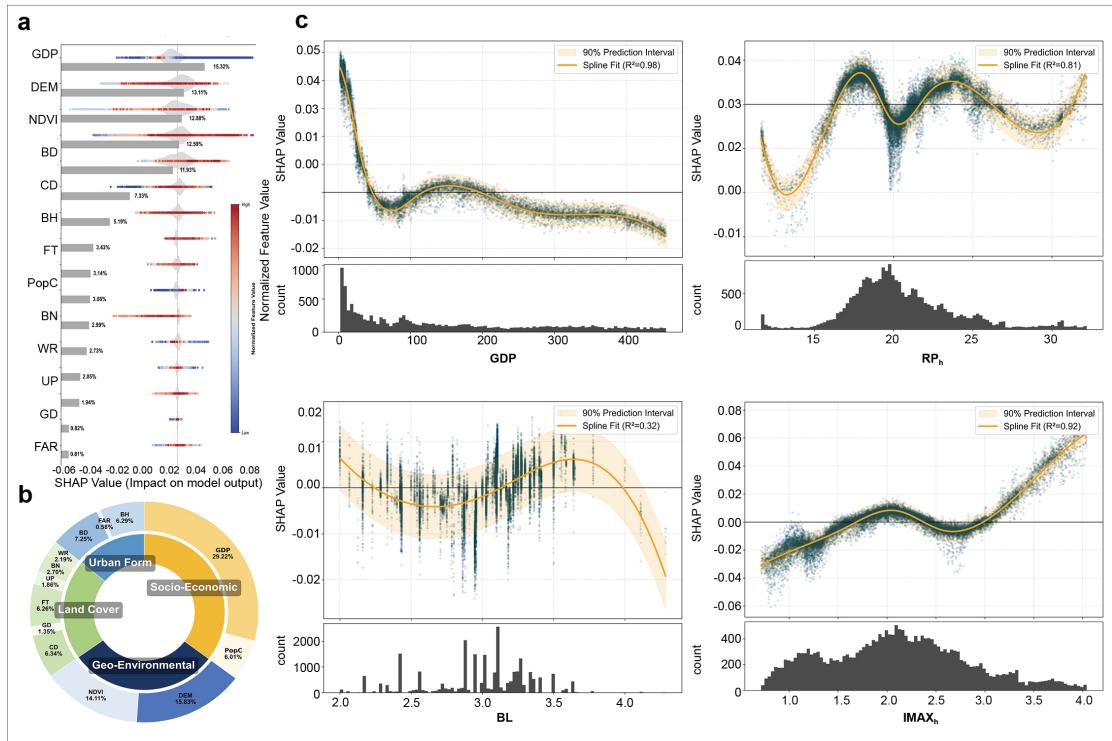


597

598

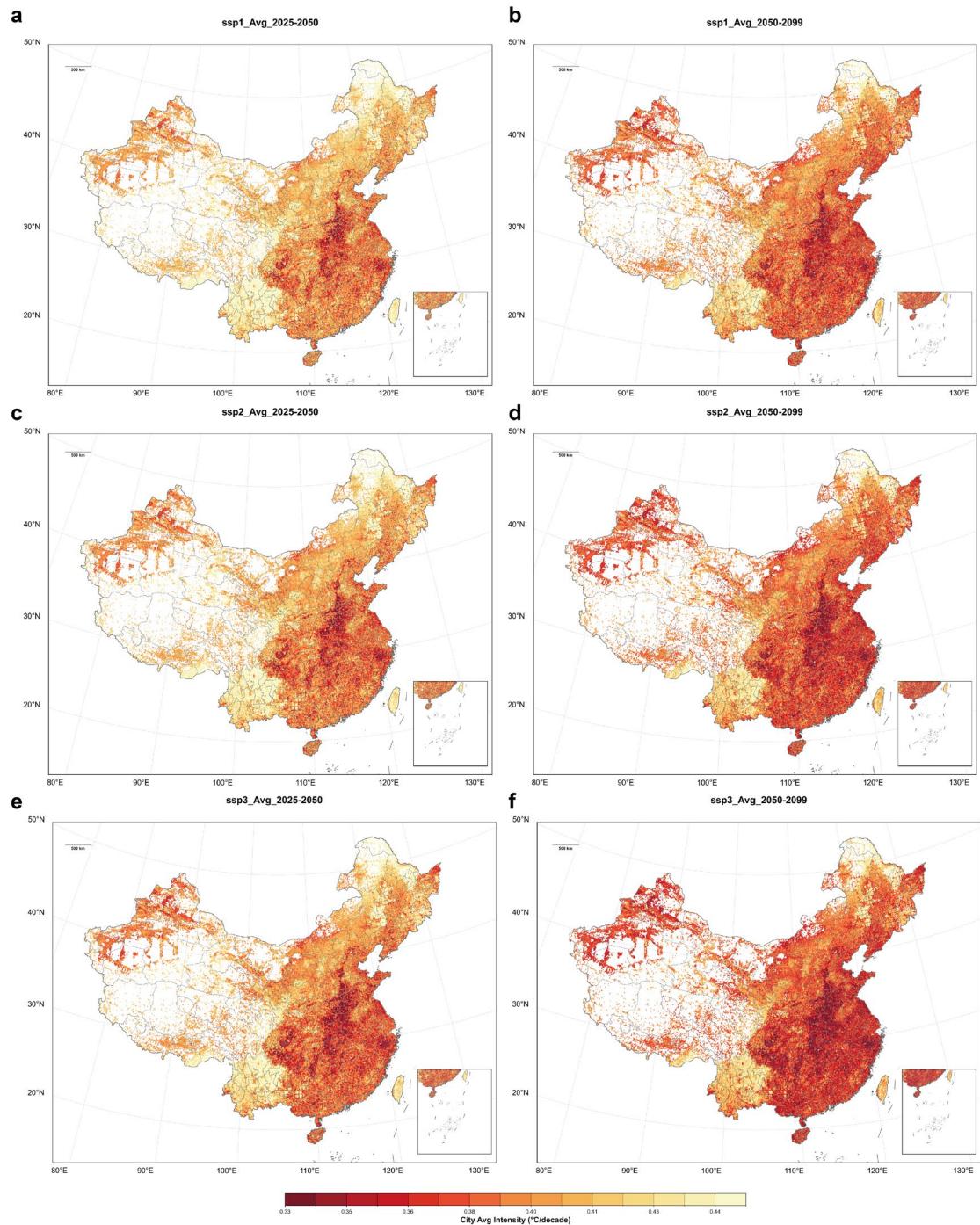
599 **Supplementary Fig.15. Daily time series of maximum temperature and emotion**
 600 **scores across six representative urban agglomerations.**

601



602
603
604
605
606

Supplementary Fig.16. Global importance and local effect of each feature in the ensemble learning models for BL.

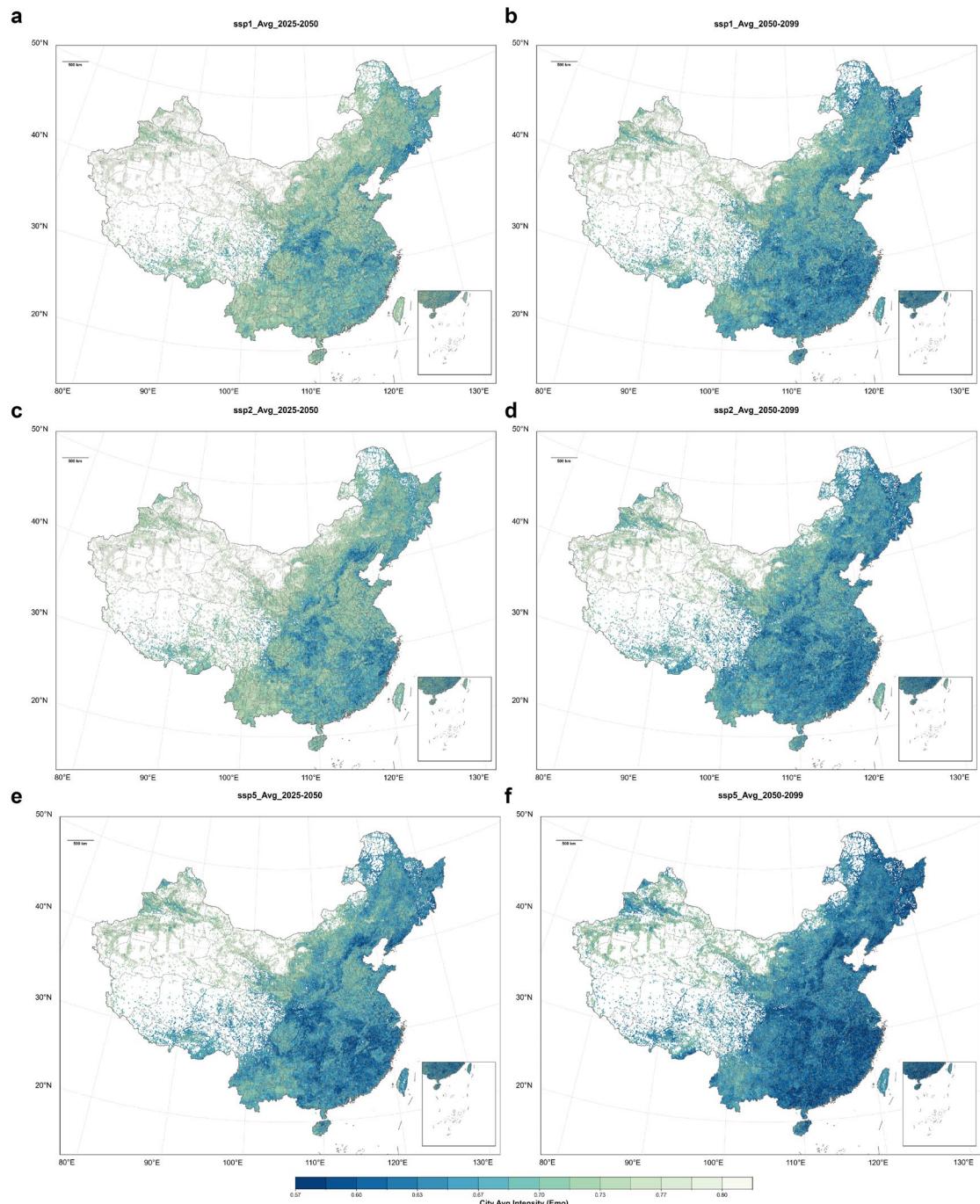


607

608

609 **Supplementary Fig.17. Projected spatiotemporal evolution of HGI under**
 610 **different SSP - RCP scenarios.** The maps visualize the projected mean HGI across
 611 Chinese cities for the near-term (2025 – 2050) and long-term (2050 – 2100) periods. a,
 612 b, Spatial distribution of mean HGI under the SSP1-2.6 scenario for 2025 – 2050 (a)
 613 and 2050 – 2100 (b). c, d, Projections under the SSP2-4.5 scenario for the same time
 614 periods. e, f, Projections under the SSP5-8.5 scenario.

615



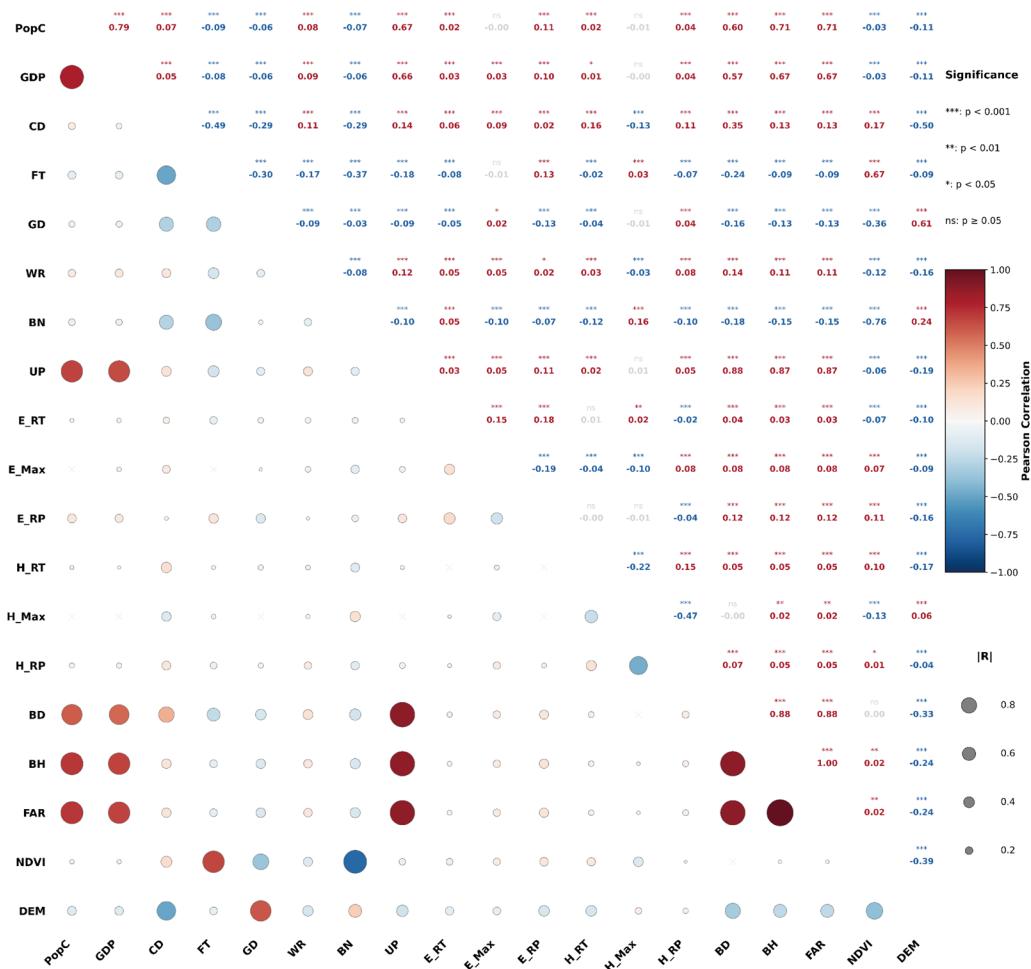
616

617

618 **Supplementary Fig.18. Projected spatiotemporal evolution of EGI under**
 619 **different SSP - RCP scenarios.** The maps visualize the projected mean EGI across
 620 Chinese cities for the near-term (2025 – 2050) and long-term (2050 – 2100) periods. a,
 621 b, Spatial distribution of mean EGI under the SSP1-2.6 scenario for 2025 – 2050 (a)
 622 and 2050 – 2100 (b). c, d, Projections under the SSP2-4.5 scenario for the same time
 623 periods. e, f, Projections under the SSP5-8.5 scenario.

624

Correlation Matrix with Significance Levels



625

626 Supplementary Fig.19. Pearson correlation matrix of urban drivers and
627 resilience metrics.