

1 Supplementary Information for
2 **On-chip analogue signal processing using molybdenum disulfide reservoir computing**

3
4 **Authors**

5 Yingyi Wen¹, Songwei Liu¹, Jingfang Pei¹, Zewen Kong¹, Yang Liu¹, Pengyu Liu¹, Xin Lu²,
6 Wenyu Cui³, Xiaolong Chen⁴, Teng Ma³, Qiuqiang Kong¹, Steven Gao¹, Zegao Wang²,
7 Guohua Hu^{1,*}

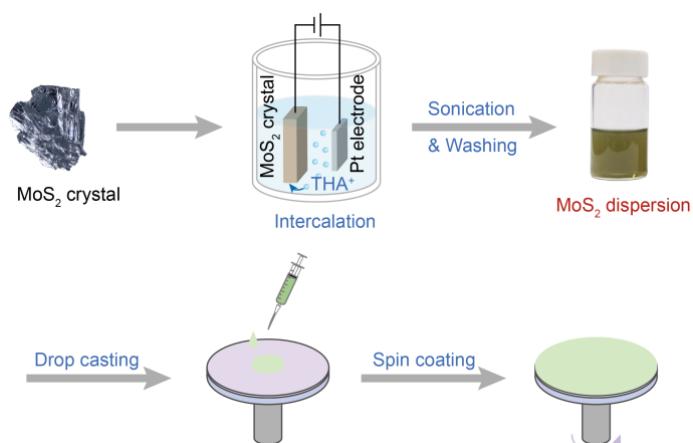
8
9 **Affiliations**

10 ¹Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T.,
11 Hong Kong S. A. R., 999077, China

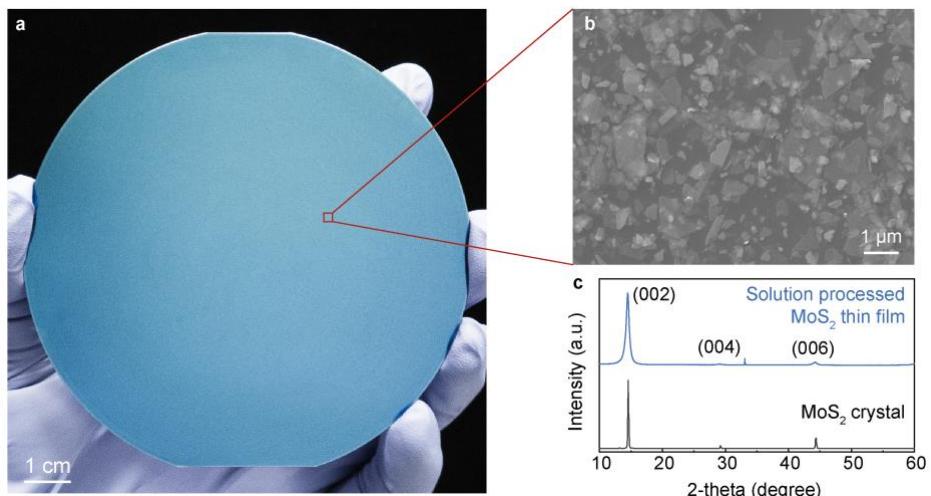
12 ²College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China

13 ³Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon,
14 Hong Kong S. A. R., 999077, China

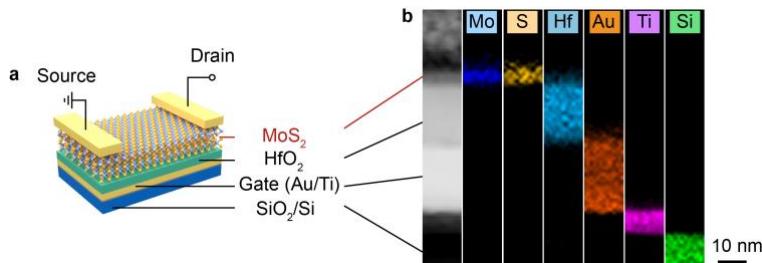
15 ⁴Department of Electrical and Electronic Engineering, Southern University of Science and
16 Technology, Xueyuan Avenue, Shenzhen 518055, China

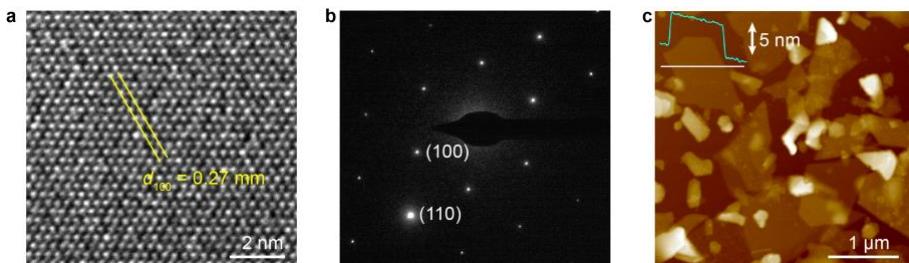

17
18 *Correspondence email: ghhu@ee.cuhk.edu.hk

19
20 **This file contains:**

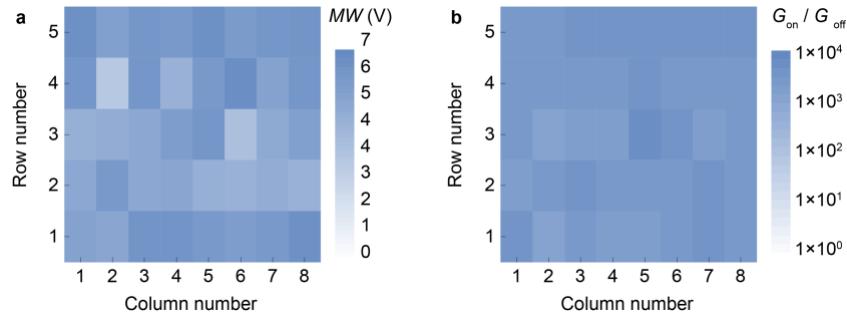

21 Supplementary Figure S1-S14

22 Supplementary References

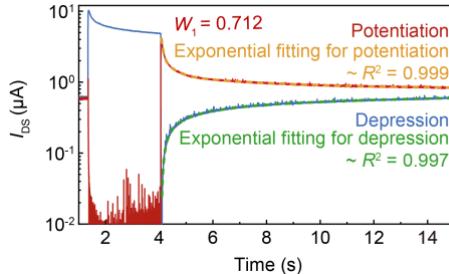

24 **Supplementary Figures**


25
26 **Figure S1. Exfoliation of MoS₂ and fabrication of MoS₂ thin film.** The MoS₂ nanoflakes are
27 obtained by electrochemical exfoliation of MoS₂ crystal. MoS₂ crystal (SPI Supplies) is cut
28 into small strips and used as the cathode. Pt is the anode. The intercalation reaction is performed
29 by applying 4 V bias between the Pt and MoS₂ electrodes in a N, N-Dimethylformamide (DMF)
30 solution. The DMF solution has 5 mg/mL tetrahexylammonium bromide (THABr) and 20
31 mg/mL polyvinylpyrrolidone (PVP, molecular weight~40,000). The MoS₂ dispersion is
32 obtained after intercalation, sonication, washing, and dispersion in isopropanol (IPA). The
33 MoS₂ thin film is then deposited by spin coating of the MoS₂ dispersion at 2000 rpm on a wafer
34 for multiple times (12 times in this work).

35
36 **Figure S2. Solution processed MoS₂ thin film.** (a) Photograph of a MoS₂ thin film deposited
37 on a 4-inch SiO₂/Si wafer by spin coating of the MoS₂ dispersion. (b) SEM image of the
38 deposited MoS₂ nanoflakes, showing a lateral dimension of ~0.5-1 μm for the typical
39 nanoflakes. (c) XRD patterns of the MoS₂ thin film and the MoS₂ crystal. The presence of
40 (002), (004), and (006) peaks suggests that the nanoflakes are well oriented along *c*-axis. The
41 largely expanded (002) peak indicates that the MoS₂ nanoflakes are delaminated along *c*-axis.

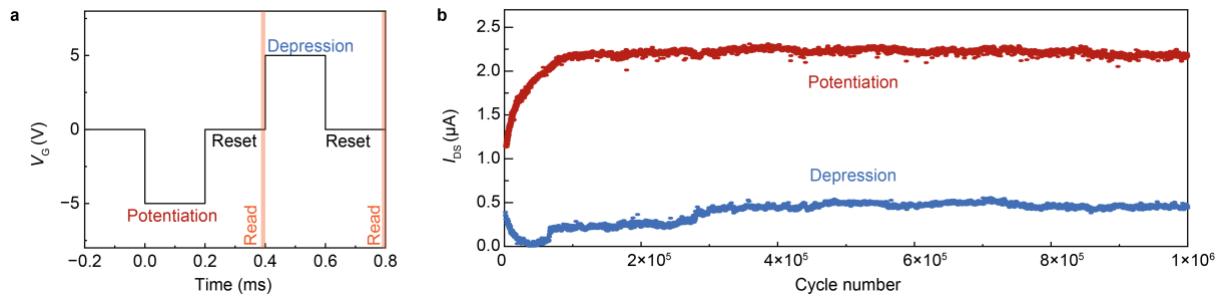


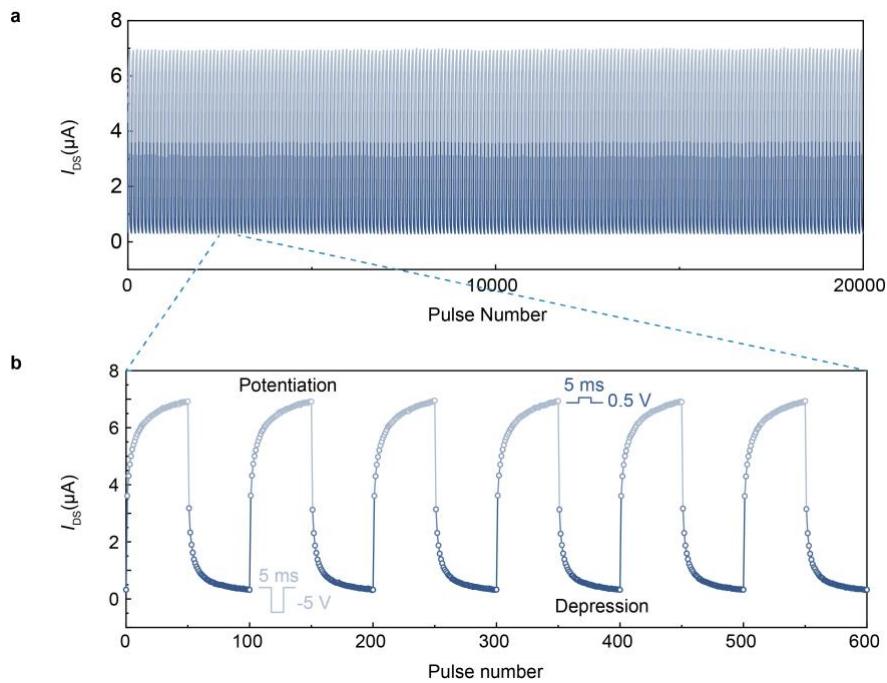
42
43 **Figure S3. Device structure of the MoS₂ memory.** (a) Vertical layered structure of the MoS₂
44 memory (replotted from Fig. 2b). Gate electrodes (15 nm Au / 5 nm Ti) are first defined by
45 photolithography and thermal evaporation. Then 20 nm HfO₂ is grown on the wafer using
46 atomic layer deposition (ALD). MoS₂ channel is deposited by spin coating and processed by
47 dichloroethane solution of 5 mg/mL bis(trifluoromethane)sulfonimide (TFSI) at 70 °C. The
48 channel is then patterned by oxygen reactive ion etching (RIE) using photoresist as the mask.
49 The RIE is performed with a power of 200 W and an oxygen flow of 10 sccm for 40 s. Source
50 and drain electrodes (15 nm Au / 5 nm Ti) are defined by another photolithography and thermal
51 evaporation processes. (b) Cross-sectional high-resolution energy dispersive spectroscopy
52 (EDS) mapping of the device vertical structure. The left is a cross-sectional high-angle annular
53 dark-field scanning transmission electron microscopy (HAADF-STEM) image for reference.
54 The EDS mapping clearly shows a layered structure of MoS₂/HfO₂/Au/Ti/SiO₂.



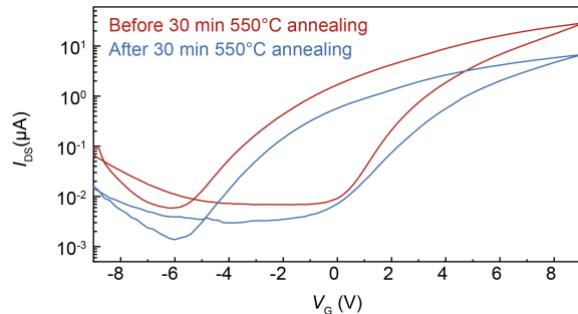
55
56
57
58
59
60
61

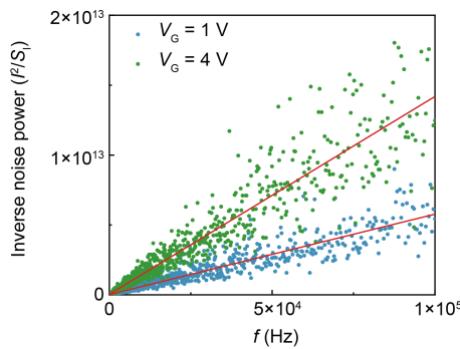
Figure S4. Solution-processed MoS₂ nanoflakes. (a) High-resolution transmission electron microscopy (TEM) image of a solution-processed MoS₂ nanoflake, showing a fringe distance of $\sim 0.27 \text{ nm}$, corresponding to the lattice distance of MoS₂ in *a*-axis. (b) Selected-area electron diffraction pattern (SEAD), showing hexagonal crystal structure of MoS₂ after exfoliation. (c) Atomic force microscopy (AFM) image of solution-processed MoS₂ nanoflakes, showing a lateral dimension of $\sim 0.5\text{-}1 \mu\text{m}$ and a thickness of $\sim 5 \text{ nm}$ for the typical nanoflakes.

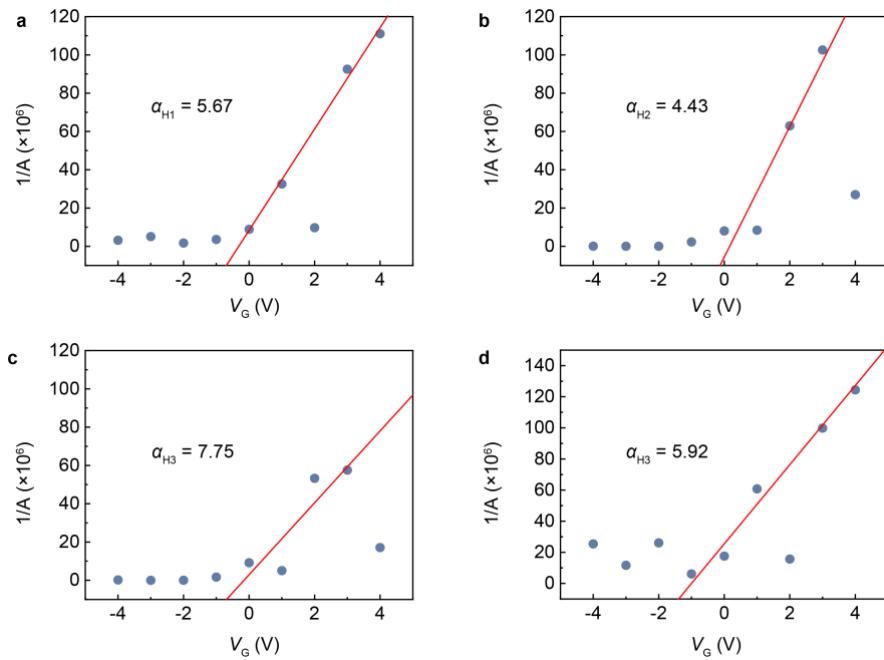

62
 63 **Figure S5. Device-to-device variation.** Heatmap of (a) the memory window (MW) and (b)
 64 conductance on-off ratio (G_{on}/G_{off}) of the MoS₂ memory array extracted from transfer curves
 65 of 40 sampled devices shown in Fig. 2f. The device array shows good uniformity in
 66 performance, with MW of $3.35 \sim 6.58$ V and G_{on}/G_{off} of $10^{3.01} \sim 10^{3.80}$.

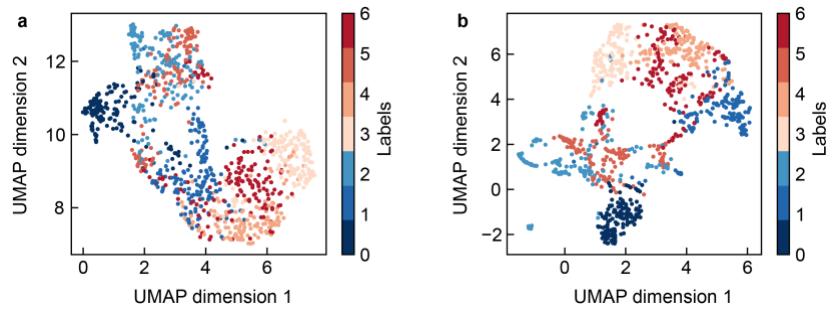

67
68 **Figure S6. Fading characteristics of the MoS₂ memory.** Relaxation of the MoS₂ memory in
69 response to a single potentiation and depression pulse of -5 V and 5 V, respectively (replotted
70 from Fig. 2k). The relaxation is read after setting V_G to 0V. V_{DS} is set as 2V during the whole
71 measurement. The fading memory relaxation time constants are extracted by fitting the fading
72 memory to a triple exponential function:

73
$$y = y_0 + A_1 \exp\left(-\frac{x-x_0}{t_1}\right) + A_2 \exp\left(-\frac{x-x_0}{t_2}\right) + A_3 \exp\left(-\frac{x-x_0}{t_3}\right),$$

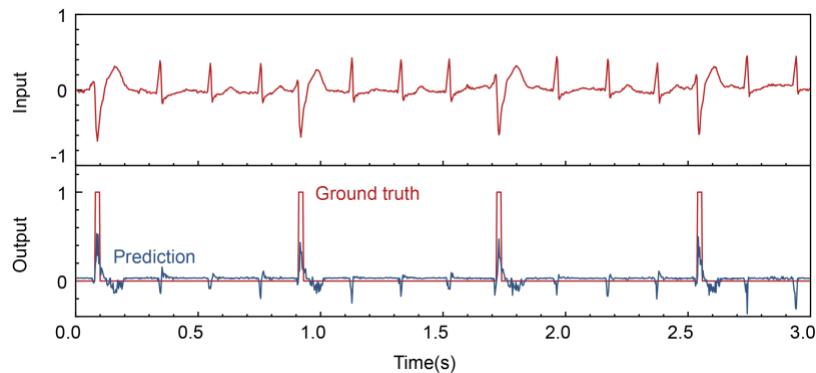

74 where t_i is the relaxation time constant and A_i is the corresponding exponential coefficient. W_i
75 denotes the weight of the relaxation time constant, and is calculated to quantify their
76 contributions by $W_i = A_i / \sum A_i$.


77
78 **Figure S7. Endurance test of the MoS₂ memory.** (a) Protocol for the endurance test. (b)
79 Current outputs for over 1 million consecutive potentiation and depression pulses. A train of
80 potentiation/depression pulses ($V_G = \pm 5$ V, 0.2 ms) are applied to the gate to program the state
81 of the MoS₂ memory. A drain voltage of $V_{DS} = 0.7$ V is constantly supplied. After each pulse,
82 current output is sampled after resetting the gate voltage ($V_G = 0$ V) for 0.2 ms. The high and
83 low current outputs are shown as the red and blue dots. The device exhibits consistent
84 behaviour after over 1 million pulsed operations.

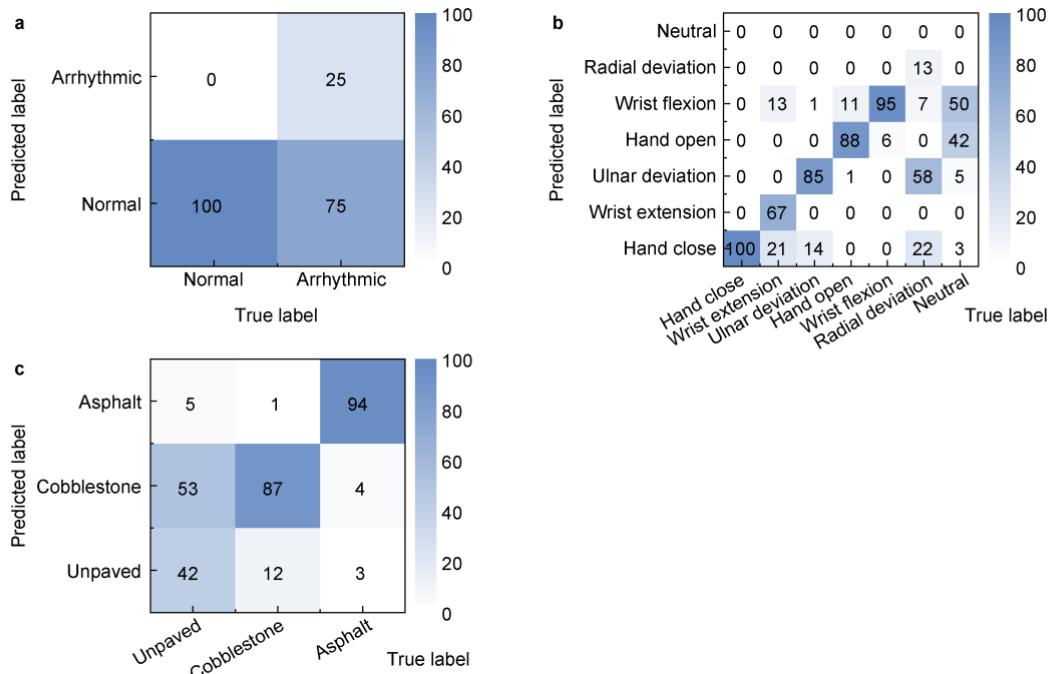

85
86 **Figure S8. Cycle-to-cycle stability of the MoS₂ memory.** (a) Device output characteristic of
87 the MoS₂ memory during 200 consecutive cycles of potentiation and depression. Potentiation
88 and depression are operated by applying negative ($V_G = -5$ V, 5 ms) and positive ($V_G = 5$ V, 5
89 ms) pulses, respectively, to the gate of MoS₂ memory. Current output is sampled after resetting
90 the gate voltage ($V_G = 0$ V) for 0.2 ms. (b) Zoom-in device output characteristic for 6
91 consecutive potentiation/depression cycles. Standard deviations for the device outputs during
92 the 200 consecutive potentiation/depression cycles are 0.025 and 0.009, respectively, proving
93 a good cycle-to-cycle stability.


94
95 **Figure S9. Transfer curves of the MoS₂ memory before and after annealing at 550°C.** The
96 annealing is conducted on a hotplate in a N₂ glove for 30 min to decompose the residual organic
97 compounds from solution processing and device photolithographic fabrication^{1,2}. The device
98 after annealing still exhibits a memory effect with no large variation in the memory window,
99 suggesting that the memory effect is not originated from the organic compounds. Otherwise,
100 the device can lose the memory effect.

101
102 **Figure S10. Inverse noise power versus frequency of the MoS₂ memory.** The inverse noise
103 power (I^2/S_I) as a function of frequency f under gate voltages $V_G = 1$ V and 4 V. The red lines
104 are linear fits of the data points to extract noise amplitude A using $f(I^2/S_I = (1/A)f^{3,4})$.



105
106 **Figure S11. Inverse noise amplitude $1/A$ versus the gate voltage V_G of the MoS₂ memory.**
107 (a)-(d) $1/A$ versus V_G for four MoS₂ memory devices. The noise amplitude A is extracted by
108 linear fitting the inverse noise power (I^2/S_I) as a function of frequency f . Hooge parameters α_H
109 are extracted by linear fitting the $1/A$ as a function of V_G in the range $V_G = 0\sim4$ V using the
110 formula $1/A = B|V_G - V_{th}|$, where $B = LWc_g/\alpha_{He}$ ^{5,6}. L , W , c_g , e is channel length, channel width,
111 gate capacitance per unit area, and elementary charge, respectively. V_{th} is the threshold voltage
112 of the MoS₂ memory. The fitting is limited to the overdrive condition, where the device current
113 is almost linear to V_G . The carrier concentration N can be approximated by a linear relation N
114 $= (V_G - V_{th}) LWc_g / e$, which is used along with $A = (\alpha_H/N)$ to extract α_H . Anomalous points are
115 eliminated for the fitting. The blue dots represent $1/A$ versus V_G , and the red lines denote the
116 linear fitting of the data points. All noise data used for the fitting is collected with a drain
117 voltage $V_{DS} = 0.5$ V. The large α_H indicates the existence of large amount of scattering centres
118 in the MoS₂ memory.



119
120
121
122
123
124

Figure S12. Universal manifold approximation and projection (UMAP) plots. UMAP plots of (a) the Myo sEMG dataset and (b) corresponding dataset after nonlinear mapping by the MoS₂ memory. UMAP is a method for dimensionality reduction. It uses a differentiable kernel to measure the similarity of the data points⁷. The result shows that the data points are more distinguishable after processing by the MoS₂ memory.

125
126 **Figure S13. Arrhythmia detection using linear reservoir computing.** The plot shows the
127 result of the arrhythmia detection task in Fig. 5a using a reservoir computing with linear
128 reservoir node, i.e. the MoS₂ memory, substituted by digital linear transformation. The
129 reservoir computing shows much less filtering effect with both normal and arrhythmia heartbeat
130 poorly filtered.

131
132
133
134
135
136

Figure S14. Classification of human and vehicle signals using linear reservoir computing.

Confusion matrices of (a) the arrhythmia detection, (b) hand gesture classification, and (c) road surface classification tasks using linear reservoir computing with digital linear transformation. The results show significantly worse performance when the MoS₂ memory nodes are substituted with linear reservoir nodes.

137 **Supplementary References**

138 1. Lu, Z., Yang, L. & Guo, Y. Thermal behavior and decomposition kinetics of six electrolyte
139 salts by thermal analysis. *J. Power Sources* **156**, 555–559 (2006).

140 2. Jablonski, A. E., Lang, A. J. & Vyazovkin, S. Isoconversional kinetics of degradation of
141 polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. *Thermochim. Acta*
142 **474**, 78–80 (2008).

143 3. Hooge, F. N. 1/f noise is no surface effect. *Phys. Lett. A* **29**, 139–140 (1969).

144 4. Hooge, F. N. 1/f noise sources. *IEEE Trans. Electron Devices* **41**, 1926–1935 (1994).

145 5. Hung, K. K., Ko, P. K., Hu, C. & Cheng, Y. C. A unified model for the flicker noise in
146 metal-oxide-semiconductor field-effect transistors. 654–665 (1990).

147 6. Sangwan, V. K. *et al.* Low-Frequency Electronic Noise in Single-Layer MoS₂ Transistors.
148 *Nano Lett.* **13**, 4351–4355 (2013).

149 7. Healy, J. & McInnes, L. Uniform manifold approximation and projection. *Nat. Rev. Methods Prim.* **4**, 82 (2024).