Appendix 1

Treatment
[bookmark: _GoBack]Before treatment, all patients underwent multidisciplinary consultations. These consultations assessed patients' conditions and selected appropriate treatment regimens.  The primary chemotherapeutic regimens consist of a platinum-based agent (e.g., carboplatin, cisplatin, nedaplatin, or oxaliplatin) in combination with either a taxane (e.g., paclitaxel, nab-paclitaxel, liposomal paclitaxel, or docetaxel) or a fluoropyrimidine (e.g., 5-fluorouracil, capecitabine, or S-1). The specific medication and dosage are determined by the attending physician, with administration occurring once every three weeks. Immunotherapeutic agents consist primarily of PD-1 inhibitors. Examples include camrelizumab, pembrolizumab, tislelizumab, sintilimab, toripalimab, nivolumab, serplulimab, and penpulimab. These are administered intravenously on Day 1 of a 21-day cycle, every 3 weeks. During the maintenance phase, patients receive or do not receive PD-1 inhibitor immunotherapy every 3 weeks until disease progression or intolerable toxicity. All patients undergoing RT received 6-8 MV X-ray therapy. Intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TOMO) are the radiotherapy techniques that were used. All patients underwent positioning under large-aperture CT, with CT positioning images transmitted to the Varian Eclipse planning system. Each patient is positioned jointly by a radiation oncologist and a radiation physicist.










VISTA3D Segmentation Deep Learning Model
This paper employs VISTA3D—a unified segmentation foundation model for 3D medical imaging—based on the SegResNet backbone and sliding-window inference. By integrating 3D super-voxel distillation (SAM) knowledge and a four-stage training approach, it achieves automatic segmentation of 127 structural classes, 3D interactive refinement, and zero-shot segmentation. Its inference speed is 3 to 4 times faster than TotalSegmentator. It demonstrates outstanding performance in few-shot fine-tuning, providing a comprehensive workflow solution for clinical 3D image segmentation. The VISTA3D model was fine-tuned on data from Center A, while data from Centers B and C continued to serve as external test sets for the object segmentation task. The preprocessing and training workflow was designed to enhance data validity and optimize model performance: First, key regions were preserved through foreground cropping. Image intensities were then normalized to the range [0, 1] from [-110, 190]. to the range [0, 1]. Simultaneously, multi-modal data augmentation techniques are introduced, including random cropping by label category, random scaling, Gaussian smoothing, intensity scaling and offset, and Gaussian noise addition, to enhance the model's generalization capability.
Model and training hyperparameters were tailored to the segmentation task requirements: The optimizer employed AdamW with weight decay, an initial learning rate of 5e-5, and a WarmupCosineSchedule learning rate scheduler. The loss function utilized DiceCELoss (excluding background, with sigmoid activation and squared prediction enabled, smooth_dr=1e-5). During training, the batch size was configured as 8 images per batch over 200 total epochs, with mixed precision training enabled. In the fine-tuning phase, pre-trained weights were loaded to ensure efficient convergence and adaptation to the segmentation task requirements on both Center A and Center C datasets.
Reliability Analysis of Segmentation Results
	The reliability analysis in this study focuses on the results of three core segmentation methods supported by VISTA3D compared against manually annotated gold standards on an external test cohort. The specific sources are as follows: First, automatic segmentation relies on the shared SegResNet backbone and automatic branching to achieve end-to-end segmentation of target structures without additional manual intervention; Second, point-prompt segmentation (interactive segmentation) activates an interactive branch by inputting 3D positive/negative point prompts, flexibly adapting to segmentation demands for new categories not covered by the automatic branch. Third, automatic segmentation + point-prompt segmentation employs a model-specific merging algorithm to use point prompts solely for correcting false positive/false negative regions in the automatic segmentation, avoiding disruption of correctly segmented areas.
To prevent data bias from interfering with reliability analysis, all segmentation results must meet the following preprocessing consistency requirements:
1. Spatial coordinate alignment: Map all three segmentation masks and manually segmented gold standards to the coordinate system of the same CT image (based on positioning parameters in DICOM files, ensuring pixel coordinates correspond one-to-one with anatomical locations);
2. Resolution standardization: Resample all images and segmentation masks to a 1mm×1mm×1mm isotropic resolution;
3. Region cropping: Retain only segmentation masks within the largest connected region containing the tumor area.
Four widely recognized quantitative metrics in medical image segmentation were selected: Dice similarity coefficient, 95% Hausdorff distance, mean surface distance, and volume similarity. These metrics were used to calculate the consistency between the three segmentation results and the manually segmented gold standard.













Multiple Instance Learning (MIL) Based on ImageNet
The pydicom library was used to read DICOM slice sequences from each patient's folder. All slices were numerically sorted to accurately reconstruct anatomically continuous 3D CT volumes. This study employs ResNet18 (an 18-layer residual network pre-trained on ImageNet) as the feature extraction backbone . To balance the retention of pre-trained knowledge with adaptation to CT image features, a hierarchical freezing strategy is adopted. In the final configuration, the shallow stagelayers of the model are frozen, while only the two deeper stagelayers are unfrozen to participate in gradient updates. We implemented an aggregator based on AttentionMIL. This module consists of a two-layer Multi-Layer Perceptron (MLP) and a Softmax activation function. The attention mechanism enables the model to autonomously learn, in a data-driven manner, which patch regions (e.g., peripheral areas containing peritumoral context) contribute most significantly to predicting high risk. This generates a more information-dense and discriminative patient-level representation. In the exploratory experiments of this study, a key finding was that complex prediction heads were highly prone to overfitting on our dataset. Consequently, a simplified MLP with strong regularization was adopted as the prediction head. Simplifying the prediction head significantly reduced the number of parameters in the stage from feature aggregation to the final risk score, compelling the model to learn more robust and generalizable features at the backbone and aggregator stages.
Model Evaluation
This study employs the Cox Proportional Hazards Loss Function (CoxPHLoss) to evaluate the predictive capability of the model [22]. This loss function is a biased log-likelihood that does not directly predict survival time but instead optimizes the ranking of patient risks. Standard regression losses (such as MSE) cannot handle this type of incomplete data. CoxPH Loss is the gold standard for survival analysis, as it correctly utilizes information from both “event occurrence” (death=1) and “censoring” (death=0) patient categories to maximize the ranking consistency of the model (high risk and short survival). During the training phase, this study incorporated an online data augmentation strategy. This approach involves applying random online transformations (such as horizontal flipping and minor translations) to each loaded patch—including offline-augmented copies—during training, thereby further mitigating overfitting in the small-sample dataset. This study further applies the Mixup strategy to generate “synthetic” features between pairs of samples within each batch [23]. By creating a continuous, smooth distribution of samples in the feature space, this approach significantly enhances the model's generalization capability.
This study employed 5-fold cross-validation to evaluate model performance. During data fold partitioning, stratification was performed based on the "death" event indicator to ensure that the ratio of events to censored cases in each fold remained consistent with the overall dataset. The primary evaluation metric was Harrell's C-index, which quantifies the concordance between the model's predicted risk rankings and the actual observed survival time rankings.

