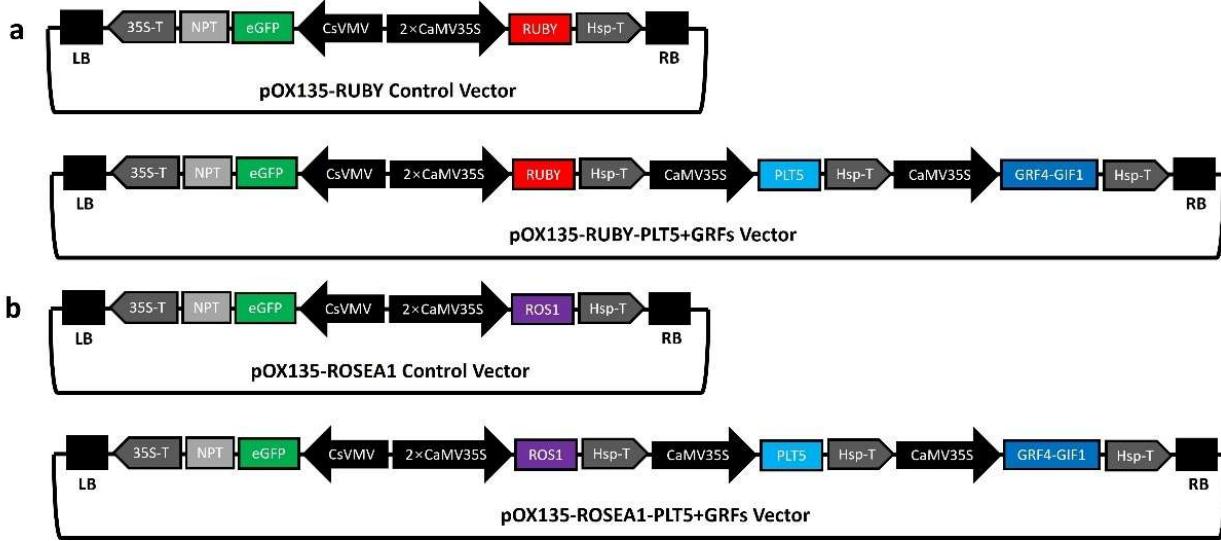


1 **Supplementary Fig.1: Schematic representation of the expression vectors used for evaluating**
 2 **developmental regulators (DRs) in plant transformation.**

3
 4 **a**, Control expression vector pOX135 containing an *eGFP-NPTII* fusion gene driven by the *CsVMV*
 5 promoter, without any DRs (NA, labeled as “CK”). Single DR expression vectors are modified pOX135
 6 constructs carrying individual DR genes (*PLT5*, *WIND1*, *IPT*, *WUS*, *GRFs*, *WOX13*, *WOX5*, *BBM*, or *ESR1*),
 7 each driven by a double *CaMV35S* promoter (2×*CaMV35S*) (see Supplementary File 2 for promoter
 8 sequence information). **b**, Double DR expression vectors are modified pOX135 constructs containing two
 9 different DR genes (*PLT5-GRFs*, *PLT5-IPT*, *PLT5-WUS*, *PLT5-WIND1*, *PLT5-ESR1*, *PLT5-WOX5*, *PLT5-*
 10 *WOX13*, *PLT5-BBM*, *GRFs-WOX5*, or *GRFs-WOX13*), each positioned at separate loci and driven by
 11 independent 2×*CaMV35S* promoters. **c**, Triple DR expression vectors are modified pOX135 constructs
 12 incorporating three distinct DR genes (*PLT5-GRFs-ESR1*, *PLT5-GRFs-WOX5*, *PLT5-GRFs-WOX13*,
 13 *PLT5-WUS-WOX5*, *PLT5-ESR1-WOX5*, *PLT5-ESR1-WOX13*, or *GRFs-ESR1-WOX5*), each positioned at
 14 separate loci and driven by individual 2×*CaMV35S* promoters. In all constructs, 35S-T and Hsp-T represent
 15 terminators. LB and RB indicate the left and right borders of the T-DNA, respectively.
 16


17 **Supplementary Fig. 2: Verification of expression vector construction.**

18
19 **a**, PCR amplification of the coding sequences (CDS) of various developmental regulators (DRs)
20 used in this study. Expected amplicon sizes (in bp) are indicated below each lane. **b**, Restriction
21 enzyme digestion of single and double DR expression cassettes to confirm proper vector
22 assembly. Lanes 1-7: single DR cassettes; lanes 8-14: double DR cassettes. Restriction enzymes
23 used were EcoRI, BsaI, MluI, AatII, SpeI, SalI, and SbfI, with their recognition sites shown in
24 the schematic representation in panel c. **c**, Schematic diagram of the restriction enzyme sites used
25 for vector analysis. Hsp-T, heat shock protein terminator; 2×CaMV35S, double Cauliflower
26 Mosaic Virus 35S promoter; RB, right border. **d**, Representative gel image showing the
27 restriction pattern of P-WUS double DR cassette digested with EcoRI, WOX5, and WOX13,
28 confirming the correct ligation of the two DR cassettes. **e**, Restriction enzyme digestion of single
29 and double DR expression vectors using EcoRI, WOX5, and WOX13. Expected band sizes (in
30 bp) are indicated on the left. M, DNA size marker.

31
32
33
34
35
36
37
38
39

40 **Supplementary Fig. 3: Schematic representation of expression vectors containing different visible**
 41 **markers and developmental regulators (DRs).**

42 **a**, pOX135-RUBY control vector harboring an *eGFP-NPTII* fusion gene driven by the *CsVMV* promoter
 43 and a synthetic betalain biosynthesis gene (*RUBY*) under the control of a double *CaMV35S* promoter
 44 ($2 \times \text{CaMV35S}$). **b**, pOX135-RUBY-PLT5-GRF4/GIF1 (PG+RU) vector, a modified pOX135-RUBY
 45 construct incorporating additional cassettes of *PLT5* (from *Arabidopsis*) and *GRF4/GIF1* (from grape), both
 46 driven by $2 \times \text{CaMV35S}$ promoters. **c**, pOX135-ROSEA1 control vector containing an *eGFP-NPTII* fusion
 47 gene driven by the *CsVMV* promoter and an anthocyanin regulatory gene (*ROSEA1*) under the control of
 48 $2 \times \text{CaMV35S}$. **d**, pOX135-ROSEA1-PLT5-GRF4/GIF1 (PG+RO) vector, a modified pOX135-ROSEA1
 49 construct incorporating additional cassettes of *PLT5* (from *Arabidopsis*) and *GRF4/GIF1* (from grape), both
 50 driven by $2 \times \text{CaMV35S}$ promoters. In all constructs, *35S-T* and *Hsp-T* represent terminators, while *LB* and
 51 *RB* indicate the left and right borders of the T-DNA, respectively.

52

53

54

55

56

57

58

59

60

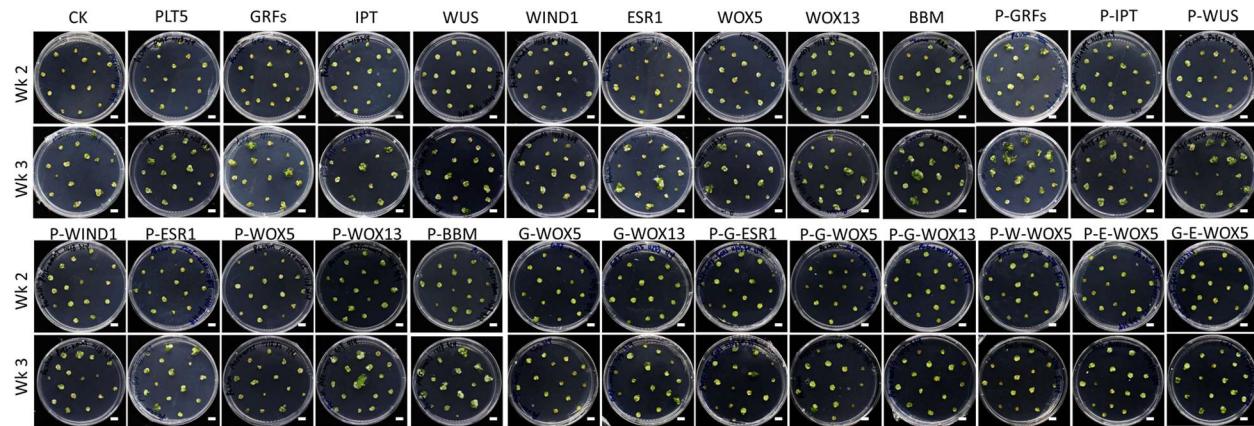
61

62

63

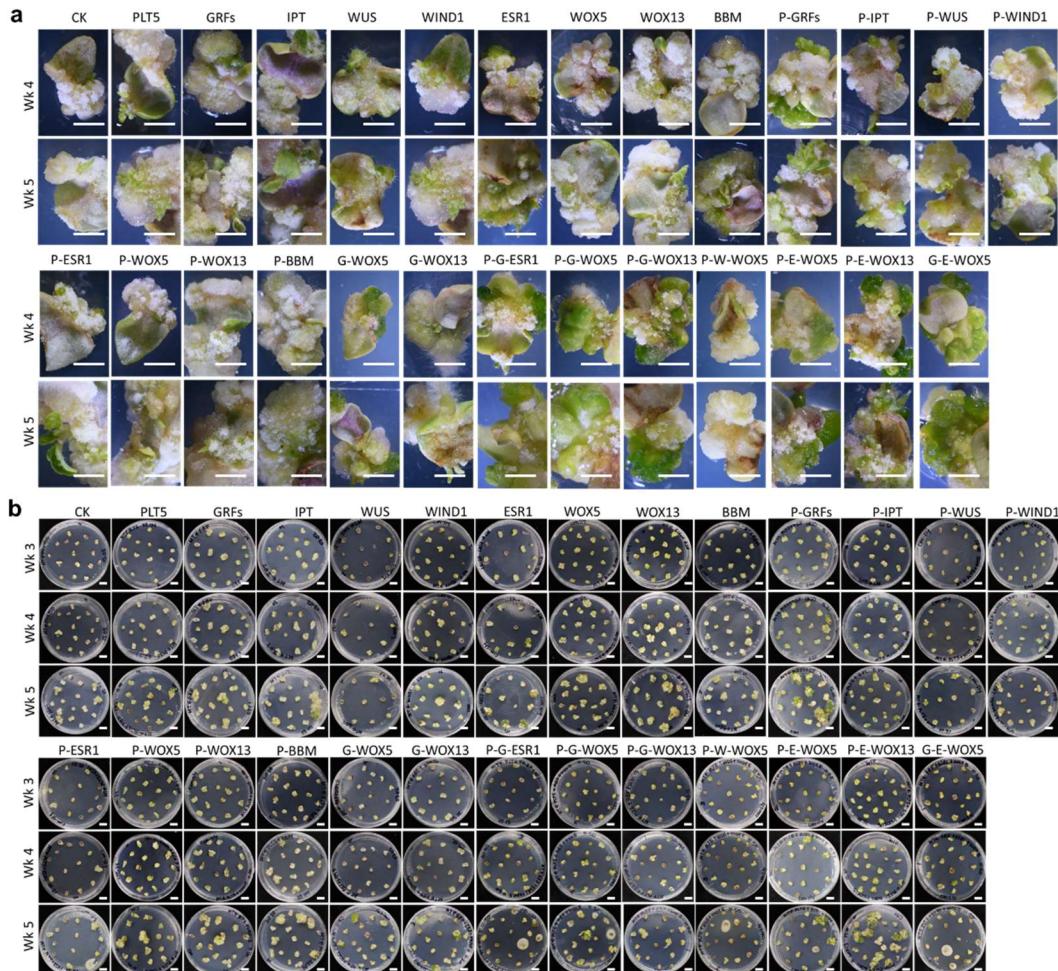
64

65

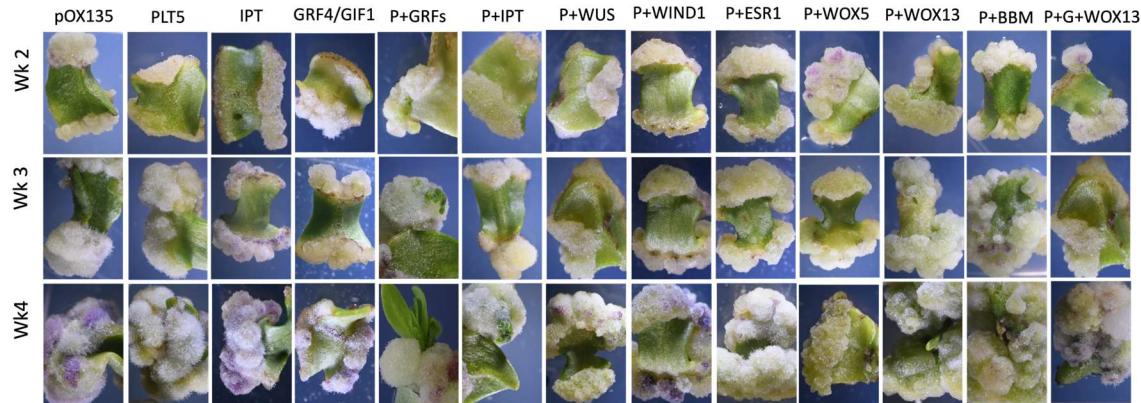

66

67

68

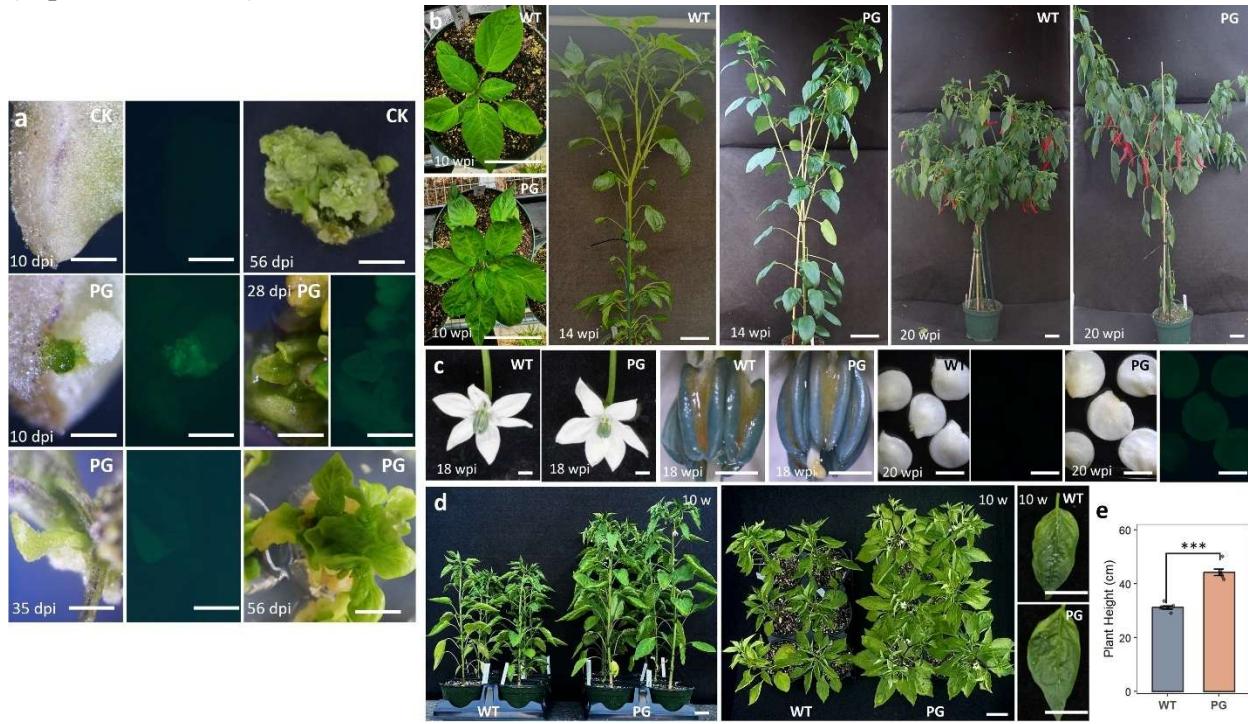

69

70 **Supplementary Fig. 4: Comprehensive screening of DRs effects on callus induction, shoot
71 regeneration, and transformation efficiency in *Petunia hybrida*.**


72
73 Representative images of Petunia culture plates showing leaf explant responses to various DRs on callus-
74 induction MS medium at 2- and 3- wpi. Upper panels show individual DRs (pOX135 control, GRFs, IPT,
75 WUS, WIND1, ESR1, WOX5, WOX13, BBM); middle panels display PLT5-based combinations (PLT5,
76 P-GRFs, P-IPT, P-WUS, P-WIND1, P-ESR1, P-WOX5, P-WOX13, P-BBM); and lower panels present
77 more complex combinatorial treatments (G-WOX5, G-WOX13, P-G-ESR1, P-G-WOX5, P-G-WOX13, P-
78 W-WOX5, P-E-WOX5, P-E-WOX13, G-E-WOX5) (where P = PLT5, G = GRF4/GIF1, E = ESR1, W =
79 WUS). Images were selected to represent the average response across three biological replicates, with each
80 replicate consisting of 20 leaf explants cultured under identical conditions.
81
82
83
84
85

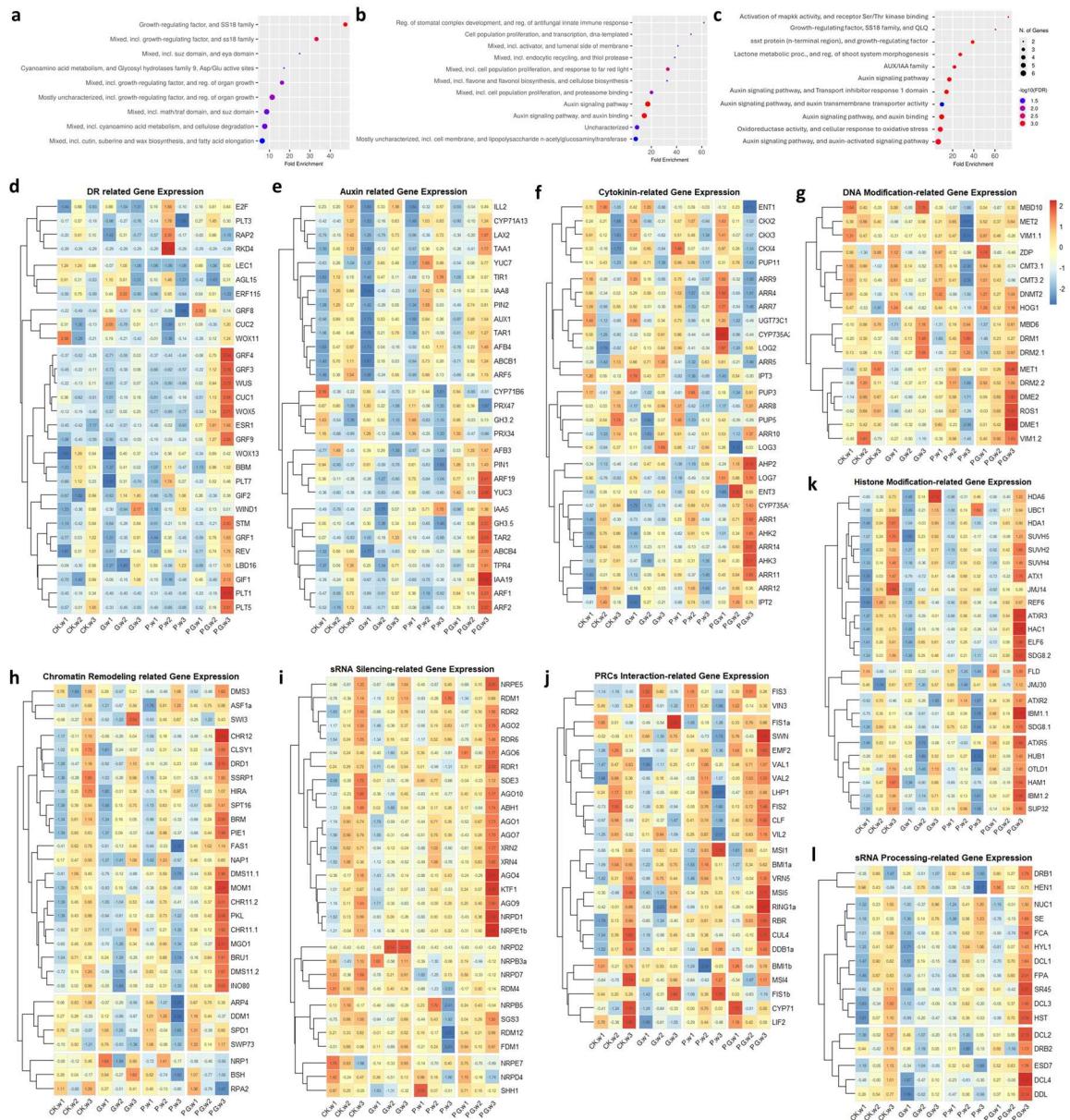
86 **Supplementary Fig.5: Comprehensive screening of DRs for regeneration in tomato of DR effects on**
 87 **callus induction, shoot regeneration, and transformation efficiency in tomato (*Solanum***
 88 ***lycopersicum* cv. Micro-Tom).**

89 **a**, Representative images of individual tomato explants illustrating regeneration responses to various DR
 90 combinations at 3 (See Fig.1a), 4, and 5 wpi. Upper panels show individual DRs (pOX135 control, GRFs,
 91 IPT, WUS, WIND1, ESR1, WOX5, WOX13, BBM); middle panels display PLT5-based combinations
 92 (PLT5, P-GRFs, P-IPT, P-WUS, P-WIND1, P-ESR1, P-WOX5, P-WOX13, P-BBM); and lower panels
 93 present more complex combinatorial treatments (G-WOX5, G-WOX13, P-G-ESR1, P-G-WOX5, P-G-
 94 WOX13, P-W-WOX5, P-E-WOX5, P-E-WOX13, G-E-WOX5) (where P = PLT5, G = GRF4/GIF1, E =
 95 ESR1, W = WUS). **b**, Representative images of tomato culture plates showing cotyledon explant responses
 96 to various DR combinations on MS medium at 3-, 4-, and 5- wpi. Images were selected to represent the
 97 average response across three biological replicates, with each replicate consisting of 20 cotyledon explants
 98 cultured under identical conditions. Statistical analysis of the DR evaluation on tomatoes is provided in
 99 Supplementary Table 1.
 100


102 **Supplementary Fig.6: Comparative analysis of developmental regulator (DR) effects on regeneration**
103 **in chili pepper (*Capsicum annuum*).**

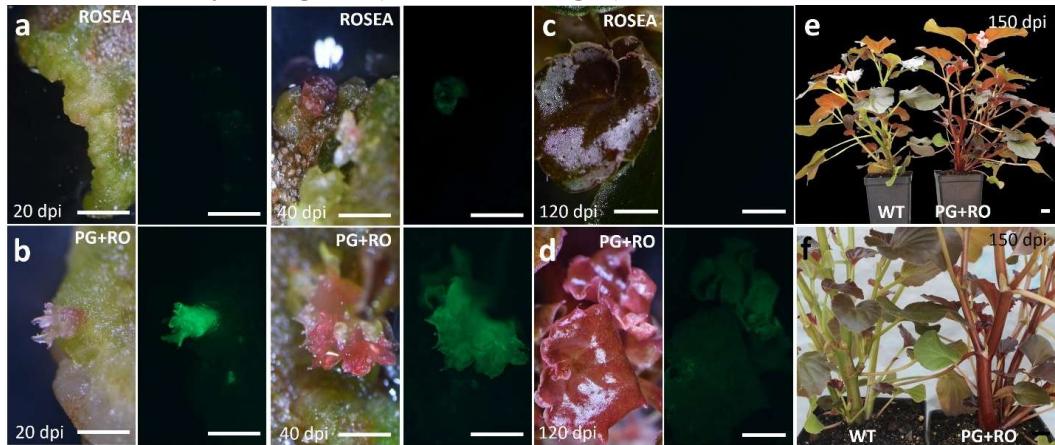
104
105 Representative images of individual chili pepper cotyledon explants showing regeneration responses
106 following Agrobacterium-mediated transformation with various DR constructs at 2-, 3-, and 4 wpi. The
107 tested constructs include pOX135 (control), PLT5, IPT, GRF4/GIF1, P-GRFs, P-IPT, P-WUS, P-WIND1,
108 P-ESR1, P-WOX5, P-WOX13, P-BBM, and P-G-WOX13 (where P = PLT5, G = GRF4/GIF1). Images
109 were selected from full culture plates to represent the average response across three biological replicates,
110 with each replicate consisting of 20 cotyledon explants cultured under identical conditions. Statistical
111 analysis of the DR evaluation on chili is provided in Supplementary Table 3.

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


136 **Supplementary Fig.7: Phenotypic characterization of *PLT5-GRFs* transgenic chili pepper**
 137 **(*Capsicum annuum*).**

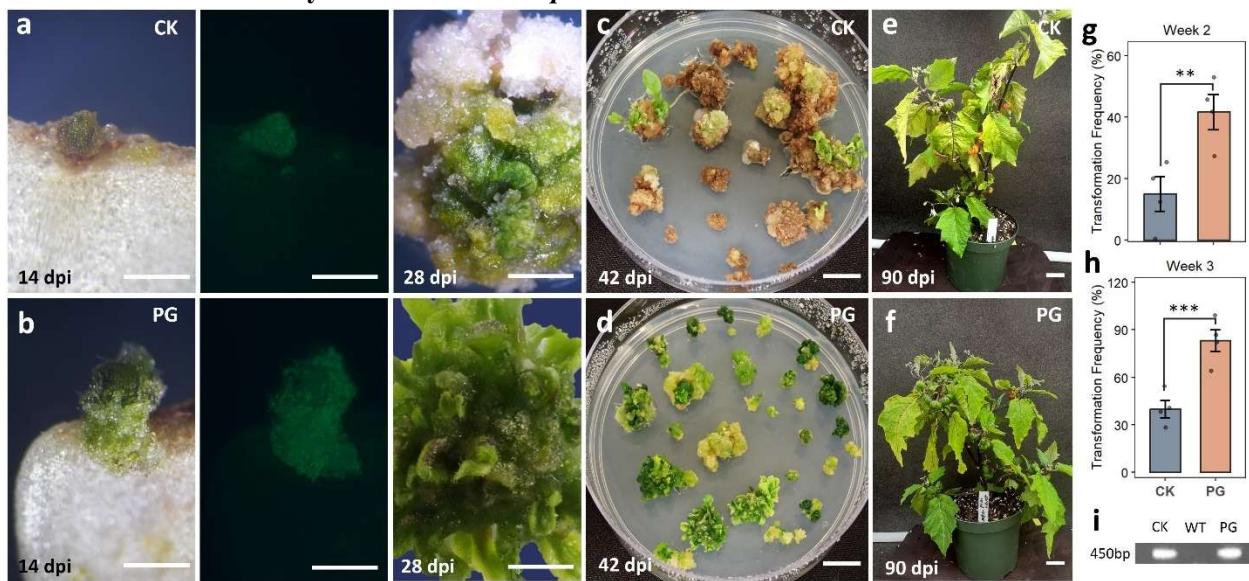
138
 139 **a**, Fluorescence microscopy of cotyledon explants and calli at 10, 28, 35, and 56 dpi with control (CK) or
 140 *PLT5-GRF4* (PG) constructs. Insets show GFP expression in transgenic PG shoots. Scale bars, 2 mm. **b,c**,
 141 Developmental comparison of T0 transgenic PG and wild-type (WT) chili pepper plants at various growth
 142 stages: seedlings at 10 weeks post-inoculation (wpi) (b, left), plants at 14 and 20 wpi (b, middle and right),
 143 flowers at 18 wpi (c, left), and seeds at 20 wpi (c, middle). GFP fluorescence in WT and PG seeds is shown
 144 in c, right. Scale bars, 1 cm (b), 5 mm (c, left and middle), and 2 mm (c, right). **d**, Side view (top) and top
 145 view (bottom) of T1 transgenic PG and WT chili pepper plants at 10 weeks after seed germination, showing
 146 differences in plant architecture and leaf morphology. Scale bars, 5 cm. **e**, Quantification of plant height in
 147 WT and PG plants at 10 weeks after seed germination. Data are presented as mean \pm s.d. (n = 6 plants per
 148 genotype, 3 biological replicates). Asterisks indicate statistically significant differences based on a two-
 149 tailed Student's t-test (**P < 0.001).

150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161


Supplementary Fig.8: Transcriptional profiling reveals *PLT5* and *GRFs*-mediated gene expression changes associated with enhanced transformation efficiency in *Capsicum annuum*.

a-c, KEGG pathway enrichment analysis of differentially expressed genes (DEGs) in *C. annuum* at 3 wpi with *PLT5-GRFs* (PG) compared to the control (CK). The analysis was performed using homologs of *C. annuum* DEGs identified in *Arabidopsis thaliana* (a), *Nicotiana tabacum* (b), and *Solanum lycopersicum* (c). Dot size represents the number of DEGs in each pathway, and color indicates the statistical significance ($-\log_{10}(\text{false discovery rate})$). **d-l**, Hierarchical clustering and heatmap visualization of transcriptional profiles for genes involved in key regulatory pathways: developmental regulation (d), auxin signaling (e), cytokinin signaling (f), DNA modification (g), histone modification (h), chromatin remodeling (i), small RNA silencing (j), Polycomb Repressive Complex (PRC) interactions (j), and small RNA processing (l). Expression levels are presented as $\log_2(\text{transcripts per million} + 1)$ values across three biological replicates for CK, PLT5 alone (P), GRF4 alone (G), and PG at 1-, 2-, and 3- wpi. Color scale represents normalized expression levels from low (blue) to high (red).

176 **Supplementary Fig. 9: Co-expression of *PLT5* and *GRFs* enhances anthocyanin accumulation and**


177 transformation efficiency in *Begonia* (continued in Fig. 5).

178
179 **a,b**, Leaf explants transformed with the *ROSEA1* control plasmid (a) or the *PLT5-GRFs+ROSEA1* (PG+RO)
180 plasmid (b) showing callus development, GFP fluorescence, and red pigmentation at 20 and 40 dpi. PG+RO
181 explants exhibit enhanced GFP fluorescence and intense red pigmentation compared to the control. **c,d**,
182 Phenotypic comparison of wild-type (WT) (c) and transgenic PG+RO (d) plants at 120 dpi, showing
183 detailed views of leaves under bright field (left) and UV illumination (right). Scale bars, 1 cm (a-d). **e,f**,
184 Phenotypic comparison of WT (e) and PG+RO (f) plants at 150 dpi, displaying whole plant morphology (e)
185 and anthocyanin accumulation in leaves and stems (f). PG+RO plants exhibit enhanced anthocyanin
186 production compared to WT. Scale bars, 2 cm (e, f).

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

209 **Supplementary Fig.10: Co-expression of *PLT5* and *GRFs* enhances shoot regeneration and**
 210 **transformation efficiency in *Solanum aethiopicum*.**

211 **a, b,** Fluorescence microscopy of calli at 14- and 28- dpi with control (CK) or *PLT5*-*GRF4* (PG)
 212 constructs. **c, d,** Regenerated shoots at 42- dpi from CK (c) and PG (d) treatments. **e, f,** Transgenic
 213 plantlets at 90 dpi from CK (e) and PG (f) treatments. Scale bars, 5 mm. **g, h,** Transformation
 214 frequency (percentage of explants producing transgenic shoots) in CK and PG treatments at 2
 215 weeks (g) and 3 weeks (h) post-transformation. Data are presented as mean \pm s.d. (n = 4 biological
 216 replicates, each consisting of 15 explants). Asterisks indicate statistically significant differences
 217 based on a two-tailed t-test (*P < 0.05; **P < 0.01; ***P < 0.001). **i,** PCR detection of the *GFP*
 218 transgene (450 bp) in T0 transgenic seedlings from CK and PG treatments. Wild-type (WT) plants
 219 served as a negative control.

220

221

222

223

224

225

226

227

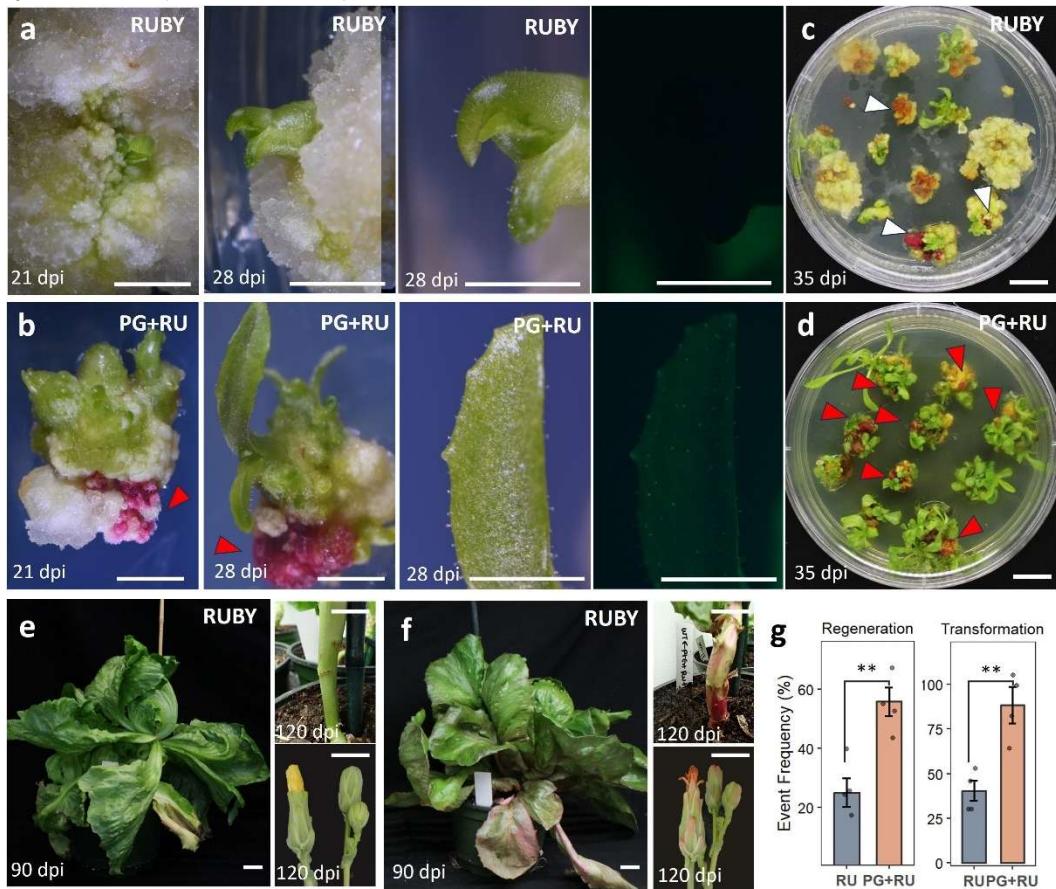
228

229

230

231

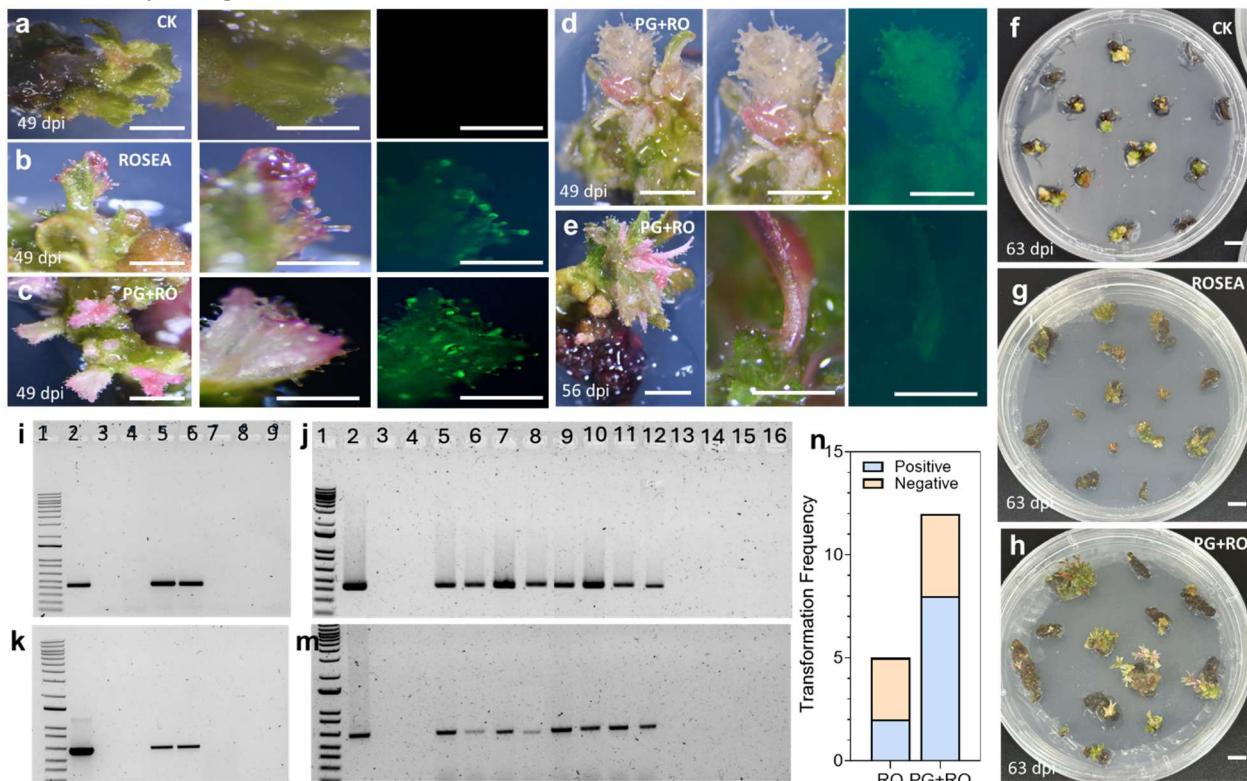
232


233

234

235

236


237 **Supplementary Fig.11: PLT5 and GRF co-expression enhances regeneration and transformation**
 238 **efficiency in lettuce (*Lactuca sativa*).**

239
 240 **a,c,e**, Developmental progression of cotyledon explants transformed with the control vector pOX135-
 241 RUBY (RU) from 21 to 120 days post-inoculation (dpi). RU explants developed calli with weak GFP
 242 fluorescence and red pigmentation. Representative shoots at 28 dpi (c, white arrowhead) show limited GFP
 243 fluorescence. Shoot at 35 dpi (e) and fully regenerated RU plants at 90 and 120 dpi exhibited normal green
 244 phenotypes without noticeable detectable pigment accumulation in vegetative or reproductive tissues. The
 245 representative culture plate at 35 dpi (c, top right) demonstrates the limited shoot regeneration and
 246 transformation frequency of the RU construct. **b,d,f**, Developmental progression of cotyledon explants
 247 transformed with the *PLT5-GRFs+RUBY* (PG+RU) vector from 21 to 120 dpi. PG+RU explants showed
 248 strong GFP fluorescence and red pigmentation. Representative shoots at 28 dpi (d, red arrowhead) and
 249 displays strong GFP fluorescence. Fully regenerated PG+RU plants at 90 and 120 dpi exhibited strong red
 250 pigmentation in leaves, stems, and flowers. The representative culture plate at 35 dpi (d, bottom right)
 251 demonstrates the enhanced shoot regeneration and transformation frequency of the PG+RU construct. Red
 252 arrowheads denote the regenerated shoots from PG+RU, while white arrowheads indicate those from RU.
 253 Scale bars, 2 mm (a,b), 1 mm (c,d), 1 cm (e,f). **g**, Regeneration frequency (percentage of explants producing
 254 shoots) and transformation frequency (percentage of explants producing transgenic shoots) in RU and
 255 PG+RU treatments at 4 wpi. Data are presented as mean \pm s.d. (n = 3 biological replicates, each consisting
 256 of 15 explants). Asterisks indicate statistically significant differences based on a two-tailed Student's t-test
 257 (**P < 0.01).

258

259 **Supplementary Fig. 12: Co-expression of PLT5 and GRFs enhances genetic transformation efficiency**
 260 **in blueberry using the *ROSEA1* visible marker.**

261 **a–c** Representative shoot-regenerating explants of *Vaccinium corymbosum* ‘Albus’ transformed with
 262 pOX135 empty vector (CK) (a), pOX135-ROSEA (ROSEA) (b) and pOX135-PG+RO
 263 (PLT5+GRFs+ROSEA1) (c) at 49 days post inoculation (dpi), shown under bright field (left) and
 264 fluorescence (right). **d, e** Additional pOX135-PG+RO explants at later time points (49 and 56 dpi, as
 265 indicated), highlighting pink anthocyanin pigmentation and GFP fluorescence in emerging shoots. **f–h**
 266 Whole regeneration plates at 63 dpi for CK (f), ROSEA (g) and PG+RO (h). **i, k** PCR detection of the
 267 *AmROSEA1* transgene (450 bp) in independent transformants. **j, m** PCR detection of the *eGFP* transgene
 268 (630 bp) in the same samples. For each gel, lane 1, 1 kb Plus DNA ladder; lane 2, plasmid positive control
 269 (pOX135-ROSEA1 in i–j; pOX135-PG+RO in k–m); lane 3, water negative control; lane 4, wild-type
 270 ‘Albus’; lanes 5–9 (i–j) or 5–11 (k–m), independent putative transformants. **n** Transformation frequency
 271 of each construct calculated as the percentage of PCR-positive shoots among total regenerated shoots. Scale
 272 bars, as indicated.

273
 274
 275
 276
 277
 278
 279
 280
 281
 282

283 **Supplementary Table 1: Effects of developmental regulators (DRs) on plant regeneration and**
 284 **transformation in *Petunia hybrida*.**

285

Developmental Regulator (DRs)	2 wpi			3 wpi		
	Callus induction frequency (%)	Shoot induction frequency (%)	Transformation frequency (%)	Callus induction frequency (%)	Shoot induction frequency (%)	Transformation frequency (%)
CK	56.03±8.86	4.6±3.99	4.6±3.99	69.84±7.65	16.35±4.42	23.71±5.25
PLT5	69.58±3.41	10.83±3.63	13.06±6.68	78.19±4.26	32.64±6.77*	42.64±0.07*
GRFs	54.6±20.12	2.38±4.12	2.38±4.12	74.13±15.26	20.79±6.21	30.00±9.37
IPT	68.19±5.44	6.39±0.24	6.39±0.24	70.56±18.73	19.31±7.1	25.83±12.27
WUS	44.86±11.9	8.47±3.49	8.47±3.49	59.58±3.15	19.03±5.84	25.28±12.09
WIND1	68.19±5.44	15±4.33*	19.31±7.1*	78.89±6.74	29.72±6.79*	40.42±9.38*
ESR1	58.18±3.15	5.25±4.71	8.28±9.2	68.89±7.7	31.11±10.18	35.56±10.18
WOX5	61.25±15.52	13.19±6.88	15.42±7.94	72.08±13.71	26.25±7.3	32.92±13.96
WOX13	61.11±11.71	6.53±6.67	6.53±6.67	71.25±12.37	24.03±8.08	32.78±7.52
BBM	60.97±10.8	10.83±3.63	15.14±7.36	62.22±19.25	26.67±6.67	37.78±7.70*
PLT5-GRFs	72.7±1.1*	25.08±4.5**	41.11±8.39**	84.44±3.85*	53.33±6.67**	80.44±5.85**
PLT5-IPT	68.75±22.53	12.5±6.25	16.67±9.55	83.33±9.55	33.33±3.61**	50.00±6.25**
PLT5-WUS	61.27±10.62	20.48±6.72*	29.52±3.43**	72.86±5.97	45.56±5.09**	61.43±7.11**
PLT5-Wind1	53.13±4.42	3.13±4.42	3.13±4.42	56.25±0	25±6.25	35.42±7.22
PLT5-ESR1	41.39±10.55	2.08±3.61	2.08±3.61	53.33±9.43	23.33±4.71	33.33±9.43
PLT5-WOX5	68.75±17.68	3.13±4.42	3.13±4.42	75±8.84	21.88±4.42	34.38±4.42*
PLT5-WOX13	61.11±11.71	4.31±3.73	6.39±6.25	76.39±12.48	25.97±5.66	36.94±3.37*
PLT5-BBM	53.33±6.67	13.33±0*	17.78±3.85*	54.58±11.51	34.86±4.57**	48.06±9.14*
GRFs-WOX5	48.31±8.69	7.64±8.42	7.64±8.42	57.24±1.05	26.59±6.11	28.97±4.18
GRFs-WOX13	60.02±5.77	9.33±2.81	9.33±2.81	58.12±12.49	24.52±4.31	31.21±4.52
P-GRFs-ESR1	35.81±6.19	8.91±3.86	10.99±3.36	39.98±5.77	19.76±5.36	32.84±11.17
P-GRFs-WOX5	18.25±4.32	6.83±6.67	6.83±6.67	29.52±3.43	11.27±3.57	17.94±9.92
P-GRFs-WOX13	44.27±3.71	11.79±4.56	16.58±5.63	40±13.33	15.56±3.85	22.22±3.85
P-WUX-WOX5	26.67±6.67	4.44±3.85	4.44±3.85	26.67±6.67	8.89±3.85	13.33±6.67
P-ESR1-WOX5	15.56±3.85	4.44±3.85	4.44±3.85	20.48±6.72	6.83±0.27	9.05±3.72*
G-WOX5-ESR1	43.47±16.67	8.61±3.37	10.69±6.98	47.92±17.05	19.72±7.09	26.25±11.92

286

287 Note: Cotyledon explants (n = 20) were cultured on callus-induction MS medium supplemented with 1
 288 mg/L 6-benzylaminopurine (BAP), 0.1 mg/L 1-naphthaleneacetic acid (NAA), 100 mg/L kanamycin, and
 289 100 mg/L Timentin for 2 and 3 weeks to evaluate the effects of various DRs on plant regeneration and
 290 transformation. Callus induction frequency (%), shoot induction frequency (%), and transformation
 291 frequency (%) were calculated as follows: callus induction frequency (%) = (number of explants with calli
 292 / total number of explants) × 100; shoot induction frequency (%) = (number of explants with shoots / total
 293 number of explants) × 100; transformation frequency (%) = (total number of shoots expressing GFP / total
 294 number of explants) × 100. Data are presented as mean ± s.d. from three independent experiments. Asterisks
 295 indicate statistically significant differences compared to the control (CK) based on a two-tailed Student's t-
 296 test (*P < 0.05; **P < 0.01).

297

298

299

300

301 **Supplementary Table 2: Effects of DRs on plant regeneration and transformation in tomato (*Solanum lycopersicum* cv. Micro-Tom).**

Developmental Regulator (DRs)	3 wpi			4 wpi			5 wpi		
	Callus induction frequency (%)	Shoot induction frequency (%)	Transformation frequency (%)	Callus induction frequency (%)	Shoot induction frequency (%)	Transformation frequency (%)	Callus induction frequency (%)	Shoot induction frequency (%)	Transformation frequency (%)
CK	26.56±9.38	0	0	37.5±8.84	4.69±3.13	4.71±3.13	45.31±9.38	7.81±3.13	10.94±5.98
PLT5	33.33±12.17	3.33±3.85	3.33±3.85	48.54±17.16	9.69±3.75	12.92±3.93*	54.69±16.08	12.92±5.46	27.81±6.52*
GRFs	30±8.61	0	0	38.46±11.61	3.59±4.17	5.23±4.10	48.72±14.19	10.26±3.58	13.59±9.2
IPT	47.39±9.89*	3.57±7.14	3.57±7.14	58.24±6.23**	8.57±6.64	8.06±6.01	57.13±11.64	6.79±5.45	8.45±8.36
WUS	41.79±8.63	0	0	44.32±5.72	6.14±0.59	6.14±0.59	57.95±6.82	15.72±8.91	17.99±13.04
WIND1	51.47±2.94**	5.88±4.8*	8.82±7.59	63.24±7.4**	8.82±3.4	9.07±3.12	69.12±7.4**	19.12±5.63*	27.94±10.05*
ESR1	45.31±13.86	3.13±3.61	4.69±5.98	56.25±15.77	14.58±4.17**	20.83±14.43*	70.83±10.76*	33.33±6.8**	40.25±10.49**
WOX5	39.71±7.4	1.47±2.94	1.47±2.94	61.76±7.59**	5.88±4.8	4.94±5.77	77.94±8.82**	20.59±5.88**	29.41±11.76*
WOX13	50±7.59**	0	0	55.88±7.59*	7.42±1.84	7.42±1.84	76.47±8.32**	17.65±4.8*	23.53±8.32*
BBM	46.88±14.88	1.56±3.13	1.56±3.13	49.26±12.09	2.86±3.3	2.14±1.29	56.29±11.63	8.42±3.12	11.19±6.32
PLT5-GRFs	68.89±13.61**	13.27±5.73**	14.65±7.29**	64.65±11.82*	23.57±9.67**	38.86±3.90**	73.49±10.24**	37.96±12.66**	64.21±22.17**
PLT5-IPT	59.74±5.14**	4.41±2.94*	4.41±2.94*	74.45±12.78**	5.97±4.81	23.32±10.44*	79.14±10.1**	22.7±14.3	34.83±23.11*
PLT5-WUS	52.08±7.98**	2.08±4.17	2.08±4.17	60.42±7.98**	4.17±4.81	3.32±3.55	68.75±10.49*	27.08±15.77	29.58±18.48
PLT5-WIND1	61.4±9.48**	7.54±3.31**	9.01±3.62**	58.46±12.03*	6.07±5.11	11.39±4.92*	61.31±10.81	19.49±6.05*	25.55±12.78
PLT5-ESR1	53.85±10.88**	3.85±7.69	3.85±7.69	55.77±3.85**	7.69±6.28	11.83±5.06*	63.46±3.85*	28.85±7.36**	42.31±16.01*
PLT5-WOX5	65.1±12.88**	1.56±3.13	1.56±3.13	66.67±10.62**	3.13±3.61	3.04±2.05	76.35±10.39**	22.19±7.93*	30.21±15.73
PLT5-WOX13	46.88±3.61**	1.56±3.13	1.56±3.13	59.38±8.07*	4.69±5.98	2.68±2.94	68.75±5.1**	10.94±5.98	12.5±8.84
PLT5-BBM	53.13±11.97*	1.56±3.13	1.56±3.13	58.02±14.32	5.64±4.54	9.10±1.64*	65.04±7.64*	10.32±6.17	13.36±8.25
GRFs-WOX5	19.64±6.84	1.79±3.57	1.79±3.57	39.36±14.65	5.73±7.86	4.43±4.98	53.87±6.8	12.65±7.64	16±9.41
GRFs-WOX13	31.25±8.84	3.13±6.25	3.13±6.25	33.82±10.05	4.41±5.63	9.72±4.07	42.65±8.82	8.82±3.4	16.18±7.4
P-GRFs-ESR1	31.94±6.99	11.11±4.54**	15.28±5.32**	45.83±8.33	9.72±5.32	13.58±5.40*	51.39±6.99	11.11±4.54	15.28±5.32
P-GRFs-WOX5	46.51±11.69*	4.6±5.95	4.6±5.95	52.3±10.34*	11.86±6.69	11.71±7.27	50.83±4.56	23.9±7.86*	29.78±8.0*
P-GRFs-WOX13	41.67±9.62	2.08±4.17	2.08±4.17	51.54±6.52*	10.51±4.52	14.20±4.97*	58.97±10.77	15.51±3.14*	22.44±8.33
P-WUX-WOX5	39.05±4.54	1.47±2.94	1.47±2.94	44.85±6.52	2.94±3.4	2.70±2.20	53.68±6.06	11.52±4.41	11.52±4.41
P-ESR1-WOX5	38.24±12.25	1.47±2.94	1.47±2.94	44.12±12.25	4.41±5.63	3.78±3.25	55.88±11.26	14.71±7.59	22.06±11.14
G-WOX5-ESR1	41.18±8.32	4.41±2.94*	4.41±2.94*	47.06±6.79	16.18±2.94**	16.52±7.77*	57.35±10.05	27.94±8.82**	41.18±9.61**
P-ESR1-WOX13	57.89±7.44**	3.95±2.63*	5.26±4.3	63.16±9.61**	15.79±6.08*	19.91±5.17*	71.05±6.79**	38.16±8.99**	53.95±11.67**

303 Note: Cotyledon explants (n = 20) were cultured on callus-induction MS medium supplemented with 2 mg/L zeatin, 0.15 mg/L indole-3-acetic
304 acid (IAA), 100 mg/L kanamycin, and 100 mg/L Timentin for 2, 3, and 4 weeks to evaluate the effects of various DRs on plant regeneration and
305 transformation. Callus induction frequency (%), shoot induction frequency (%), and transformation frequency (%) were calculated as described in
306 Supplementary Table 1. Data are presented as mean \pm s.d. from three independent experiments. Asterisks indicate statistically significant
307 differences compared to the control (CK) based on a two-tailed Student's t-test (*P < 0.05; **P < 0.01).

308 **Supplementary Table 3: Effects of developmental regulators (DRs) on plant regeneration and**
 309 **transformation in chili pepper (*Capsicum annuum*).**

310

311

312 Developmental 313 Regulator (DRs)	3 weeks post-inoculation		4 weeks post-inoculation	
	Shoot induction frequency (%)	Transformation frequency (%)	Shoot induction frequency (%)	Transformation frequency (%)
314 CTK	0	0	1.92±3.33	1.92±3.33
315 PLT5	1.92±3.33	1.92±3.33	3.71±3.71	3.71±3.71
316 GRFs	0	0	4.01±4.02	4.01±4.02
317 IPT	0	0	5.93±3.43	5.93±3.43
318 PLT5-GRFs	19.46±9.37*	21.52±7.62**	36.49±6.11**	56.09±12.57**
319 PLT5-IPT	7.69±5.44*	9.62±6.38*	13.46±6.38*	28.85±8.38**
320 PLT5-WUS	1.92±3.33	1.92±3.33	7.42±8.06	11.40±6.74
321 PLT5-WND1	3.85±3.85	4.01±4.01	11.54±8.60	11.54±8.60*
322 PLT5-ESR1	7.58±5.07*	9.64±3.34*	9.36±7.70	9.78±8.35
323 PLT5-WOX5	4.01±4.01	4.01±4.01	9.78±8.35	9.78±8.35
324 PLT5-WOX13	3.85±3.85	5.63±6.34	7.42±5.06	9.48±6.42
325 PLT5-BBM	3.85±3.85	4.01±4.01	7.85±5.45	7.85±5.45
326 PLT5-GRFs+WOX13	9.48±8.42**	17.51±6.96**	23.17±9.64**	31.04±15.22**

326 Note: Cotyledon explants (n = 20) were cultured on callus-induction MS medium supplemented with 3
 327 mg/L zeatin, 0.3 mg/L 1-naphthaleneacetic acid (NAA), 100 mg/L kanamycin, and 100 mg/L Timentin for
 328 3 and 4 weeks to evaluate the effects of various DRs on plant regeneration and transformation. Shoot
 329 induction frequency (%) and transformation frequency (%) were calculated as described in Supplementary
 330 Table 1. Data are presented as mean ± s.d. from three independent experiments. Asterisks indicate
 331 statistically significant differences compared to the control (CK) based on a two-tailed Student's t-test (*P
 332 < 0.05; **P < 0.01).

333

334 **Supplementary Table 4: Primers for vector construction, genotyping, and gene expression analysis.**

Primer names	Primers (5'-3')	Accession No.	Purpose
AtPLT5-F-BsaI	aaGGTCTCATCGAATGAAGAACATAACAAACAAATCTTCTT	AT5G57390	
AtPLT5-R-BsaI	AtGGTCTCGTCATCATTCAACCCAAAAACCG		
VisGRF4-F-BsaI	AaGGTCTCATCGAATGAAGCAGAGCTTGTGG	LOC100259737	
VisGIF1-R-BsaI	AtGGTCTCGTCATCAATTCCCATCTTCAGCAG	LOC100253609	
IPT-F-BsaI	ATGACAAATTGCTTCAAGGA		
IPT-R-BsaI	TCACATTGAAATGGTGG	DQ058764.1	
AtWUS1-F-BsaI	AaGGTCTCATCGAATGGAGCCGCCACAG		
AtWUS1-R-BsaI	AtGGTCTCGTCACTAGTTCAGACGTAGCTAAGA	AT2G17950	
AtWOX5-F-BsaI	AaGGTCTCATCGAATGTCTTCTCCGTGAAAG		
AtWOX5-R-BsaI	AtGGTCTCGTCATTAAAGAAAGCTTAATCGAAGATC	AT3G11260	
AtWOX13-F-BsaI	aaGGTCTCATCGAATGATGGAATGGGATAATCAG		
AtWOX13-R-BsaI	AtGGTCTCGTCATCAGCCTGACATGCC	AT4G35550	
AtBBM-F-BsaI	aaGGTCTCATCGAATGAACTCGATGAATAACTGG		
AtBBM-R-BsaI	atGGTCTCGTCACTAAGTGTGTTCCAAACTG	AT5G17430	
AtWIND1-F-BsaI	aaGGTCTCATCGAATGGCAGCTGCTATGAA		
AtWIND1-R-BsaI	atGGTCTCGTCACTAAGCTAGAATCGAATCCC	AT1G78080	
AtESR1-F-BsaI	aaGGTCTCATCGAATGGAAAAAGCCTTGAGAA		
AtESR1-R-BsaI	atGGTCTCGTCACTATCCCCACGATCTCG	AT1G12980	
MluI-35S-F	cgACCGTATTGATGTGATAACATGGTGGAG		
Hster-AatII-R	atGACGTGGGCCCTAGGGAGCT	AB294426.1	
SpeI.35s-F	ccACTAGTATTGATGTGATAACATGGTGGAG		
Hster.Sall-R	atGTCGACGGGCCCTAGGGAGCT	AB294426.1	
GFP_detector-F	ACAAGTTCAGCGGTGTCGG		
GFP_detector-R	TCACCTTGATGCCGTTCT	AB294426.1	
AmROSEA1-F	ATGGAAAAGAATTGTCGTGG		
AmROSEA1-R	TTAATTCCAATTGTTGGGC	DQ275529.1	Genotyping of the transgene in putative transgenic plants
RUBY-F	TGGGTTCCACTCATGCTCAT		
RUBY-R	AGGAATGGTGGTGAAGGAGG	Addgene_160908	
CaGAPDH-qF	ATGATGATGTGAAAGCAGCG		
CaGAPDH-qR	TTTCAACTGGTGGCTGCTAC	LOC107848523	qRT-PCR analysis to assess the gene expression levels in transgenic chili pepper calli.
AtPLT5-qF	GCGTTGTCTCTTCCGAC		
AtPLT5-qR	ATGTACGCTAGAcACCTCCG	AT5G57390	
VisGRF4-qF	CATTGTTCTCAGCAGCGA		
VisGRF4-qR	AGCTGGTTGTGGAGAATGA	LOC100259737	

335

336

337

338

339