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Fig. S1 a) Differences in CUE among 0-30 cm, 30-60 cm, and 60-100 cm. Mean values
are 0.35 (0.31-0.38), 0.37 (0.33-0.41), and 0.38 (0.34-0.42), respectively. The boxes
represent the first and the third quartiles. The line within the box represents the median.
The whiskers represent the data range and points indicate individual values. Different
letters denote significant differences (P < 0.05) based on the analysis of linear mixed-
effect models followed by estimated marginal means test. b) Latitudinal patterns of CUE
fitted by quadratic models in three layers, respectively. Formulars and adjust coefficient
were annotated in the plot; P < 0.001 indicate statistically significant of the overall

regression model.
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Fig. S2 Changes in the mean squared error of predicted values with the number of
regression trees in random forest modeling based on sampling sites. The curves, which
steadily approach the horizontal, indicating that 1000 regression trees are sufficient for

structuring prediction models. Note: Overall means topsoils and subsoils together.
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Fig. S3 Random Forest analysis identifies important variables when combined both
topsoils and subsoils named as overall. MAT: mean annual temperature; MAP: mean
annual precipitation; TS: temperature seasonality; PS: precipitation seasonality; Al: aridity
index; GPP: gross primary production; LAI: leaf area index; AGB: aboveground biomass;

BGB: belowground biomass; BD: bulk density; CEC: cation exchange capacity.
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Topography —>
Climate

Topography influences local climate by altering temperature and precipitation
patterns. Temperature typically decreases by about 6.5°C for every 1,000 m
increase in elevation due to adiabatic cooling, while higher elevations and
steeper, windward slopes often receive more precipitation because of
orographic uplift.

Topography —> | Topography affects climate seasonality by enhancing thermal and moisture

Seasonality contrasts. Higher elevations show greater temperature seasonality due to
stronger radiative cooling, while elevation and slope increase precipitation
seasonality through intensified orographic uplift during wet seasons.

Topography —> | Topography is a crucial factor influencing soil clay content, as it governs

Soil texture weathering intensity, erosion, and sediment deposition. Higher elevations and
steeper slopes usually have coarser soils due to greater erosion, while lower
elevations and gentle slopes accumulate finer materials.

Climate —> Climate strongly affects seasonality patterns. Regions with higher MAT show

Seasonality lower temperature seasonality, while cooler area experience greater variation.

Similarly, regions with higher MAP tend to have more evenly distributed
rainfall, whereas drier climates exhibit stronger wet-dry seasonality.

Seasonality —>
Soil texture

Seasonality affects soil clay content by regulating weathering and erosion.
For example, strong temperature and precipitation seasonality enhance
weathering and runoff, reducing clay formation.




6 | Climate —> Climate is a primary determinant of vegetation distribution and productivity.
vegetation Higher MAT promotes plant growth where moisture is adequate, while MAP
determines water availability and vegetation density.

7 | Seasonality —> Climate seasonality greatly affects the growth, reproduction, and survival of
Vegetation plants by periodic changes in temperature and precipitation.

8 | Seasonality—> | Seasonality can influence temperature and moisture variations, thus shaping
CUE microbial use efficiency.

9 | Seasonality —> Seasonality influences soil properties such as pH and BD by controlling
Soil properties moisture and temperature fluctuations that affect leaching, organic matter
decomposition, and soil structure.

10 | soil texture —> Soil clay or sand content strongly influences pH, DB and water holding

Soil properties capacity by affecting ion exchange capacity, porosity, and soil structure.

11| Vegetation —> Vegetation can influence soil properties via root exudates, litter input. For

Soil properties example, BD is strongly related to organic matter.

12 | vegetation —> Vegetations strongly influence microbial CUE by regulating the quantity and

CUE quality of organic carbon inputs to the soil.
13 | Soil properties —>| Soil properties strongly regulate microbial CUE by influencing nutrient
CUE availability, aeration, and habitat conditions.
14 | Climate —> Climate will change temperature and moisture adaptation of microbial
CUE communities, thereby influencing microbial carbon use efficiency.
15 | Soil texture —> Different clay or sand content will affect substrate absorption and accessibility,
CUE thus affecting carbon use efficiency.

Fig. S4 A priori path model (modified from the framework in (Cui et al. 2025)) illustrating
the direct and indirect effects of key environmental factors on soil microbial carbon use
efficiency (CUE). In our study, we employed the same modeling to test the casual
relationships between environmental factors and CUE in both topsoils and subsoils.
While topsoils and subsoils are subject to the same topography, climate, seasonality,
and vegetation influences, they may differ in their responses due to variations in soil
buffer capacity rather than in exposure to different climate conditions. Although we
acknowledge potential differences in plant carbon (C) allocation to subsoils, our analysis
focuses on overall ecosystem productivity. The estimation of C allocation to subsoils
could be approached by the available model (Luo et al. 2019), but their accuracy is
limited by insufficient empirical data for robust parameterization. MAT: mean annual

temperature; MAP: mean annual precipitation; BD: bulk density.



Table S1 Detailed results of path analysis modeling on a global scale in topsoils

MODEL SPECIFCATION

1 Number of Cases 814

2 Latent Variables 7

3 Manifest Variables 15

4 Scale of Data Standardized Data

5 Non-Metric PLS FALSE

6 Weighting Scheme centroid

7 Tolerance Crit 1e-06

8 Max Num Iters 100

9 Convergence lters 6

10 Bootstrapping FALSE

11 Bootstrapping samples  NULL

BLOCK DEFINITION

Block Type Size Mode

1 Topography Exogenous 2 A

2 Climate Endogenous 2 A

3 Season Endogenous 2 A

4 Soil texture Endogenous 1 A

5 Vegetation Endogenous 3 B

6 Soil properties Endogenous 3 B

7 CUE Endogenous 1 A

BLOCKS UNIDIMENSIONALITY

Mode MVs C.alpha DG.rho eig.1st eig.2nd

Topography A 2 0.641 0.848 1.470 0.529
Climate A 2 0.770 0.897 1.630 0.374
Season A 2 0.866 0.937 1.760 0.237
Soil texture A 1 1.000 0.000 1.500 0.499
Vegetation B 3 0.000 0.000 1.690 1.003
Soil properties B 3 0.000 0.000 1.180 1.027
CUE A 1 1.000 1.000 1.000 0.000

OUTER MODEL

Weight Loading Communality Redundancy

topography
1 Elevation 0.962 0.998 0.996 0.000
1 Slope 0.067 0.523 0.273 0.000
climate
2 MAT 0.610 0.921 0.850 0.184
2 MAP 0.497 0.880 0.773 0.168
season
3 PS 0.502 0.931 0.868 0.706
3 TS 0.563 0.946 0.895 0.728
texture
4 Clay 0.705 -0.925 0.855 0.329
4 Sand 0.563 0.946 0.895 0.728
vegetation
5 GPP 0.901 0.994 0.988 0.593
5 BGB 0.117 0.483 0.233 0.140
5 Shannon_EVI -0.08 -0.581 0.337 0.202
soil
6 BD -0.021 0.061 0.004 0.001
6 pH 1.008 -0.994 0.989 0.228



6 Moisture 0.101 0.036 0.001 0.000
CUE
7 CUE 1.000 1.000 1.000 0.222
CROSSLOADINGS
topography climate season texture vegetation soil CUE
topography
1 Elevation 0.998 -0.478 0.142 0.318 -0.349 -0.259 -0.164
1 Slope 0.523 -0.057  -0.108 0.117 -0.154 0.182 -0.296
climate
2 MAT -0.460 0.922 -0.831 -0.544 0.762 0.311 0.112
2 MAP -0.372 0.880 -0.688  -0.433 0.594 0.566 0.112
season
3 PS 0.193 -0.746 0.932 0.502 -0.569 -0.363 -0.065
3 TS 0.058 -0.846 0.946 0.566 -0.778 -0.343 -0.144
texture
4 Clay -0.301 0.539 -0.554 0.502 -0.569 -0.363 -0.065
4 Sand 0.234 -0.381 0.409 0.566 -0.778 -0.343 -0.144
vegetation
5 GPP -0.338 0.772 -0.729  -0.663 0.994 0.398 0.321
5 BGB -0.001 0.183 -0.284  -0.494 0.483 0.580 0.032
5 Shannon_EVI 0.517 -0.527 0.410 0.408 -0.581 -0.102 -0.258
Soll
6 BD -0.250 0.343 -0.150 0.054 0.066 0.061 0.080
6 pH 0.201 -0.447 0.371 0.436 -0.414 -0.994 0.115
6 Moisture 0.295 -0.131 -0.021 0.027 -0.161 0.036 -0.215
CUE
7 CUE -0.179 0.124 -0.113 -0.302 0.314 -0.093 1.000
INNER MODEL
$climate
Estimate Std. Error t value Pr(>t])
Intercept -1.08e-15 0.031 -3.49e-14 1.00e+00
topography -4.66e-01 0.031 -1.50e+01 4.19e-45
$season
Estimate Std. Error t value Pr(>t])
Intercept -1.06e-15 0.015 -6.99e-14 1.00e+00
topography -3.40e-01 0.017 -1.98e+01 1.19e-71
climate -1.01e+00 0.017 -5.88e+01 1.18e-294
$texture
Estimate Std. Error t value Pr(>t])
Intercept -8.12e-17 0.028 -2.95e-15 1.00e+00
topography 2.45e-01 0.029 8.81e+00 7.46e-18
season 5.39e-01 0.029 1.94e+01 4.32e-69
$vegetation
Estimate Std. Error t value Pr(>t])
Intercept 7.51e-16 0.022 3.38e-14 1.00e+00
climate 5.25e-01 0.042 1.24e+01 1.20e-32
season -2.78e-01 0.042 -6.59e+00 8.16e-11
$soil
Estimate Std. Error t value Pr(>t])
Intercept -4.76e-16 0.031 -1.54e-14 1.00e+00
season -8.88e-02 0.045 -1.97e+00 4.95e-02
texture -2.57e-01 0.043 -5.97e+00 3.59e-09



vegetation 1.94e-01 0.051 3.78e+00 1.66e-04
$CUE
Estimate Std. Error t value Pr(>t])
Intercept -3.58e-16 0.031 -1.15e-14 1.00e+00
climate -2.30e-02 0.067 -3.46e-01 7.30e-01
season 2.27e-01 0.062 3.69e+00 2.41e-04
texture -2.78e-01 0.045 -6.24e+00 7.01e-10
vegetation 4.39e-01 0.056 7.89e+00 1.01e-14
soil -3.10e-01 0.037 -8.47e+00 1.13e-16
CORRELATIONS BETWEEN LVs
Topography Climate Season Texture  Vegetation Soil CUE
Topography 1.000 -0.466 0.130 0.315 -0.347 -0.238 -0.179
Climate -0.466 1.000 -0.848 -0.547 0.761 0.471 0.124
Season 0.130 -0.850 1.000 0.571 -0.724 -0.375 -0.113
Texture 0.315 -0.547 -0.553 1.000 -0.689 -0.441 -0.302
Vegetation -0.347 0.761 0.358 -0.689 1.000 0.435 0.314
Soll -0.237 0.471 -0.626 -0.441 -0.434 1.000 -0.093
CUE -0.179 0.124 -0.113 -0.302 0.314 -0.093 1.000
SUMMARY INNER MODEL
Type R2 Block_Communality Mean_Redundancy AVE
Topography  Exogenous  0.000 0.635 0.000 0.635
Climate Endogenous 0.217 0.812 0.176 0.812
Season Endogenous 0.813 0.881 0.717 0.881
Texture Endogenous 0.384 0.742 0.285 0.742
Vegetation Endogenous 0.600 0.519 0.312 0.000
Soll Endogenous 0.230 0.331 0.076 0.000
CUE Endogenous 0.222 1.000 0.222 1.000
GOODNESS-OF-FIT
[1] 0.505
TOTAL EFFECTS
relationships direct indirect total
1 topography -> climate -0.466 0.000 -0.466
2 topography -> season -0.340 0.470 0.130
3 topography -> texture 0.245 0.070 0.315
4 topography -> vegetation 0.000 -0.281 -0.281
5 topography -> soil 0.000 -0.147 -0.147
6 topography -> CUE 0.000 -0.125 -0.125
7 climate -> season -1.009 0.000 -1.009
8 climate -> texture 0.000 -0.543 -0543
9 climate -> vegetation 0.525 0.280 0.805
10 climate -> soll 0.000 0.385 0.385
11 climate -> CUE -0.023 0.156 0.133
12 season -> texture 0.539 0.000 0.539
13 season -> vegetation -0.278 0.000 -0.278
14 season -> soll -0.089 -0.192 -0.281
15 season -> CUE 0.227 -0.185 0.043
16 texture -> vegetation 0.000 0.000 0.000



17 texture -> soil

18 texture -> CUE

19 vegetation -> soll
20 vegetation -> CUE
21 soil -> CUE

-0.257 0.000
-0.278 0.080
0.194 0.000
0.440 -0.060
-0.310 0.000

-0.257
-0.198
0.194
0.380
-0.310

Table S2 Detailed results of path analysis modeling on a global scale in subsoils

MODEL SPECIFCATION

1 Number of Cases 379

2 Latent Variables 7

3 Manifest Variables 15

4 Scale of Data Standardized Data

5 Non-Metric PLS FALSE

6 Weighting Scheme centroid

7 Tolerance Crit 1e-06

8 Max Num Iters 100

9 Convergence lters 7

10 Bootstrapping FALSE

11 Bootstrapping samples  NULL

BLOCKDEFINITION

Block Type Size Mode

1 Topography  Exogenous 2 A

2 Climate Endogenous 2 A

3 Season Endogenous 2 A

4 Texture Endogenous 1 A

5 Vegetation Endogenous 3 B

6 Soil Endogenous 3 B

7 CUE Endogenous 1 A

BLOCKS UNIDIMENSIONALITY

Mode MVs C.alpha DG.rho eig.1st eig.2nd

Topography A 2 0.256 7.29e-01 1150 0.853
Climate A 2 0.929 9.66e-01 1.870 0.133
Season A 2 0.793 8.84e-01 1590 0.414
Texture A 1 0.000 2.36e-32 1480 0.522
Vegetation B 3 0.000 0.00e+00 1.250 1.128
Soll B 3 0.000 0.00e+00 1.260 0.925
CUE A 1 1.000 1.00e+00 1.000 0.000

OUTER MODEL

Weight Loading Communality Redundancy

topography
1 Elevation 0.602 0.707 0.500 0.000
1 Slope 0.715 0.803 0.645 0.000
climate
2 MAT 0.523 0.967 0.935 0.015
2 MAP 0.512 0.965 0.932 0.015
season
3 PS 0.434 0.833 0.695 0.015
3 TS 0.682 0.936 0.932 0.015



texture

4 Clay 0.787 -0.952 0.907 0.051
4 Sand -0.347 0.723 0.522 0.030
vegetation
5 GPP 0.832 0.917 0.841 0.542
5 BGB 0.417 0.491 0.241 0.155
5 Shannon_EVI -0.152 -0.212 0.045 0.029
soil
6 BD -0.111 0.240 0.058 0.035
6 pH 0.982 -0.993 0.986 0.591
6 Moisture 0.060 0.033 0.001 0.001
CUE
7 CUE 1.000 1.000 1.000 0.388
CROSSLOADINGS
topography climate season texture vegetation soil CUE
topography
1 Elevation 0.707 -0.486 0.140 0.062 -0.354 -0.393 0.351
1 Slope 0.803 0.232 -0.363  -0.206 0.164 0.254 -0.029
climate
2 MAT -0.178 0.967 -0.820  -0.145 0.743 0.581 -0.411
2 MAP -0.065 0.966 -0.806  -0.262 0.800 0.799 -0.438
season
3 PS -0.011 -0.603 0.833 0.127 -0.374 -0.508 0.260
3 TS -0.251 -0.852 0.936 0.252 -0.679 -0.616 0.307
texture
4 Clay 0.125 0.267 -0.261 -0.952 0.246 0.449 0.026
4 Sand -0.035 -0.002 0.063 0.723 0.029 -0.220 -0.062
soil
5 GPP -0.123 0.822 -0.620 -0.114 0.917 0.525 -0.345
5 BGB 0.112 0.182 -0.234  -0.308 0.491 0.536 -0.286
5 Shannon_EVI 0.268 -0.250 0.076 -0.258 -0.212 -0.030 0.180
vegetation
6 BD -0.286 0.360 -0.232  -0.058 0.205 0.240 -0.049
6 pH 0.021 -0.687 0.632 0.432 -0.653 -0.993 0.535
6 Moisture 0.039 0.032 -0.091 -0.028 -0.004 0.033 0.041
CUE
7 CUE 0.191 -0.439 0.322 -0.042 -0.434 -0.534 1.000
INNER MODEL
$climate
Estimate Std. Error t value Pr(>t])
Intercept -3.60e-16 0.051 -7.05e-15 1.00e+00
topography -1.27e-01 0.051 -2.48e+00 0.014
$season
Estimate Std. Error t value Pr(>t])
Intercept 3.17e-16 0.024 1.35e-14 1.00e+00
topography -2.87e-01 0.024 -1.21e+01 1.40e-28
climate -8.79e-01 0.024 -3.70e+01 2.81e-127
$texture
Estimate Std. Error t value Pr(>t])
Intercept 3.59e-17 0.050 7.16e-16 1.00e+00
topography -7.21e-02 0.051 -1.42e+00 0.157
season 2.15e-01 0.051 4.22e+00 0.000

$vegetation



Estimate Std. Error t value Pr(>t])
Intercept 3.64e-16 0.031 1.18e-14 1.00e+00
climate 9.34e-01 0.057 1.64e+01 8.19e-46
season 1.62e-01 0.057 2.83e+00 4.85e-03
$soil
Estimate Std. Error t value Pr(>t])
Intercept 1.41e-16 0.033 4.30e-15 1.00e+00
season -3.17e-01 0.042 -7.49e+00 4.87e-13
texture -2.81e-01 0.034 -8.36e+00 1.24e-15
vegetation 4.15e-01 0.042 9.89e+00 1.16e-20
$CUE
Estimate Std. Error t value Pr(>t])
Intercept 5.03e-16 0.041 1.24e-14 1.00e+00
climate -1.74e-01 0.101 -1.73e+00 8.47e-02
season -1.90e-01 0.077 -2.48e+00 1.37e-02
texture -3.16e-01 0.046 -6.94e+00 1.72e-11
vegetation -5.10e-02 0.070 -7.27e-01 4.68e-01
soil -6.33e-01 0.066 -9.66e+00 7.28e-20
CORRELATIONS BETWEEN LVs
Topography Climate Season Texture Vegetation Soil CUE
Topography 1.000 -0.127 -0.176 -0.110 -0.096 -0.055 0.191
Climate -0.127 1.000 -0.843 -0.210 0.798 0.713 -0.439
Season -0.176 -0.843 1.000 0.227 -0.625 -0.641 0.322
Texture -0.110 -0.210 0.227 1.000 -0.185 -0.429 -0.042
Vegetation -0.096 0.798 -0.625 -0.184 1.000 0.665 -0.434
Soll -0.055 0.713 -0.640 -0.429 0.665 1.000 -0.534
CUE 0.191 -0.439 0.322 -0.042 -0.434 -0.534 1.000
SUMMARY INNER MODEL
Type R2 Block_Communality Mean_Redundancy AVE
Topography  Exogenous  0.000 0.573 0.000 0.573
Climate Endogenous 0.016 0.933 0.015 0.933
Season Endogenous 0.791 0.785 0.621 0.785
Clay Endogenous 0.057 1.715 0.041 1.715
Soll Endogenous 0.644 0.376 0.242 0.000
Vegetation Endogenous 0.580 0.348 0.209 0.000
CUE Endogenous 0.388 1.000 0.388 1.000
GOODNESS-OF-FIT
[1]1 0.493
TOTAL EFFECTS
relationships direct indirect total
1 topography -> climate -0.127 0.000 -0.127
2 topography -> season -0.287 0.1 -0.176
3 topography -> clay -0.072 -0.038 -0.110
4 topography -> vegetation 0.000 -0.147 -0.147
5 topography -> soil 0.000 0.026 0.026
6 topography -> CUE 0.000 0.081 0.082
7 climate -> season -0.879 0.000 -0.879
8 climate -> texture 0.000 -0.189 -0.187
9 climate -> vegetation 0.934 -0.142 0.792



10
11
12
13
14
15
16
17
18
19
20
21

climate -> soil
climate -> CUE
season -> texture
season -> vegetation
season -> soil
season -> CUE
texture -> vegetation
texture -> soil
texture -> CUE
vegetation -> soll
vegetation -> CUE
soil -> CUE

0.000
-0.174
0.215
0.162
-0.317
-0.190
0.000
-0.281
-0.316
0.415
-0.051
-0.633

0.660
-0.232
0.000
0.000
0.007
0.120
0.000
0.000
0.178
0.000
-0.263
0.000

0.660
-0.406
0.215
0.162
-0.310
-0.070
0.000
-0.281
-0.138
0.415
-0.314
-0.633
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Fig. S5 CUE values across biomes in both topsoils and subsoils. The boxes represent
the first and the third quartiles. The line within the box represents the median. The
whiskers represent the data range and points indicate individual values. The biomes are

delineated using MODIS land-cover maps.
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Fig. S6 Relationships between CUE and mean annual temperature (MAT). Linear
regressions depicting the relationship between CUE and MAT in topsoils and in subsoils.
The dots correspond to individual values (n=814 and 379 for topsoils and subsoils,

respectively). * denotes P < 0.05; *** indicates P < 0.001.
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Fig. S7 Global distribution of microbial carbon use efficiency (CUE) estimated with

stoichiometric modeling. In total, 1193 data points across 103 sites.



a) Uncertainty of CUE in Topsoil
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Fig. S8 Global distribution of the uncertainty of prediction of CUE in a) topsoil and b)
subsoil. Uncertainty is calculated by mean value of 100 times model 95% confidence
interval (Cl). All projections are displayed on a 0.25° x 0.25° scale of latitude and longitude.
Areas of water, permanent wetlands, cropland, urban/built-up areas, and snow/ice areas

were excluded from projections.



Table S3 Description of data from 21 potential predictors of microbial carbon use efficiency (CUE)

Factors ID Variable Unit Source Period/Layer Reference
1 Mean annual temperature (MAT) °C WorldClim2 1970-2000 Fick and Hijmans, 2017
2 Mean annual precipitation (MAP) mm WorldClim2 1970-2000 Fick and Hijmans, 2017
Climate 3 Temperature seasonality (TS) 102°C WorldClim2 1970-2000 Fick and Hijmans, 2017
4 Precipitation seasonality (PS) % WorldClim2 1970-2000 Fick and Hijmans, 2017
5 Aridity index (Al) - global-aridity-index-and-potential-evapotranspiration-climate-database-v2/ 1970-2000 Trabucco and Zomer, 2018
6 Shannon diversity enhanced - http://www.earthenv.org/texture - Tuanmu and Jetz, 2015
vegetation index (EVI)
7 Leaf area index (LAI) m? m2 https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1653 1981-2015 Mao and Yan, 2019
Vegetation 8 Gross primary production (GPP) gCm2d"! https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1789 1982-2016 Madani and Parazoo, 2020
9 Aboveground biomass (AGB) Mg C ha https://daac.ornl.gov/VEGETATION/guides/Global_Maps_C_Density_2010.html 2010 Spawn et al., 2020
10 Belowground biomass (BGB) Mg C ha https://daac.ornl.gov/VEGETATION/guides/Global_Maps_C_Density_2010.html 2010 Spawn et al., 2020
11 Root depth m https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html - Fan et al., 2017
Topography 12 Elevation m http://www.earthenv.org/topography - Amatulli et al., 2018
13 Slope degrees http://www.earthenv.org/topography - Amatulli et al., 2018
14  Depth to bedrock cm (< 200) https://ffiles.isric.org/soilgrids/former/2017-03-10/data/ - Hengl et al., 2017
15  Soil clay fraction % of weight http://globalchange.bnu.edu.cn/research/soilw#download 0-100 cm
16  Soil silt fraction % of weight http://globalchange.bnu.edu.cn/research/soilw#download 0-100 cm
Soil 17  Soil sand fraction % of weight http://globalchange.bnu.edu.cn/research/soilw#download 0-100 cm
18  Soil bulk density (BD) gcm http://globalchange.bnu.edu.cn/research/soilw#download 0-100 cm
19  Soil moisture % of volume http://globalchange.bnu.edu.cn/research/soilw#download 0-100 cm
20 Cation exchange capacity (CEC) cmol kg http://globalchange.bnu.edu.cn/research/soilw#download 0-100 cm
21 pHin H20 - http://globalchange.bnu.edu.cn/research/soilw#download 0-100 cm
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Fig. S9 Results of the recursive feature elimination method in topsoils, which was used
to prevent the overfitting of the Random Forest (RF) model, Support Vector Machine
(SVM), and Extreme Gradient-Boosting (XGBoost) model in predicting microbial carbon
use efficiency (CUE). Blue dots and lines represent the optimal numbers of predictor
variables used to train machine-learning models. RMSE denotes the root mean square

error.
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Fig. S10 Results of the recursive feature elimination method in subsoils, which was used
to prevent the overfitting of the Random Forest (RF) model, Support Vector Machine
(SVM), and Extreme Gradient-Boosting (XGBoost) model in predicting microbial carbon
use efficiency (CUE). Blue dots and lines represent the optimal numbers of predictor

variables used to train machine-learning models. RMSE denotes the root mean square

error.
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Fig. S11 Performance of the Random Forest (RF) model, Support Vector Machine (SVM),

and Extreme Gradient-Boosting (XGBoost) model in predicting microbial carbon use

efficiency (CUE) in topsoils. The red dashed lines represent the 1:1 line. Adjusted R?

indicates the coefficient of determination. RMSE denotes the root mean squared error.

The optimal model is characterized by the maximum R? and the minimum RMSE.
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Fig. S12 Performance of the Random Forest (RF) model, Support Vector Machine (SVM),

and Extreme Gradient-Boosting (XGBoost) model in predicting microbial carbon use

efficiency (CUE) in subsoils. The red dashed lines represent the 1:1 line. Adjusted R?

indicates the coefficient of determination. RMSE denotes the root mean squared error.

The optimal model is characterized by the maximum R? and the minimum RMSE.




Table S4 Results of recursive feature elimination method in subsoils, which was used to
prevent the overfitting of the Random Forest (RF) model, support vector machine (SVM)
model, Extreme Gradient-Boosting (XGBoost) model in predicting microbial carbon use

efficiency (CUE) in topsoils
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Explanatory variables

Mean annual temperature (MAT)
Mean annual precipitation (MAP)
Temperature seasonality (TS)
Precipitation seasonality (PS)
Aridity index (Al)

Elevation

Slope

pH

Soil moisture

Soil bulk density (BD)

Cation exchange capacity (CEC)
Soil sand content

Soil clay content

soil silt content

RootDepth

Bedrock

Aboveground biomass (AGB)
Belowground biomass (BGB)
Leaf area index (LAI)

Shannon enhanced vegetation index
Gross primary production (GPP)
Adjust R?

RMSE
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Table S5 Results of recursive feature elimination method in subsoils, which was used to
prevent the overfitting of the Random Forest (RF) model, support vector machine (SVM)
model, Extreme Gradient-Boosting (XGBoost) model in predicting microbial carbon use

efficiency (CUE) in subsoils

Explanatory variables RF SVM XGBoost
Mean annual temperature (MAT) N N

Mean annual precipitation (MAP) v

Temperature seasonality (TS) v v

Precipitation seasonality (PS)
Aridity index (Al)

Elevation

Slope

pH

Soil moisture

Soil bulk density (BD)

Cation exchange capacity (CEC)
Soil sand content

Soil clay content

soil silt content

RootDepth

Bedrock

Aboveground biomass (AGB)
Belowground biomass (BGB)
Leaf area index (LAI) v
Shannon enhanced vegetation index v
Gross primary production (GPP)

Adjust R? 0.96 0.92 0.96
RMSE 0.03 0.04 0.03

L L
L L A L A ]
<




Supplementary References:
Amatulli, G, Domisch, S, Tuanmu, M-N, Parmentier, B, Ranipeta, A, Malczyk, J, Jetz, W,
2018. A suite of global, cross-scale topographic variables for environmental and

biodiversity modeling. Scientific Data 5, 180040. https://doi.org/10.1038/sdata.2018.40

Chen, L, Xue, Y, Wang, N, Gao, H, Hu, G, Liu, J e, Cao, L, Zhou, Z, 2025. Soil
properties influence the distribution and diversity of plant communities in the desert-
loess transition zone. CATENA 254, 108976.

https://doi.org/10.1016/j.catena.2025.108976

Churkina, G, Running, S W, 1998. Contrasting Climatic Controls on the Estimated
Productivity of Global Terrestrial Biomes. Ecosystems 1, 206-215.

https://doi.org/10.1007/s100219900016

Cui, Y, Peng, S, Rillig, M C, Camenzind, T, Delgado-Baquerizo, M, Terrer, C, Xu, X, et
al., 2025. Global patterns of nutrient limitation in soil microorganisms. Proceedings of
the National Academy of Sciences 122, e2424552122.

https://doi.orq/10.1073/pnas.2424552122

Daly, C, Halbleib, M, Smith, J I, Gibson, W P, Doggett, M K, Taylor, G H, Curtis, J,
Pasteris, P P, 2008. Physiographically sensitive mapping of climatological temperature
and precipitation across the conterminous United States. International Journal of

Climatology 28, 2031-2064. https://doi.org/10.1002/joc.1688

Daniels, W L, 2016. The Nature and Properties of Soils, 15th Edition Ray R. Weil and

Nyle C. Brady. Pearson Press, Upper Saddle River NJ, 2017. 1086 p. $164.80. ISBN-



10: 0-13-325448-8; ISBN-13: 978-0-13-325448-8. Also available as eText for $67.99.
Soil Science Society of America Journal 80, 1428-1428.

https://doi.orq/10.2136/sssaj2016.0005br

Domeignoz-Horta, L A, Cappelli, S L, Shrestha, R, Gerin, S, Lohila, A K, Heinonsalo, J,
Nelson, D B, et al., 2024. Plant diversity drives positive microbial associations in the
rhizosphere enhancing carbon use efficiency in agricultural soils. Nature

Communications 15, 8065. https://doi.org/10.1038/s41467-024-52449-5

Fan, Y, Miguez-Macho, G, Jobbagy, E G, Jackson, R B, Otero-Casal, C, 2017.
Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of

Sciences 114, 10572-10577. https://doi.org/10.1073/pnas.1712381114

Fick, S E, Hijmans, R J, 2017. WorldClim 2: new 1-km spatial resolution climate
surfaces for global land areas. International Journal of Climatology 37, 4302-4315.

https://doi.orq/10.1002/joc.5086

Hajek, O L, Knapp, A K, 2022. Shifting seasonal patterns of water availability:
ecosystem responses to an unappreciated dimension of climate change. New

Phytologist 233, 119-125. https://doi.org/10.1111/nph.17728

Han, W, Chen, L, Su, X, Liu, D, Jin, T, Shi, S, Li, T, Liu, G, 2022. Effects of Soil Physico-
Chemical Properties on Plant Species Diversity Along an Elevation Gradient Over
Alpine Grassland on the Qinghai-Tibetan Plateau, China. Frontiers in Plant Science

Volume 13 - 2022, https://doi.org/10.3389/fpls.2022.822268




He, Y, Wang, X, Wang, K, Tang, S, Xu, H, Chen, A, Ciais, P, Li, X, Pefnuelas, J, Piao, S,
2021. Data-driven estimates of global litter production imply slower vegetation carbon

turnover. Global Change Biology 27, 1678-1688. https://doi.org/10.1111/gcb.15515

Helman, D, Osem, Y, Yakir, D, Lensky, | M, 2017. Relationships between climate,
topography, water use and productivity in two key Mediterranean forest types with
different water-use strategies. Agricultural and Forest Meteorology 232, 319-330.

https://doi.orq/10.1016/j.agrformet.2016.08.018

Hengl, T, Mendes de Jesus, J, Heuvelink, G B M, Ruiperez Gonzalez, M, Kilibarda, M,
Blagoti¢, A, Shangguan, W, et al., 2017. SoilGrids250m: Global gridded soil information
based on machine learning. PLOS ONE 12, e0169748.

https://doi.orq/10.1371/journal.pone.0169748

Luo, Z, Wang, G, Wang, E, 2019. Global subsoil organic carbon turnover times
dominantly controlled by soil properties rather than climate. Nature Communications 10,

3688. https://doi.org/10.1038/s41467-019-11597-9

Mackie-Dawson, L A, Mullins, C E, Goss, M J, Court, M N, Fitzpatrick, E A, 1989.
Seasonal changes in the structure of clay soils in relation to soil management and crop
type. Il. Effects of cultivation and cropping at Compton Beauchamp. Journal of Soil

Science 40, 283-292. https://doi.org/10.1111/1.1365-2389.1989.tb01273.x

Manzoni, S, Taylor, P, Richter, A, Porporato, A, Agren, G 1, 2012. Environmental and
stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196,

79-91. https://doi.org/10.1111/.1469-8137.2012.04225.x




Mao, J, Yan, B, 2019. Global Monthly Mean Leaf Area Index Climatology, 1981-2015
(Version 1). ORNL Distributed Active Archive Center

https://doi.org/10.3334/ORNLDAAC/1653

Moustakis, Y, Onof, C J, Paschalis, A, 2020. Atmospheric convection, dynamics and
topography shape the scaling pattern of hourly rainfall extremes with temperature

globally. Communications Earth & Environment 1, 11. https://doi.org/10.1038/s43247 -

020-0003-0

Peel, M C, Finlayson, B L, McMahon, T A, 2007. Updated world map of the Képpen-
Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633-1644.

https://doi.orq/10.5194/hess-11-1633-2007

Potter, C, Boriah, S, Steinbach, M, Kumar, V, Klooster, S, 2008. Terrestrial vegetation
dynamics and global climate controls. Climate Dynamics 31, 67-78.

https://doi.org/10.1007/s00382-007-0339-5

R. C, C, 1941. Factors of Soil Formation, a System of Quantitative Pedology. Agronomy

Journal 33, 857-858. https://doi.org/10.2134/agronj1941.00021962003300090016x

Roe, G H, 2005. OROGRAPHIC PRECIPITATION. Annual Review of Earth and
Planetary Sciences 33, 645-671.

https://doi.org/10.1146/annurev.earth.33.092203.122541

Sarkar, S, Das, D K, Singh, A, Laik, R, Singh, S K, van Es, H M, Krishnan, K, et al.,

2024. Seasonal variations in soil characteristics control microbial respiration and carbon



use under tree plantations in the middle gangetic region. Heliyon 10, e35593.

https://doi.org/10.1016/j.heliyon.2024.e35593

Soinne, H, Keskinen, R, Tahtikarhu, M, Kuva, J, Hyvaluoma, J, 2023. Effects of organic
carbon and clay contents on structure-related properties of arable soils with high clay
content. European Journal of Soil Science 74, e13424.

https://doi.org/10.1111/ejss.13424

Spawn, S A, Gibbs, H K, 2020. Global Aboveground and Belowground Biomass Carbon
Density Maps for the Year 2010 (Version 1). ORNL Distributed Active Archive Center

https://doi.org/10.3334/ORNLDAAC/1763

Tuanmu, M-N, Jetz, W, 2015. A global, remote sensing-based characterization of
terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global

Ecology and Biogeography 24, 1329-1339. https://doi.org/10.1111/geb.12365

Wouest, S B, 2015. Seasonal Variation in Soil Bulk Density, Organic Nitrogen, Available
Phosphorus, and pH. Soil Science Society of America Journal 79, 1188-1197.

https://doi.org/10.2136/sssaj2015.02.0066

Yao, Z, Xin, Y, Yang, L, Zhao, L, Ali, A, 2022. Precipitation and temperature regulate
species diversity, plant coverage and aboveground biomass through opposing
mechanisms in large-scale grasslands. Frontiers in Plant Science Volume 13 - 2022,

https://doi.org/10.3389/fpls.2022.999636




Zhang, X, Zhang, W-C, Wu, W, Liu, H-B, 2023. Horizontal and vertical variation of soil
clay content and its controlling factors in China. Science of The Total Environment 864,

161141. https://doi.org/10.1016/j.scitotenv.2022.161141

Zhang, Z, Li, X, Ju, W, Zhou, Y, Cheng, X, 2022. Improved estimation of global gross
primary productivity during 1981-2020 using the optimized P model. Science of The

Total Environment 838, 156172. https://doi.org/10.1016/].scitotenv.2022.156172

Zomer, R J, Xu, J, Trabucco, A, 2022. Version 3 of the Global Aridity Index and Potential

Evapotranspiration Database. Scientific Data 9, 409. https://doi.org/10.1038/s41597-

022-01493-1



