
1 **Identification of Sialidase-Producing Bacteria in the Tsetse Gut and Characterisation of a**  
2 **Paenibacillus Sialidase: A Potential Tool for Paratransgenic Control of African**  
3 **Trypanosomes**

4 Youssouf M Mfopit<sup>1,2,3\*†</sup>, Judith S Engel<sup>4\*†</sup>, Emmanuel O Balogun<sup>2,3</sup>, Mario Waespy<sup>5</sup>, Petra  
5 Berger<sup>5</sup>, Daniel M Achukwi<sup>6</sup>, Sen C H Ngomtcho<sup>7,8</sup>, Mahamat A M Ibrahim<sup>9</sup>, Mohammed  
6 Mamman<sup>3,10</sup>, Gloria Dada Chechet<sup>2,3</sup>, Mohammed N Shuaibu<sup>2,3</sup>, Junaidu Kabir<sup>3,11</sup>, Barbara  
7 Reinholt-Hurek<sup>5</sup>, Sörge Kelm<sup>5</sup>

8  
9

10 **SUPPLEMENTARY INFORMATION**

11 **1. Introduction**



12 **Figure S1: Model: surface Sia coat protects the trypanosomes in the tsetse midgut. A.** Simplified  
13 representation of the work from Nagamune *et al.*<sup>1</sup>. GPI anchors on the surface of procyclic trypanosomes  
14 are sialylated. When TS is not present, colonisation efficiency is severely impaired. Expression of soluble  
15 TS rescues infection efficiency. **B.** Hypothesis: Sialidase expressing bacteria in the tsetse gut impair  
16 trypanosome colonisation. Sialidase and TS compete for the same substrates, released SA cannot be  
17 transferred by TS. By substrate depletion and enhancing the concentration of acceptor glycans, bacterial  
18 Sialidase activity results in incomplete sialylation of the parasites leading to clearing of the parasites.

20 **2. Supplementary Materials and Methods**

21 **2.1. Dissection of tsetse flies**

22 Only live flies were dissected and analysed. They were dissected under normal atmospheric  
23 conditions in a self-constructed mobile field cabinet creating a semi-sterile work environment. The  
24 inside of the cabinet, dissecting tools and microscope slides were thoroughly cleaned with 70%  
25 ethanol and air-dried. Flies were dissected using microsurgery magnifying glasses on paper towels  
26 previously soaked with 70 % ethanol. Wings were removed and stored dry. The remaining flies  
27 were dipped in 70 % ethanol for 10 s to sterilise the surface and allowed to air-dry prior dissection.  
28 The dry fly was then dissected in sterile PBS on a clean slide. Legs, proboscis, salivary glands  
29 were collected and preserved in 200  $\mu$ L nucleic acid preservation agent (NAPA: 25 mM sodium  
30 citrate, 10 mM EDTA, 70 g ammonium sulfate/100 mL solution, pH 7.5) in 1.5 mL cryotubes. Gut  
31 was homogenised in sterile 50 mM Tris buffer pH 9.0 using a motor-driven pestle (Kimbler Kontes)  
32 in a microfuge tube. Gut homogenate was distributed between five different assays.

33 **2.2. On-field sialidase assay optimisation**

34 Our goal was to detect sialidase activity reliably in single tsetse gut samples collected in the field.  
35 Therefore, the corresponding assays had to be adapted to field conditions, i.e. no laboratory  
36 infrastructure available during field collections, no or unreliable electricity, difficult logistics and  
37 very limited cooling opportunities. For the purpose of the study, it was essential to see whether (1)  
38 we can identify active sialidase in the fly gut, (2) whether free SA are initially present in these  
39 samples resulting from a recent blood meal and (3) whether SA are stable in the fly gut during  
40 assay conditions, including enzymatic degradation of SA by SA-lyase. Therefore, the initial  
41 approach of the sialidase assay included separating gut homogenate in five parts:

- 42 1) 50  $\mu$ L were transferred to 450  $\mu$ L of NAPA for nucleic acid analysis.
- 43 2) 40  $\mu$ L homogenate was incubated with 80  $\mu$ g fetuin (0.8 – 0.9 mM fetuin-bound SA) and  
44 1 mM 4-Methylumbelliferyl-*N*-acetylneuraminic acid (MU-NANA) as substrate to detect  
45 sialidase activity.
- 46 3) To see whether free SA are initially present in these samples resulting from a recent blood  
47 meal, 40  $\mu$ L of the gut homogenate was directly precipitated with 4-fold volume of acetone  
48 (no substrate control).

49 4) 40 µL of gut homogenate was incubated with free SA to monitor the stability of SA in the  
50 fly gut during assay conditions, including potential enzymatic degradation by sialic acid  
51 lyase (SA-lyase).

52 5) 30 µL of homogenate was added to 150 µL sterile MMI (Maramorosch and Mitsuhashi  
53 Insect medium) buffered with 10 mM sodium phosphate (pH 7.0) for bacterial culture.

54 Qualitative assessment of sialidase activity in field samples was performed using a simple filter  
55 spot approach. 1 µL of the acetone supernatant (10x diluted original sialidase assay) was spotted  
56 onto a Whatman filter. MU-fluorescence was visualised at pH 9.0/10.0 <sup>2</sup> by adding 2 µl of 1 M  
57 glycine stock solution (pH 10) and exposing to blue light (395-400 nm). The signal was visualised  
58 with a commonly available blue light torch (Wavelength 395-400 nm). Positive samples were  
59 selected for bacterial isolation.

### 60 **2.3. Detection of cleaved methylumbelliferoce via an anion-exchanger membrane**

61 Supernatants of the first survey were separated on Sartobind Q 96-well stripes (Sartorius stedim  
62 biotech, Göttingen, Germany) in a 96-well format. Briefly, the anion exchange membranes were  
63 equilibrated with 5 mM Tris-Cl pH 9.0. 200 µL of assay supernatant was applied to each membrane  
64 and the flow through collected by centrifugation for 1 min at 4°C and 1000 rpm. The membranes  
65 were washed with 500 µL 5 mM Tris-Cl pH 9.0, and bound substances eluted with 500 µL 1 M  
66 NaCl. Elute was kept and frozen at -80°C. 100 µL flow through was added in a black 96-well plate  
67 for fluorescence detection of MU released. Samples of all subsequent surveys were directly  
68 investigated for fluorescence without prior anion exchange separation and 50 µL of dissolved  
69 assay supernatants were used.

### 70 **2.4. Detection of free sialic acid by RP-HPLC**

71 α-Keto acids react specifically with phenyldiamides to form quinoxalines. The α-keto function of  
72 SA has been utilised to develop a sensitive and specific detection of the acidic sugars by reverse  
73 phase high pressure liquid chromatography (RP-HPLC) after derivatization with 1,2-diamino-4,5-  
74 methylendioxybenzene (DMB) <sup>3,4</sup>. A modified protocol used 4,5-dimethylbenzene-1,2-diamine  
75 (DMBA), a cost-efficient derivative of DMB <sup>5</sup>. Sialic acid-derivatives can be separated via their  
76 hydrophobic properties provided by DMB or DMBA and quantitatively detected via their  
77 fluorescence. Concentrations of free SA in fly samples were determined by adaptation of the  
78 protocol from Hara *et. al.* <sup>6</sup> and Wang *et al.* <sup>5</sup>, respectively.

79 For DMB derivatization, 30  $\mu$ L of fly sample supernatant was mixed with 4 M acetic acid to obtain  
80 a final concentration of 2 M acetic acid. The DMB-solution (1.4 M acetic acid, 18 mM sodium  
81 hydrogensulfite, 0.75 M  $\beta$ -Mercaptoethanol and 7 mM DMB <sup>6</sup>) was prepared freshly prior each  
82 derivatization. The fly sample in 2M acetic acid and the DMB solution were mixed in a volume  
83 ratio of 1:1 and derivatization was carried for 2.5 h at 50 °C in the dark. Following derivatization,  
84 samples were spun down and the reaction slowed by keeping the samples at -20 °C for at least 15  
85 minutes or until measured. The samples were transferred to 200  $\mu$ L conical HPLC reaction tubes  
86 and kept in the dark until RP-HPLC analysis.

87 DMBA was dissolved in 1.2 M acetic acid to reach a final concentration of 300 mM. This solution  
88 was stable and used for experiments for up to 4 months when stored at -20°C. For derivatization,  
89 52.8  $\mu$ L assay sample was mixed with 7.2  $\mu$ L 10 M acetic acid. 60  $\mu$ L 6 mM DMBA solution was  
90 added and derivatization was promoted by incubation at 60°C for 60 min in a water bath in the  
91 dark. After 60 min, samples were briefly centrifuged, cooled down at -20°C to slow the reaction  
92 and either directly measured or stored at -20°C until analysed.

93 For both methods, a calibration curve was prepared for every measurement. A time dependent  
94 increase of fluorescence signal was observed for SA-DMB and SA-DMBA derivatives of the same  
95 concentrations measured at different time points. Therefore, technical replicates of each calibration  
96 concentration were measured at the beginning, middle and end of each set of samples.

97 Samples were analysed at a MERCK/Hitachi HPLC system. Sialic acid-DMB(A) derivatives were  
98 separated on a reverse-phase column (Phenomenex®Luna C18(2), Phenomenex, Germany) and  
99 detected using a fluorescence detector (F-1000) at excitation wavelength 370 nm and emission 450  
100 nm for SA-DMB and 380 nm and 430 nm for SA-DMBA. The column chamber was constantly  
101 kept at 25°C. SA-DMB and SA-DMBA derivatives were eluted isocratically at a flow rate of 1  
102 mL/min. Sialic acid-DMB derivatives were eluted for 9 min with 7 % methanol/ 9% acetonitrile  
103 in water, followed by a 3 min wash with 7% methanol and 80% acetonitrile in water and 17 min re-  
104 equilibration. Sialic acid DMBA-derivatives were eluted for 5 min with 20% acetonitrile in water,  
105 followed by 4 min wash with 2% tetrahydrofuran in acetonitrile and 6 min re-equilibration.

106 The software HSM D700 was used for data acquisition and evaluation. Chromatograms were  
107 adjusted manually to allow baseline correction prior to calculation of peak areas.

108 **Calculation of free sialic acid from RP-HPLC data**

109 The peak area of SA-DMB(A) derivatives increased dependent on the time the samples were kept  
110 at room temperature prior to injection into the RP-HPLC system. The technical replicates of the  
111 calibration curve were used to monitor and correct for the time-dependent signal increase of the  
112 samples. In principal, for each time point a sample was analysed, a corresponding expected  
113 calibration curve was calculated to determine the concentration by interpolation of this calibration  
114 curve. Due to the differences in SA-DMB and SA-DMBA analysis, two different methods were  
115 employed for correction.

116 In detail, peak areas of SA-DMB derivatives were corrected by employing the slope of time  
117 dependent increase of the respective calibration concentration. The different peak areas measured  
118 in the technical replicates of one concentration were plotted against the timepoints at which they  
119 were measured. The increase of the peak areas followed a linear regression. The slopes of the  
120 regression curves were used to correct the unknown samples. The slope that represented the  
121 concentration range of the unknown sample was multiplied by the timepoint at which the sample  
122 was measured. This factor was subtracted from the measured peak area. Concentrations of the  
123 samples were calculated from the corrected area using the linear regression curve of the first  
124 calibration set.

125 A similar approach was adopted to correct peak areas of SA-DMBA derivatives. The peak areas  
126 within the technical replicas of the calibration curve increased in the same proportion independent  
127 of the concentration. Therefore, the quotients of the peak areas measured last ( $A_E$ ) and the peak  
128 area measured first ( $A_1$ ) of the respective concentrations were averaged to obtain factor F.

$$129 F = \frac{1}{n} * \sum_{i=1}^n \frac{A_{Ei}}{A_{1i}}$$

130 with

131 i sample index

132 F was put in relation to the time interval between two measurements ( $T_E-T_1$ ). ( $T_E-T_1$ ) is constant  
133 for all samples of the calibration curve, all other samples were measured within this time interval.  
134 The measured peak areas ( $A_s$ ) were corrected as follows:

135 
$$A_{SC} = A_S * \frac{(T_E - T_1)}{(T_E - T_1) + (F - 1) * T_S}$$

136 with

137  $A_{SC}$  Peak area of sample corrected for time dependent signal increase

138  $A_S$  Peak area of sample measured

139  $(T_E - T_1)$  Time interval between 1<sup>st</sup> and last calibration

140  $T_E$  Timepoint of last calibration

141  $T_1$  Timepoint of 1<sup>st</sup> calibration

142  $T_S$  Timepoint of sample measured

143 Concentrations of the samples were calculated from the corrected peak areas ( $A_{SC}$ ) using the linear  
144 regression curve of the first calibration set.

145 **2.5. Sialidase assay of liquid bacterial cultures**

146 Whole bacteria cultures, culture supernatants and bacteria lysates were screened for sialidase  
147 activity. To separate the supernatant from bacteria cells, 1 mL of liquid culture was centrifuged 5  
148 min at 4000 rpm. For the lysate, the bacteria pellet was lysed by lysozyme digest with 250 µg  
149 lysozyme in 50 mM sodium phosphate buffer pH 7.3 supplemented with 4 mM EDTA and 0.1%  
150 Triton-X100 in a total volume of 200 µL for 5 min at 30 °C followed by 45 min on ice. EDTA was  
151 neutralised by adding 4 mM CaCl<sub>2</sub>, and samples were centrifuged for 5 min at 14000 rpm and the  
152 supernatants collected.

153 The bacteria culture supernatant, whole bacteria culture and the lysate were investigated for  
154 sialidase activity by adding 1 mM MU-NANA with and without additional 4 mM CaCl<sub>2</sub>. A control  
155 sample without any supplements was incubated in parallel. To determine any interference of  
156 fluorescence detection within the samples, whole bacteria cultures were additionally incubated  
157 with 100 µM MU.

158 All samples were incubated for 18 h at 30°C in the dark. Standard curves of MU in MMI and lysis  
159 buffer were loaded on the same plates. Fluorescence was measured after addition of 100 µL of 1  
160 M glycine pH 10.0 in a black 96-well plates as described above with the adjustment that the plate  
161 was covered with adhesive foil to contain any residual live bacteria. To assess cleavage of MU-

162 NANA in a concentration dependent manner, liquid bacterial cultures were added to a 1:2 dilution  
163 series of MU-NANA (1000  $\mu$ M to 16  $\mu$ M available SA).

164 **2.6. PCR analysis for presence of *Trypanosoma* sp.**

165 DNA was purified from homogenised gut tissue in NAPA with the DNeasy Blood and Tissue Kit  
166 (Qiagen, Hilden, Germany) according to manufacturer instructions with following adjustments as  
167 described previously <sup>7</sup>: 100  $\mu$ L of homogenate was used for purification and eluted with the same  
168 volume of elution buffer. DNA content was checked by spectrophotometric detection at 260 nm.

169 A diagnostic PCR targeting the Internal transcribed spacer 1 (ITS1) of Kinetoplastida was  
170 performed to investigate presence of trypanosomes in the gut samples <sup>8</sup>. Species were assigned  
171 according to the length of the PCR amplicon as described previously <sup>8,9</sup>. Preparation of the PCR  
172 reaction and amplification cycles were performed as described previously <sup>9</sup> with the adjustment of  
173 using 5  $\mu$ L template in the first reaction. Amplicons were resolved on a 2 % TBE (Tris-borate  
174 EDTA buffer) agarose gel stained with Stain-G (Serva, Heidelberg, Germany) for 1 hour at 100V.  
175 GeneRuler 50bp DNA Ladder (Thermo Fisher, Dreieich, Germany) was used for molecular size  
176 estimation.

177 **2.7. Bacterial DNA extraction and 16S rRNA amplification**

178 DNA was crudely extracted from bacterial isolates by bead-beating with 0.75-1 mm glass beads  
179 in 500  $\mu$ L sterile 10 mM TE-buffer pH 8.0 (10 mM Tris-Cl and 1 mM EDTA). Bead beating was  
180 repeated twice for 20 sec. Supernatant was transferred in 1.5 mL microtubes and heated at 95°C  
181 for 20 min to reduce potential spores within the samples. The crude extracts were stored at -20°C.

182 The bacterial 16S rRNA gene was amplified with generic primers according to Grönemeyer *et al.*  
183 <sup>10</sup>. 2  $\mu$ L template were used for amplification in a final volume of 50  $\mu$ L with 2.5 mU DreamTaq  
184 Polymerase, 5  $\mu$ L DreamTaq Buffer and 50  $\mu$ M sterile dNTPs (all Thermo Scientific, Dreieich,  
185 Germany). Primers used were Bac8uF 5'-AGAGTTGATNHTGGYTC AG-3' and Univ1492uR  
186 5'-GGNTCCTTGTACGACTT-3', both at final concentrations of 0.5  $\mu$ M. PCR amplification  
187 cycle was as follows: 5 min at 95°C, 40 cycles of 1 min at 95°C, 30 sec at 52 °C and 2 min at 72  
188 °C, final elongation step for 10 min at 72°C.

189 Successful amplification of the approximate 1500 bp amplicon was investigated on an 1.5% TAE  
190 agarose gel prior direct sequencing by a commercial company (Microsynth SeqLab, Göttingen,

191 Germany). Obtained sequences were cleaned and trimmed using Geneious Pro 5.5.9 <sup>11</sup>. They were  
192 aligned using the Geneious Alignment tool. Sequences were blasted against the NCBI database to  
193 identify closest relatives. Reference sequences obtained from NCBI and sample sequences were  
194 aligned and a 689 bp alignment was analysed. Phylogenetic relationships were inferred with  
195 MEGA6 <sup>12</sup>. Maximum likelihood analysis was performed with the Kimura-2-parameter model  
196 assuming gamma distribution as determined by the MEGA model finder tool with 1200 bootstraps  
197 replications.

198 **2.8. Purification of bacterial genomic DNA**

199 Genomic DNA was isolated from pure bacterial culture using standard phenol-chloroform method  
200 <sup>13</sup> with few modifications. Briefly, stock culture was streaked onto MMI-agar-10%FCS plate and  
201 a single colony was used to inoculate 15 ml MMI-10% FCS. In two centrifugation steps, 2 x 2 ml  
202 of cells (OD<sub>600nm</sub> 1.5) were centrifuged in one cup for 5 min at 4000 rpm. The pellet was  
203 resuspended in 1 mL TES-buffer, centrifuged again and the pellet finally resuspended in 300 µl  
204 TE. For cell lysis, 100 µL of 5% Laurylsarcosin and 23 µL 5% Pronase E were added, vortexed  
205 and incubated for 1 h at 37°C. Then 5 µL RNase (10 mg/mL) were added and incubated for 30  
206 min at 37°C. The mixture was pipetted with the blue tip at least 10 times up and down and well  
207 vortexed. To the cell suspension, the same volume of PCI (phenol:chloroform:isoamylalcohol,  
208 24:24:1 vol/vol) was added, well mixed and centrifuged for 10 min at 14,000 rpm. The upper phase  
209 was carefully transferred with a 100 µl pipette into a new Eppendorf tube without touching the  
210 interphase. The adding of PCI, mixing, centrifugation and the transfer of the upper phase was  
211 repeated for a minimum of 3 more times. Then the upper phase was finally extracted with TE-  
212 saturated chloroform-isoamylalcohol and centrifuged again. The supernatant was discarded, and  
213 the pellet was washed 1x with 70% ethanol (500 µL), centrifuged shortly and the supernatant  
214 discarded with a pipette. The residual ethanol was removed and the pellet was dried at 37 °C.  
215 Finally, the pellet was resuspended in 30 µL of TE buffer. The DNA concentration and the purity  
216 was measured on NanoDrop then stored at -20 °C. For integrity assessment, about 700 ng of DNA  
217 were run on 1% agarose.

218

219 **2.9. Sialidase cloning**

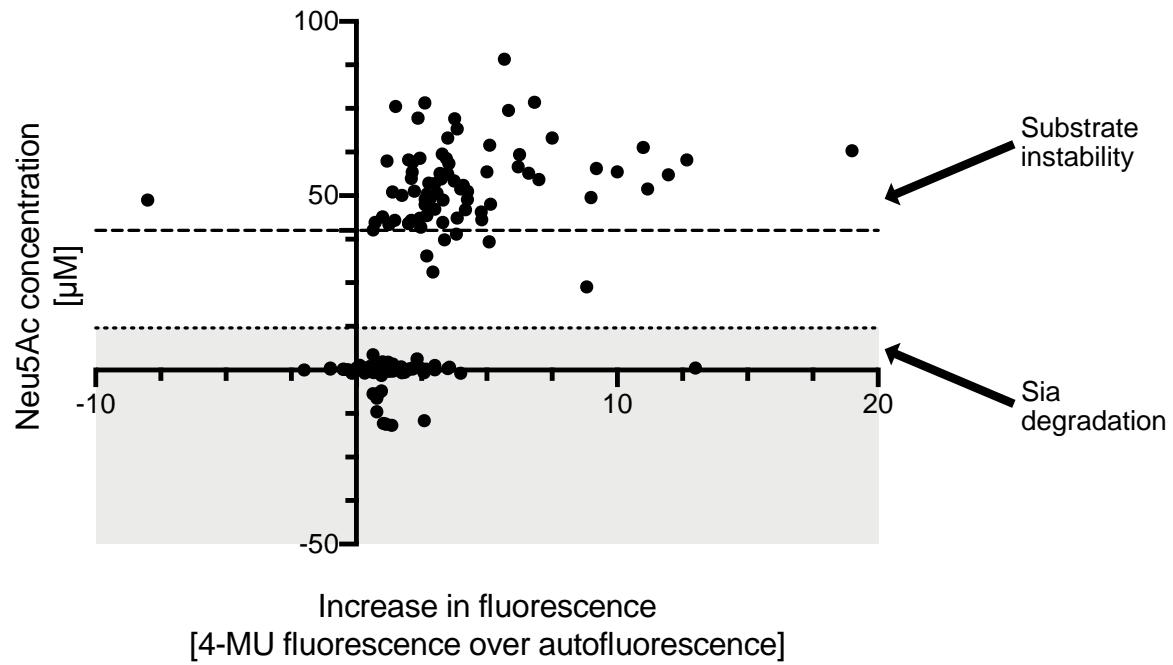
220 Amplification of the sialidase gene with restriction sites: Primers (Sigma-Aldrich) were designed  
221 to amplify the entire gene except the start and stop codons and to include BspHI and EcoRI  
222 restriction enzyme recognition sites to facilitate cloning into the protein expression vector pET28a.  
223 Primers were BspHI\_His\_Sia: 5'-tatcatgagccatcaccatcaccaCACATTCCATTTCG-3' and  
224 EcoRI\_Sia: 5'-tcgaattcATCGCCATCATGTTCATCCTC-3' [nucleotides in lower case are  
225 extensions containing the recognition sites for restriction enzymes (underlined) and the 6X His-  
226 Tag (double underlined)]. The reaction mix was constituted of following: 1.0  $\mu$ M of each of the  
227 primers, 1  $\mu$ L of 10 mM dNTPs, 1 unit Phusion High-Fidelity DNA Polymerase (ThermoFisher),  
228 3  $\mu$ L DNA template, 10  $\mu$ L of 5X Phusion<sup>TM</sup> HF Buffer and H<sub>2</sub>O for a total volume of 50  $\mu$ L.

229 For amplification reaction, after optimization, 2 continuous steps PCR were performed in  
230 following conditions: an initial denaturation step at 95 °C for 3 min was followed by a first 5  
231 amplification cycles including: a denaturation step at 94 °C for 10 s, an annealing step for 30 s at  
232 48 °C and an extension step at 72 °C for 1 min 20 s; then followed immediately by a second 20  
233 amplification cycles at the same conditions except the annealing temperature that was increased to  
234 65°C. A final extension step was performed at 72 °C for 10 min.

235 After the PCR amplification, 5  $\mu$ L of amplified products were resolved by electrophoresis at 100  
236 volts for 60 min on 1% agarose gel stained with Stain-G to investigate the successful amplification  
237 of the 2784 bp amplicon. DNA bands were visualized under ultraviolet light. Then, the remaining  
238 reaction volume was run on TAE agarose gel. The amplicons were excised and purified using the  
239 GeneJET Gel Extraction Kit (ThermoScientific) according to the manufacturer instructions.

240 The purified amplicons (tagged sialidase gene) were cloned into pJET1.2/blunt cloning vector  
241 (ThermoFisher), transformed into *E. coli* strain XL1-Blue according to manufacturer instructions  
242 and sequenced to confirm successful amplification of the targeted sequence with restriction sites.

243 Expression plasmid: The expression plasmid used in this study was pET28a-MBP-SpeI-TS1a-  
244 SNAP-Strep. The original vector (pET28a) was already modified with insertion of other elements  
245 <sup>14</sup>.


246 Restriction digestion: The amplified sialidase gene was treated with restriction enzymes:  
247 FastDigest BspHI and EcoRI (ThermoScientific), while the expression plasmid pET28a was  
248 treated with FastDigest EcoRI and NcoI. The enzyme NcoI used for the expression plasmid

249 produces compatible end with BspHI even though they recognize different restriction sequences.  
250 The restriction digestion was performed according to manufacturer instructions.  
251 Ligation: The insert was ligated with expression plasmid pET28a using T4 DNA Ligase  
252 (ThermoScientific) according to manufacturer instructions. The mixture was then transformed into  
253 *E. coli* strain Rosetta and plated on LB-agar containing kanamycin. Successful and correct gene  
254 insertion was verified by colony PCR using three set of primers: the first set amplifying the T7  
255 promoter to the T7 Terminator (3008 bp), the second amplifying from one portion of the gene to  
256 the T7 Terminator (2732 bp) and the third set targeting one portion of the sialidase gene (541 bp).  
257 The constructed plasmid was further sequenced to confirm the sequence and the directionality of  
258 the insert.

259 **3. Supplementary results**

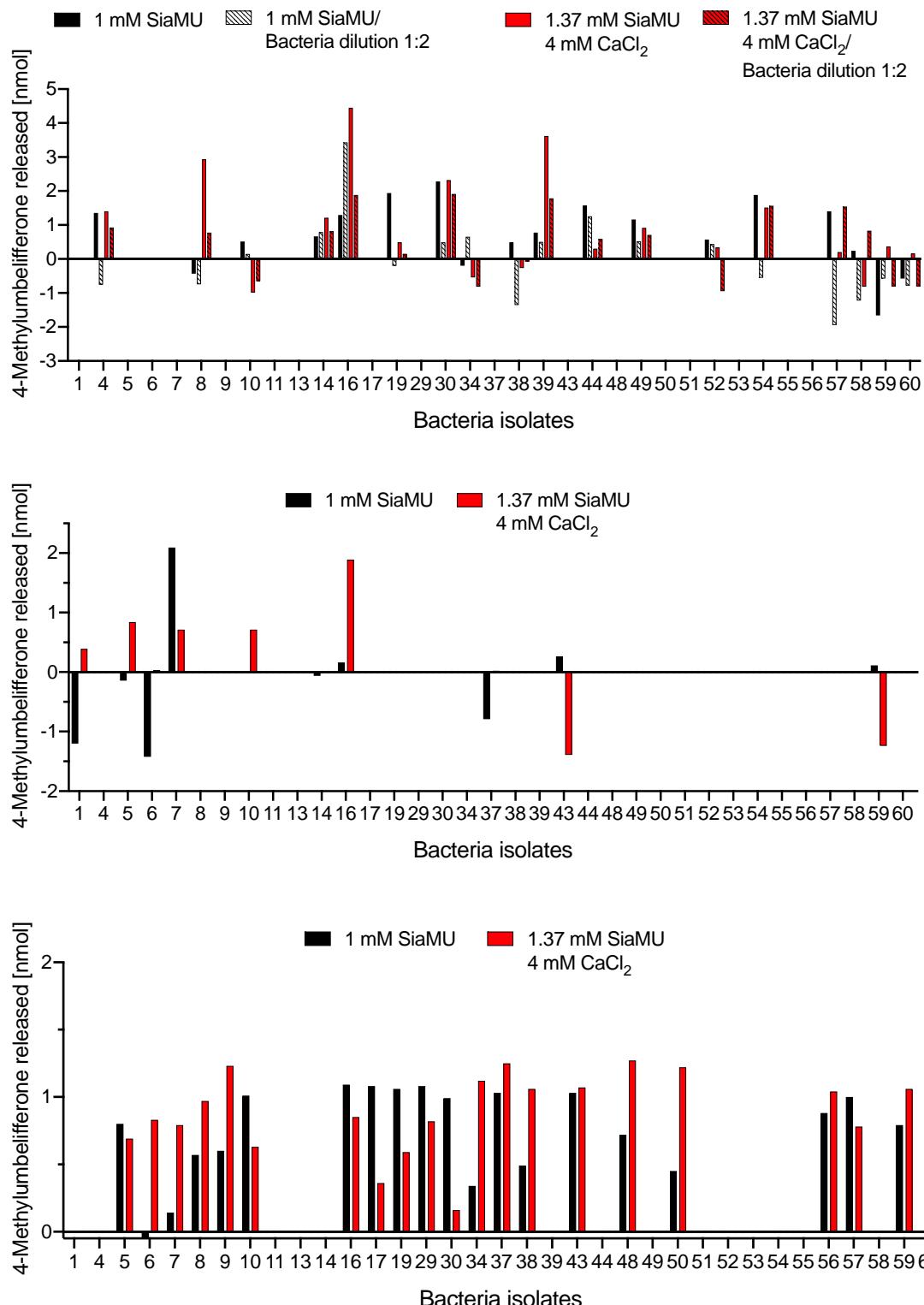
260 **3.1. Sialidase Field Assay optimisation**

261 The sialidase assay was first applied in 385 tsetse during a field survey in Nigeria during March  
262 2014 <sup>7</sup>. All samples were screened for sialidase activity by direct fluorescence detection of free  
263 MU. A subset of samples showing a >5-fold increase over autofluorescence measured in the  
264 sample without added substrates and a random selection of samples representing the different  
265 locations were analysed for presence of free Sia with RP-HPLC of DMB(A)-derivatives. An  
266 overview of the samples screened by both detection methods is presented in Fig. S2. Two distinct  
267 populations are identified that translate to two different challenges faced during the application of  
268 the assay in the field.



269

270 **Figure S2. Sialidase assay results of the first field application in tsetse gut samples collected in**  
 271 **Nigeria (2014).** The dashed line represents free SA present in substrate mixtures used to assay all samples  
 272 above they grey area. The dotted line represents the average free SA present in the substrate mixtures  
 273 used with all samples clustering within the grey area. Free SA concentrations were determined in the  
 274 Sialidase assay samples by analysis of DMB and DMBA derivative of SA by RP-HPLC as described under  
 275 methods. Increase in fluorescence was determined by in the Sialidase assay supernatants measured after  
 276 anion exchange chromatography.

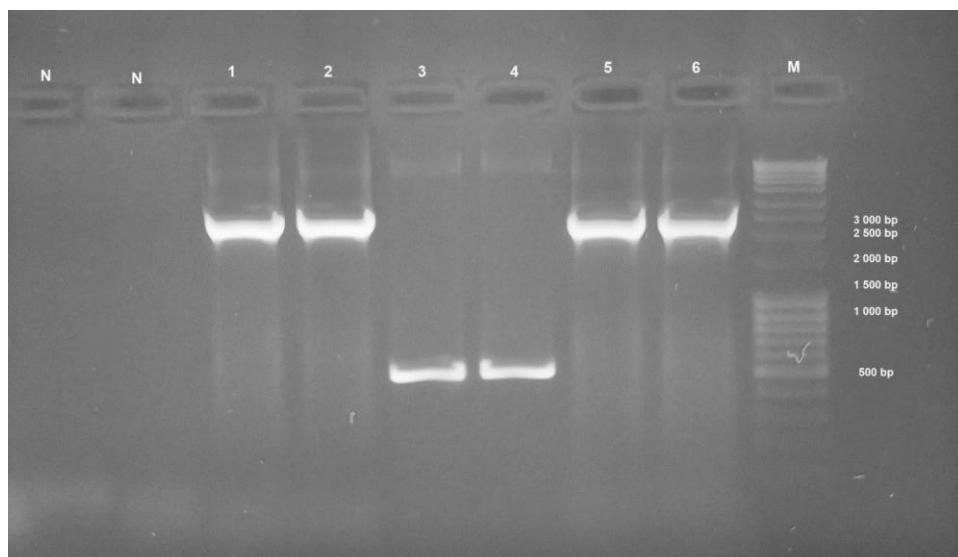

277 The first challenge regarded substrate stability. During field collections, fetuin and MU-NANA  
 278 were incubated in buffer in parallel to the sialidase assay in fly samples to monitor stability of our  
 279 substrate mixture (substrate controls). On each day of employing the sialidase assay, substrate  
 280 controls were included to link irregular high concentrations of free SA to potential substrate  
 281 degradation at a timepoint during collection. And indeed, substrate degradation was observed. All  
 282 samples with free SA concentrations above the dotted line (Fig. S2) were dissected at the first and  
 283 second collection sites of the survey. Correspondingly, the substrate control of the first site showed  
 284 a high background of free SA, represented by the dashed line. Free SA concentrations in the  
 285 substrate control indicate hydrolysis of the substrates during field conditions. This masks potential  
 286 positive candidates. It should be noted that though temperature fluctuated extensively, ranging  
 287 between 26°C and 38°C during the enzyme assays, no correlation between high temperature and  
 288 substrate instability was detected. High free SA concentrations were detected in the first 50

289 samples incubated at constant 27 °C. To enhance substrate stability, lyophilised substrates were  
290 used in all subsequent field screenings.

291 The second challenge identified during RP-HPLC analysis is represented by samples below the  
292 dotted line. In all samples following a specimen collected and dissected during the first day of the  
293 survey in Kainji Lake National Park (Nigeria), the second site visited, all samples revealed SA  
294 concentrations around or below the detection threshold (grey background). This is remarkable  
295 because the substrate controls from different days and locations showed an average SA  
296 concentration of 12  $\mu$ M (dotted line), and this concentration of free SA present in the substrates  
297 could not be recovered in any of the specimen collected at the same sites. This finding let us to  
298 incorporate a free SA control in all subsequent field screenings to ensure that hydrolysed SA would  
299 be stable in the homogenized tissue sample and not be enzymatically or chemically degraded.

300 **3.2. Liquid sialidase assay**

301 We assayed whole bacteria cultures, culture supernatants and bacteria lysates for sialidase activity.  
302 In several samples, addition of  $\text{CaCl}_2$  seemed to enhance sialidase activity in the culture  
303 supernatant samples (Fig. S3). Analysis of Neu5Ac-MU cleavage revealed potential sialidase  
304 activity in several bacteria isolates.




305

306 **Figure S3. Neu5Ac-MU cleavage by bacterial isolates.** Bacterial culture supernatants (A, upper), whole  
 307 bacterial cultures (B, middle) and bacteria lysates (C, lower) were incubated with 1 mM Neu5Ac-MU with  
 308 and without 4 mM CaCl<sub>2</sub> and fluorescence intensity was measured after 18 hours of incubation. Bacteria

309 culture supernatants were applied either undiluted or 1:2 diluted. Control samples were simultaneously  
310 incubated with 10  $\mu$ M MU instead of Neu5Ac-MU to determine any interference of the sample with  
311 fluorescence detection. The fluorescence values were corrected for the deviation of the MU fluorescence  
312 intensity and for background fluorescence of the substrates resulting from presence of free MU within  
313 Neu5Ac-MU.

314 **3.3. Cloning of the *Paenibacillus* sp. sialidase gene**



315  
316 **Figure S4. Colony PCR amplicons of different portion of the construct.** The lane (M) shows the marker.  
317 The lanes (N) show the negative control. The lanes 1 and 2 show the entire gene, amplified from the  
318 promoter to the terminator (3 008 bp). The lanes 3 and 4 show a portion of the gene (541 bp). The lanes 5  
319 and 6 show the amplification from a portion of the gene to the terminator (2732 bp)

320

321 **References for Supplementary Information**

322 1. Nagamune, K. *et al.* Surface Sialic Acids Taken from the Host Allow Trypanosome Survival  
323 in Tsetse Fly Vectors. *J. Exp. Med.* **199**, 1445–1450 (2004).

324 2. Mead, J. A., Smith, J. N. & Williams, R. T. Studies in detoxication. 67. The biosynthesis of  
325 the glucuronides of umbelliferone and 4-methylumbelliferone and their use in fluorimetric  
326 determination of beta-glucuronidase. *Biochem. J.* **61**, 569–574 (1955).

327 3. Hara, S., Yamaguchi, M., Takemori, Y., Yoshitake, T. & Nakamura, M. 1,2-diamino-4,5-  
328 methylenedioxybenzene as a highly sensitive fluorogenic reagent for  $\alpha$ -dicarbonyl  
329 compounds. *Anal. Chim. Acta* **215**, 267–276 (1988).

330 4. Nakamura, M., Hara, S., Yamaguchi, M., Takemori, Y. & Ohkura, Y. 1,2-Diamino-4,5-  
331 methylenedioxybenzene as a highly sensitive fluorogenic reagent for .ALPHA.-keto acids.  
332 *Chem. Pharm. Bull. (Tokyo)* **35**, 687–692 (1987).

333 5. Wang, L., Wang, D., Zhou, X., Wu, L. & Sun, X.-L. Systematic investigation of quinoxaline  
334 derivatization of sialic acids and their quantitation applicability using high performance  
335 liquid chromatography. *RSC Adv* **4**, 45797–45803 (2014).

336 6. Hara, S., Takemori, Y., Yamaguchi, M., Nakamura, M. & Ohkura, Y. Fluorometric high-  
337 performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its  
338 application to their microdetermination in human and animal sera, glycoproteins, and  
339 glycolipids. *Anal. Biochem.* **164**, 138–145 (1987).

340 7. Shaida, S. S. *et al.* Diversity and phylogenetic relationships of *Glossina* populations in  
341 Nigeria and the Cameroonian border region. *BMC Microbiol.* **18**, 180 (2018).

342 8. Adams, E. R., Malele, I. I., Msangi, A. R. & Gibson, W. C. Trypanosome identification in  
343 wild tsetse populations in Tanzania using generic primers to amplify the ribosomal RNA  
344 ITS-1 region. *Acta Trop.* **100**, 103–109 (2006).

345 9. Ngomtcho, S. C. H. *et al.* Molecular screening of tsetse flies and cattle reveal different  
346 Trypanosoma species including *T. grayi* and *T. theileri* in northern Cameroon. *Parasit.*  
347 *Vectors* **10**, 631 (2017).

348 10. Grönemeyer, J. L., Burbano, C. S., Hurek, T. & Reinhold-Hurek, B. Isolation and  
349 characterization of root-associated bacteria from agricultural crops in the Kavango region of  
350 Namibia. *Plant Soil* **356**, 67–82 (2012).

351 11. Drummond, A. J. *et al.* Geneious v5. 5. <http://www.geneious.com/> (2011).

352 12. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular  
353 Evolutionary Genetics Analysis Version 6.0. *Mol. Biol. Evol.* **30**, 2725–2729 (2013).

354 13. Wright, M. H., Adelskov, J. & Greene, A. C. Bacterial DNA Extraction Using Individual  
355 Enzymes and Phenol/Chloroform Separation. *J. Microbiol. Biol. Educ.* **18**, 18.2.48 (2017).

356 14. Waespy, M. *et al.* Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain  
357 from Trypanosoma congolense. *PLoS Negl. Trop. Dis.* **9**, e0004120 (2015).

358