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Computational Methods

Setup of Systems. Because the available crystal structure of A. vivianii firefly luciferase lacks
the substrate and adopts an open or semi-open conformation, a homology model was constructed.
Photinus pyralis (P. pyralis) firefly luciferase (PDB ID: 4G36, chain B), which shares 79% sequence
identity with A. vivianii, was selected as the template due to its similar active-site architecture and
preserved salt-bridge interactions near the substrate-binding pocket. Missing residues in the
template structure were modeled using the ModLoop server prior to homology modeling with
Modeller [1, 2]. The resulting A. vivianii luciferase models were evaluated based on structural
stability and stereochemical quality, and the most reasonable structure was selected and validated
using the MolProbity server [3]. Ramachandran plot analysis indicated that 99.6% of residues were
located in allowed regions (Fig S1), with remaining outliers located far from the active site.

The validated model was aligned with the P. pyralis luciferase structure using PyMOL [4], and
the substrate D-luciferyl-adenylate (DLSA, Fig S2) was transferred into the A. vivianii model.
DLSA was subsequently converted into oLu and AMP to construct the wild-type enzyme—substrate
complex (System I; Fig 2a). Four additional systems (Systems II-V) were generated by inserting
Ag?, Zn**, Cd**, or Hg?" ions between the internal salt bridge (E311-R337) and the external salt
bridge (H310-E354), forming metal ion-binding clusters (Fig 2b). The coordination environments
of these metal ion-binding clusters were parameterized using the MCPB.py module within the
AmberTools suite. For all five systems, protonation states of titratable residues (His, Glu, and Asp)
were assigned using the H++ server [S]. The Amber ff19SB force field was used for protein residues,
while GAFF was applied to oLu. Partial charges for oLu were derived using the RESP procedure
[6] at the HF/6-31G level with Gaussian 09 [7]. Missing force field parameters were generated using
parmchk2. Parameters for AMP were taken from the literature. Each system was neutralized with
sodium ions and solvated in a rectangular TIP3P water box [8] with a minimum distance of 12 A
between the protein surface and the box boundary.

EEF and IEF Calculations. For EEF calculations, the Si-state geometries of oLu were
extracted from the QM region of the optimized QM/MM structures of Systems I-V. Each extracted
oLu molecule was treated as an isolated system in the gas phase and denoted as Systems i—v.
Uniform electric fields ranging from —0.08 to +0.08 a.u. were applied independently along the X,
Y, and Z axes, and single-point excited-state calculations were performed at the TD-CAM-
B3LYP/ma-def2-TZVP level using Gaussian 09.

The IEF generated by the enzyme environment was computed using an in-house Python script.
In this approach, the total electric field at a given point on oLu was calculated as the vector sum of
electrostatic contributions from the surrounding environment, including protein residues, metal ions,

AMP, and solvent molecules, according to the formula:

where E is the total electric field vector at the target point, kis the Coulomb constant, q; is
the partial charge of the i-th environmental atom, and 7; is the displacement vector pointing from
the environmental atom i to the target point on oLu.
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Table S1 The contribution of HOMO—LUMO transitions to the S; state for Systems
I and 11-V

System Metal ion HOMO-LUMO contribution
I Free 92.3%
I Ag* 93.6%
m Zn** 92.2%
v Cd** 94.0%
A% Hg* 93.0%

Table S2 Mulliken charges of oL.u localized on the benzothiazole and thiazole moieties,
together with the net charge-transfer amounts during the Si — So de-excitation in
Systems | and 11-V

System  State Benzothiazole (e) Thiazole (e) Net transfer (S1 — So, e)

So -0.407 -0.593

I 0.085
S1 -0.323 -0.677
So 0.288 -1.288

II 0.123
S1 0.411 -1.411
So -0.134 -0.866

11 0.117
S1 -0.017 -0.983
So 0.028 -1.028

v 0.102
S1 0.130 -1.130
So -0.095 -0.905

\Y% 0.131
S 0.036 -1.036

Table S3 Key bond lengths (A) and dihedral angles (9 of oLu (see Fig 1) in 5
systems at TD CAM-B3LYP/6-31+G**//MM level, D1 represents the dihedral
angle C7-S1'-N3'-S1

System R1 R2 R3 R4 RS R6 R7 D1
I 1.746 1.333 1.415 1.332 1.766 1.269  1.245 -177
II 1.742 1.334 1.421 1.336 1.756 1.269 1.258 172
1T 1.747 1.328 1.416 1.336 1.758 1.271 1.263 171
v 1.746 1.332 1.416 1.334 1.752 1.262 1.258 170
\4 1.743 1.333 1.422 1.334 1.757 1.274 1.262 171
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MolProbity Ramachandran analysis
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Fig S1 Ramachandran analysis of the most stable conformation of A. vivianii luciferase
from homology modeling
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Fig S2 The adenylate analogue 5’-O-[N-dehydroluciferyl)-sulfamoyl]-adenosine
(DLSA)
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Fig S3 Frontier molecular orbital analysis of the isolated oLu in System i and ii-v

4.0

j<V]

3.54

3.0+

2.54

2.0

RMSD (A)

1.0

0.5+

0.0 T

(=

RMSD (A)

T

T

40 60

Time (ns)

80 100

1.0

0.9 4
0.8 4
0.7+

0.0

20

40 60 80 100
Time (ns)

Fig S4 Root mean square deviation (RMSD) of (a) the protein backbone and (b) oLu
of the A. vivianii firefly luciferase complex (System 1) over the 100 ns molecular
dynamics simulation
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Fig S5 Radius of gyration (Rg) of the protein of the A. vivianii firefly luciferase
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Fig S9 The distances of salt bridge over time for the five systems. Panels a—f correspond
to the distances between: (a) His310NE2-Glu3540E1, (b) His310NE2-Glu3540EZ2, (c)
Glu3110E1-Arg337NH1, (d) Glu3110E1-Arg337NH2, (e) Glu3110E2-Arg337NH1,
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The Cartesian coordinates (A) of stationary points (only substrate) computed at
(TD CAM-B3LYP/6-31+G**: Amber) level.

System I-nometal

C 1.740 1.648 -29.008
N 1.198 0.419 -28.961
@) 1.148 2.703 -29.304
S 3.768 0.008 -28.456
C 3.228 1.715 -28.680
N 2.812 -2.834 -28.563
@) 0.264 -7.693 -28.541
S 0.219 -2.538 -28.668
C 2.101 -0.523 -28.694
C 1.849 -1.915 -28.630
C 0.870 -4.147 -28.602
C 0.168 -5.344 -28.593
C 0.902 -6.597 -28.562
C 2.280 -4.095 -28.578
C 2.999 -5.319 -28.589
C 2.336 -6.522 -28.583
H -0.913 -5.389 -28.634
H 2.875 -7.462 -28.601
H 4.084 -5.279 -28.605
H 3.352 2.286 -27.762
H 3.764 2.219 -29.487

System II-Ag*

C 44.633 50.707 49.381
N 45.095 50.078 48.288
) 44.450 51.946 49.498
S 44.941 48.163 50.117
C 44.393 49.816 50.588
N 46.243 46.625 47.903
) 49.397 44.881 43.774
S 46.320 48.376 45.977
C 45.308 48.780 48.514
C 45.894 47.874 47.589
C 47.115 46.850 45.734
C 47.881 46.457 44.645
C 48.611 45.203 44715
C 46.962 46.050 46.883
C 47.622 44.797 46.926
C 48.421 44.390 45.885
H 47.990 47.062 43.752
H 48.961 43.451 45.934
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