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Supplementary Material
Abstract
Explainable artificial intelligence (XAI) methods for molecular property prediction lack standardized evaluation criteria, preventing reliable deployment in drug discovery where understanding chemical reasoning is essential. We developed a hierarchical four-dimensional evaluation framework using curated antimicrobial compounds from ChEMBL, implementing Tier 1 – scaffold recognition as the essential gatekeeper criterion, Tier 2 – context sensitivity for chemical sophistication validation, Tier 3 –internal consistency for explanation-prediction alignment, and Tier 4 – model independence for deployment reliability. Three representative architectures were evaluated across molecular pairs from three antibiotic classes: Random Forest with SHAP, CNN with occlusion, and RGCN with substructure masking. Despite comparable predictive performance, architectures showed dramatically different explanation capabilities. Only RGCN achieved deployment-ready performance across all tiers, while Random Forest failed scaffold recognition and CNN exhibited catastrophic chemical understanding failures. The framework revealed that architectural complexity without appropriate molecular representation fundamentally undermines explainability, establishing quantitative metrics that distinguish scientifically valid explanations from computational artifacts.
Scientific Contribution
We introduce a standardized, quantitative framework for evaluating explanation quality in molecular XAI through a hierarchical four-tier assessment system that measures chemical reasoning validity rather than computational artifacts alone. Our approach demonstrates that predictive performance does not correlate with explanation quality, revealing fundamental limitations in current molecular XAI methods overlooked in prior work. This framework extends beyond antimicrobial prediction to establish evaluation criteria for broad molecular property prediction applications, enabling rational molecular design, scaffold discovery, and reliable XAI assessment across diverse drug discovery and chemical optimization tasks.
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1. Introduction
Antimicrobial resistance (AMR) constitutes a significant global health crisis, threatening healthcare advancements by limiting effective therapeutic options against multidrug-resistant pathogens.[1] The rapid integration of artificial intelligence (AI) into drug discovery promises accelerated identification and optimization of novel antimicrobial agents.[2,3] While AI models have demonstrated remarkable success in predicting biological activities and identifying potential drug candidates from vast chemical libraries, these technologies face significant barriers to practical implementation due to their perceived opacity or "black box" nature which is their inability to explain the underlying chemical reasons for predictions. This opacity becomes particularly problematic in drug discovery, where explanations that appear plausible but are actually unfaithful, incoherent, or unstable can lead medicinal chemists to make incorrect optimization decisions, potentially resulting in failed drug candidates and wasted resources.[4-6] For medicinal chemists working to optimize drug candidates, understanding which molecular features drive activity predictions is essential for rational drug design. Consequently, the adoption of AI in medicinal chemistry workflows has been slower than anticipated, emphasizing the need for more explainable and transparent AI methods.
Explainable AI (XAI) techniques have emerged to address this transparency challenge by providing chemically meaningful rationales for AI-driven predictions.[4] These methods aim to bridge the gap between computational predictions and actionable chemical insights that medicinal chemists can use to guide molecular optimization. [5-7]Current XAI approaches vary widely in complexity and methodology, from popular methods like SHAP [8] and LIME [9] to perturbation-based techniques [10] and substructure masking approaches.[11] While recent reviews have highlighted the potential of XAI methods in drug discovery,[12,13] empirical comparisons of these approaches remain limited, particularly in evaluating whether their explanations align with established medicinal chemistry principles.
A fundamental challenge in XAI research is the lack of standardized evaluation frameworks for assessing explanation quality in molecular property prediction. It has been observed that poor explanations can cause harm rather than foster trust, particularly when they create an illusion of understanding while masking fundamental reasoning failures.[7]. The development of reliable explainable AI methods for molecular property prediction requires standardized evaluation criteria that distinguish scientifically valid explanations from computational artifacts. Without systematic evaluation frameworks, medicinal chemists cannot determine which XAI models provide trustworthy insights for rational drug design decisions, perpetuating the black box problem that limits AI adoption in pharmaceutical research. Current XAI evaluation approaches often rely on proxy tasks that fail to capture the chemical reasoning essential for drug discovery applications, creating an urgent need for evaluation methodologies that mirror how medicinal chemists approach structure-activity relationships.
Recent work has demonstrated meaningful progress toward systematic XAI evaluation in chemistry, particularly through benchmarks that assess whether models can correctly identify predefined structural motifs or atom–bond patterns linked to molecular properties. For example, quantitative GNN–XAI benchmarks have been developed to measure how effectively attribution methods recover known toxicophores, mutagenicity alerts, and other curated substructures [14]{Rao, 2022 #86}, and the B-XAIC dataset provides atom- and edge-level ground-truth labels for detecting chemical motifs such as halogens, indoles, PAINS alerts, and complex ring patterns across a large ChEMBL-derived molecular corpus [15]. These advances offer foundations for evaluating molecular explanations, though they primarily focus on motif-recovery accuracy rather than the medicinal-chemistry reasoning needed to assess scaffold contributions, context-dependent structure–activity effects, or attribution stability across training conditions.
To address these critical concerns about explanation reliability and prevent the deployment of potentially harmful XAI systems in the drug discovery process, our evaluation methodology focuses on four essential capabilities that any XAI method should demonstrate for reliable deployment in drug discovery. We developed a four-dimensional evaluation framework assessing scaffold recognition, context sensitivity, internal consistency, and model independence across well-characterized antibiotic classes. This validation approach requires established medicinal chemistry benchmarks where structure-activity relationships have been extensively characterized through decades of research. Three major antibiotic classes were selected as validation benchmarks - β-lactams (cell wall synthesis inhibitors with the β-lactam ring scaffold), fluoroquinolones (DNA synthesis inhibitors with quinolone-carboxylic acid cores), and oxazolidinones (protein synthesis inhibitors with oxazolidinone ring scaffolds). These classes represent different eras of antimicrobial discovery with extensively characterized structure-activity relationships and well-defined pharmacophores, providing ideal benchmarks for evaluating whether XAI methods can identify established drug scaffolds and understand chemical reasoning principles that have guided decades of medicinal chemistry optimization.
In AI drug discovery, molecular representation plays a crucial role in both the predictive accuracy and XAI ability, making careful selection critical.[16-18] Different representation strategies capture distinct aspects of molecular information and may influence how well AI models can predict and explain chemical relationships. We compared three distinct paradigms - fragment-based methods using functional group descriptors with classical Machine Learning, one-dimensional sequence-based approach processing SMILES strings with Convolutional Neural Networks (CNN), and graph-based methods employing Relational Graph Convolutional Networks (RGCN) to model atomic connectivity. Through systematic evaluation of these approaches against established structure-activity relationships in β-lactams, fluoroquinolones, and oxazolidinones, we determine which provides the most reliable pathway for explainable AI in antimicrobial drug discovery.
2. Methodology
2.1 Dataset Preparation and Model Development
For this study we used a dataset of compounds evaluated for their activity against the Gram-positive pathogen Staphylococcus aureus, by dose response assay. The compounds were retrieved from ChEMBL (v34) [19,20] alongside their minimum inhibitory concentration (MIC) activity data against S. aureus, with each compound categorized as either active (MIC ≤ 64 µg/mL) or inactive (MIC > 64 µg/mL). Prior to model development, data cleaning was performed to ensure molecular validity and consistency by filtering compounds to exclude mixtures, inorganic compounds lacking carbon atoms, and molecules exceeding 700 Da molecular weight. This filtering process yielded a curated dataset of 43,777 unique chemical compounds with 67% classed as actives and 33% as inactives. The cleaned dataset was partitioned using stratified sampling into training (35,022 compounds, 80%), validation (4,378 compounds, 10%), and test sets (4,377 compounds, 10%) to preserve class proportions across all three modeling approaches.
As outlined earlier, we implemented three distinct approaches in evaluating XAI capability. Classic or traditional ML[21] using fragment-based functional group features (classical ML), 1D SMILES sequence (CNN), and graph-based (RGCN). Each approach was trained using 5×5 cross-validation strategy (5 repeats of 5-fold CV) to obtain statistically robust performance metrics, providing more stable variance estimates than standard methods.[22] Model performance was evaluated using ROC-AUC (threshold-independent assessment ideal for imbalanced data), Average Precision (precision-recall performance crucial for drug discovery), and Matthews Correlation Coefficient (balanced evaluation accounting for all confusion matrix elements). [23] While 5×5 cross-validation generated 25 models per approach (evaluated on the test set), XAI analysis requires computationally intensive explanation generation beyond simple prediction. For systematic evaluation across 600 molecular pairs, we selected five representative models (one per cross-validation repeat, CV1-CV5), balancing computational tractability with training diversity while maintaining equivalent test set performance. Predictions used a standardized 0.5 probability threshold for fair cross-architecture comparison. All computations were conducted using Python 3.9.18 with NVIDIA Tesla V100 GPU acceleration for deep learning models.	Comment by Johannes Zuegg: Precision TP/(TP+FP) or Recall/Sensitivity (TP/(TP+FN) ?
2.2 Fragment-based approach (Random Forest)
Random Forest was selected as the optimal classifier, following evaluation of 26 machine learning algorithms using LazyPredict [24], demonstrating superior performance across key metrics (ROC AUC: 0.792, F1-Score: 0.828) compared to all evaluated alternatives (Table S1). The molecular representation fragment-based employed 85 functional group descriptors generated via RDKit[25]'s fragment module, creating an 85-dimensional vector representing the count of each functional group fragment present in each molecule. Standardization was performed using scikit-learn's StandardScaler to prevent features with larger count ranges from dominating model training, addressing the substantial variation in functional group occurrence ranges (e.g., benzene rings typically appearing 0-3 times versus hydroxyl groups potentially occurring 0-15+ times). 
For explainability analysis, we employed SHAP TreeExplainer [8,26] to provide theoretically grounded feature attributions based on cooperative game theory. SHAP values quantify each feature's contribution to individual predictions by computing marginal contributions across all possible feature coalitions, ensuring both local accuracy and global consistency. TreeExplainer leverages the tree structure for efficient exact computation without approximation, making it particularly well-suited for ensemble tree models. The implementation utilized a background dataset of up to 1,000 samples randomly selected from the training set to establish baseline feature distributions, with SHAP values computed in probability space to maintain consistency with downstream attribution analysis.



2.3 Sequence-based Approach  (CNN)
While fragment-based approaches rely on predefined structural features, deep learning methods can automatically learn relevant molecular patterns directly from raw chemical representations. CNNs, originally developed for grid-topology processing in image recognition, were adapted to process sequential molecular data by treating SMILES notation as one-dimensional sequences, enabling pattern recognition in chemical structures.[27] This sequence-based approach allowed the model to discover complex molecular motifs and structural relationships that may not be captured by functional group descriptors.
To enhance model robustness and prevent overfitting to specific SMILES representations, we employed SMILES augmentation by generating exactly three unique variants per molecule using RDKit's randomized enumeration [28]. This augmentation strategy preserves molecular identity while exposing the model to different structural representations of identical compounds, improving generalization by training on equivalent molecular structures expressed through diverse SMILES formulations. The resulting augmented dataset provided multiple learning examples for each compound, enabling the CNN to develop representation-invariant feature extraction capabilities. Pre-processed sequences were standardized to 181 characters based on the longest molecule in the dataset, with a 76-character vocabulary encompassing atoms, bonds, rings, and special symbols. Each SMILES sequence was converted to one-hot encoding, yielding input tensors of shape (181 positions × 76 vocabulary features). The CNN architecture processes these molecular sequences by transposing input dimensions to accommodate one-dimensional convolutional operations, enabling detection of local chemical patterns while maintaining positional relationships within the molecular structure.
Hyperparameter optimization employed Optuna's Tree-structured Parzen Estimator (TPE) across 50 trials [29], evaluating layer depth (1–3), filter counts (32–256), kernel sizes (3–7), dropout rates (0.1–0.5), and learning rates (1×10-5 to 5×10-3). TPE efficiently focuses on promising parameter combinations based on previous results rather than random sampling. Trial 43 achieved optimal performance (ROC–AUC = 0.828) after 72 epochs using the three-layer configuration, with early stopping (patience = 10) preventing overfitting within the 100-epoch maximum (Table S2).
The optimised CNN architecture (Figure 1) employed three sequential convolutional layers, each containing 256 filters with kernel size 7 and the same padding to preserve sequence length. Each convolutional layer applied ReLU (Rectified linear unit) activation followed by dropout regularization (rate = 0.199) to prevent overfitting while learning hierarchical molecular features. The feature extraction stage concluded with global average pooling, which reduced the (256 × 181) feature tensor to a 256-dimensional vector, effectively summarizing learned chemical patterns across the entire molecular sequence. A final linear layer mapped the representation to a binary classification output.
For interpretability, we used a perturbation-based token masking (occlusion) method to obtain token-level attributions.[30,31]{Ivanovs, 2021 #20181;Zeiler,  #20179;Li, 2016 #20180} Each SMILES token was systematically replaced with a padding token, and the resulting change in predicted probability was recorded as the token's importance[32][33]{Bemis, 1996 #31;Velkoborsky, 2016 #49}[33]. This provides direct causal attributions by measuring how individual tokens contribute to model predictions. SMILES notation complexity (multi-character elements, brackets, ring closures) requires careful handling when converting token-level scores to atom-level attributions. We implemented a three-tiered validated approach. First, a deterministic tokenizer maps the n-th atom token to RDKit atom index n, with quality assessed via recall metrics: the fraction of high-importance tokens (top 10%) that successfully map to atoms. Samples passing validation (recall ≥ 0.7, representing >70% of cases) use this token-aware mapping. For samples failing validation, we use span mapping (partitioning sequence positions into n atom bins) or, rarely (<5%), linear interpolation. Occlusion operates on one-hot encoded tensors rather than SMILES strings, ensuring chemically valid perturbations. Following atom-level mapping, atomic attributions were aggregated by chemical substructures identified through Murcko scaffold decomposition and ring detection. Each substructure was represented as a canonical SMILES string, enabling direct chemical interpretation and transforming token-level attributions into chemically meaningful structural features. Substructure scores were classified as positive (>0.1), negative (<−0.1), or neutral (−0.1 to 0.1) contributions.
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Figure 1.  CNN workflow for molecular activity prediction with token-based occlusion explainability analysis.
2.4 Graph-based (RGCN)
While sequence-based approaches treat molecules as linear strings of characters, graph-based methods directly model the inherent structural relationships within molecular systems. This shift in representation allows for explicit encoding of atomic connectivity and bond characteristics, potentially capturing chemical relationships that may be obscured in sequential representations. Molecules are naturally graph-structured entities where atoms serve as nodes and chemical bonds function as edges, making graph neural networks particularly well-suited for molecular property prediction tasks including antibacterial prediction.[33] Relational Graph Convolutional Networks (RGCNs) extend graph neural networks to handle multi-relational data through relation-specific transformations.[34] The "relational" component distinguishes RGCNs from other graph neural networks like D-MPNNs[35] by explicitly modeling different edge types (bond types) with separate weight matrices, allowing for more nuanced chemical relationship modeling. This approach allows the model to directly learn from molecular structure while preserving chemical meaning through explicit encoding of different bond types. Recent studies have shown that graph-based outperform traditional ML methods when working with sufficiently large datasets, making RGCNs a compelling choice for this comparative analysis.[36,37]
In the RGCN model, molecules were encoded using 40-dimensional atomic features that included element type, degree (number of bonds), formal charge, hybridization, and aromaticity status. Chemical bonds were represented as edges  with three relation types for RGCN message passing: single, double, and triple bonds[11]. Aromaticity information was encoded at the node level through atomic features rather than as a separate edge relation type. These three relation types enabled the RGCN to apply distinct transformations for different chemical bonding patterns. 
Hyperparameter optimization was performed using Optuna's Tree-structured Parzen Estimator across 50 trials, exploring six different RGCN architectures (64–128, 128–256, 256–256, 64–64–128, 128–128–256, 64–128–256), two feed-forward network sizes (32, 64 features), five dropout levels (0.1-0.5) for both RGCN and feed-forward layers, and continuous ranges for learning rate (1×10⁻⁴ to 1×10⁻²) and weight decay (1×10⁻⁶ to 1×10⁻³). Trial 45 achieved optimal performance (validation ROC-AUC = 0.852) after 49 epochs using the 256-256 RGCN architecture, 64 feed-forward features, learning rate of 5.65×10⁻⁴, feed-forward dropout of 0.2, RGCN dropout of 0.1, and weight decay of 3.82×10⁻⁴, with early stopping (patience = 15) within the 100-epoch maximum (Table S3). 
The optimized RGCN architecture (Figure 2) comprised two relational convolutional layers with 256 features each, followed by weighted global pooling and three feed-forward neural layers with 64 hidden features each to predict antibacterial activity. This architecture emerged from the optimization process as the most effective configuration for capturing both local chemical relationships through the relational convolutions and global molecular properties through the feed-forward layers. The relational layers enable distinct processing of different bond types through separate weight matrices, while the feed-forward network consolidates learned representations for final classification.
For explainability, RGCN employed a substructure-masking approach using Murcko-derived leaf decomposition[38] to evaluate molecular substructures' contributions to predicted activity through fragment-based attribution analysis. This procedure identifies terminal ring systems and linker regions in each molecule, producing chemically meaningful leaf fragments rather than full Bemis–Murcko core frameworks[39]. Attribution scores were computed as the difference between the predicted probability of the complete molecule and the probability after masking a specific substructure by zeroing its node features, effectively simulating its removal from the graph. As with the CNN, molecular fragments were categorized using the same threshold approach (±0.1) for attribution scores.
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Figure 2. RGCN workflow for molecular activity prediction with substructure masking-based interpretability analysis.
2.5 XAI Evaluation Framework
We implemented a hierarchical four-tier evaluation framework to assess the explainability capabilities of each model in a manner directly aligned with medicinal chemistry practice. The four tiers represent increasing levels of interpretability sophistication: Tier 1 – Scaffold Recognition (SR), evaluating whether a model identifies established drug scaffolds as the primary drivers of active predictions; Tier 2 – Context Sensitivity (CS), assessing whether models adjust scaffold importance appropriately across activity cliffs; Tier 3 – Internal Consistency (IC), measuring alignment between predictions and their corresponding explanations; and Tier 4 – Model Independence (MI), evaluating attribution stability across different training conditions. These tiers form a structured basis for comparing model performance.[32]
This framework evaluates 600 carefully molecular pairs from the three largest antibiotic classes in our dataset, β-lactams, fluoroquinolones, and oxazolidinones. The evaluation set comprises 300 Activity Cliff pairs with high structural similarity (Tanimoto ≥0.5) but opposite activity labels, and 300 control pairs with matched similarity but identical labels. Each class contributes 100 pairs per category, ensuring statistical power across diverse pharmacological contexts. The 600 molecular pairs contain 450 unique compounds distributed as - 157 fluoroquinolones, 150 oxazolidinones, and 143 β-lactams, with some molecules appearing in multiple pairs to maximize activity cliff diversity while maintaining structural coherence within each antibiotic class. The β-lactam class encompasses both penicillin-like and cephalosporin scaffolds, reflecting structural diversity within this antibiotic family. All compounds maintain Tanimoto similarity ≥0.6 to class reference molecules (penicillin V, ciprofloxacin, and tedizolid respectively), as shown in Figure 3, preserving core scaffold features essential for structure-activity relationship evaluation. Evaluations utilize ensemble methods with distinct analytical approaches: model independence requires individual model analysis within each ensemble to quantify attribution stability across training perturbations, while other dimensions evaluate averaged ensemble outputs where predictions and attributions represent means across five model instances, minimizing single-model variance for robust assessment
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Figure 3. Reference molecules for antibiotic class evaluation with essential scaffold highlighted. (A) Penicillin V (β-lactam), (B) Ciprofloxacin (fluoroquinolone), (C) Tedizolid (oxazolidinone). 
2.5.1 Scaffold Recognition: Essential Drug Core Identification
Scaffold recognition evaluates whether models 	Comment by Johannes Zuegg: Check?
consistently assign their highest attributions to the core structural frameworks rather than peripheral substituents or linker regions, validating that models genuinely recognize established drug scaffolds as the primary drivers of biological activity. This assessment focuses on 300 active compounds extracted from activity cliff pairs, analysing attribution patterns to determine whether explanations correctly prioritize pharmacologically relevant structural features. Recognition is essential for pharmaceutical applications where understanding the molecular basis of activity guides rational drug design and structure-activity relationship interpretation.
We evaluate scaffold recognition by examining whether all essential scaffold components appear within the top-K attributed features across different model architectures. Recognition criteria require complete identification of core structures (Figure 3); β-lactams must show the four-membered lactam ring[40,41], fluoroquinolones need both the fluorine attached quinolone bicyclic core and 3-carboxylic acid[42], and oxazolidinones require the five-membered oxazolidinone ring.[43] Based on analysis of average substructure and feature counts, we employ K=3 for CNN and RGCN models and K=7 for Random Forest models to ensure meaningful coverage without exceeding available features.
Mathematical formulation adapts to architectural differences while maintaining conceptual consistency across modeling approaches. For atom-level architectures (CNN/RGCN), scaffold attribution aggregates contributions from all scaffold-matching substructures by summing individual component attributions. This approach accounts for cases where scaffold components may be distributed across multiple substructures due to molecular fragmentation during feature extraction, ensuring comprehensive evaluation of scaffold recognition capabilities.

where  represents scaffold components (e.g., 2 for fluoroquinolones: fluorine attached quinolone core + carboxylic acid),  denotes atoms matching component 's structural patterns, and  represents the attribution of atom .



Both CNN and RGCN employ input perturbation principles that provide directly comparable measures of component-level importance, while Random Forest utilizes SHAP TreeExplainer for exact feature attributions compatible with tree-based ensembles. This approach preserves fairness by respecting representational constraints while enabling evaluation of structure-activity relationship capture across different modeling paradigms. Scaffold recognition rates above 90% indicate excellent drug core identification capability suitable for pharmaceutical applications, while rates below 70% suggest unreliable chemical understanding that could compromise drug discovery efforts.
2.5.2 Context Sensitivity: Activity Cliff Discrimination
Context sensitivity (CS) evaluates the highest level of chemical sophistication required for drug discovery, where identical scaffolds contribute differently to activity depending on structural modifications that create activity cliffs. This capability reflects the medicinal chemistry reality that scaffold importance is context-dependent rather than fixed, that is, the same drug scaffold may be essential in active compounds but inadequate in inactive analogs due to subtle structural changes that disrupt target binding. Activity cliffs represent the most challenging scenarios for XAI interpretation, as structurally similar compounds exhibit dramatically different biological activities due to precise molecular modifications. The evaluation addresses whether models demonstrate mechanistic understanding by appropriately adjusting scaffold attributions based on molecular context while identifying specific modifications responsible for activity differences.
CS assessment employs a three-component framework applied to 300 activity cliff pairs across the three antibiotic classes. The framework directly maps to how medicinal chemists reason about structure-activity relationships (SAR). Firstly establishing whether the model recognizes scaffold importance in actives (fundamental chemical expectation as discussed earlier) compared to the inactives, then evaluating whether scaffold attributions vary appropriately with molecular context (sophisticated SAR understanding), and finally determining whether specific activity-modulating modifications are correctly identified (practical SAR application).
For each activity cliff pair, the scaffold attribution difference is calculated using signed attributions to preserve context-dependent effects:

where represents the scaffold attribution difference for pair . Scaffold attributions are computed as signed sums ()rather than absolute values, preserving negative attributions that indicate context-dependent scaffold toxicity. Absolute-value aggregation would erase directionality and incorrectly treat detrimental scaffold contributions as beneficial. This approach captures instances where scaffolds with specific modifications become detrimental rather than beneficial to activity, enabling assessment of sophisticated chemical understanding beyond simple pattern recognition.
Hence, for the first component evaluation, known as the Directionality Score (35% weight) provides fundamental validation by measuring whether scaffolds are generally more important in active compounds. The metric employs a one-sample t-test to determine statistical significance, as this test provides the standard method for assessing whether a distribution mean differs from zero, precisely matching our requirement to verify positive scaffold bias.[44,45]. The score equals the proportion of positive scaffold attribution differences when significance is achieved (, H₀: mean ), otherwise zero: 

where  is the number of activity cliff pairs,  indexes each pair,  is the scaffold attribution difference for pair , and is an indicator function equal to 1 when the scaffold contributes more to the active compound and 0 otherwise. This component ensures models demonstrate basic chemical correctness before evaluating sophisticated capabilities, establishing the foundation upon which context-dependent understanding builds. The 35% weighting reflects the critical importance of finding reliable scaffold recognition in actives, thereafter,  more sophisticated context-aware behaviour is then considered. 
The Context Awareness (CA) Score (35% weight) serves as the critical differentiator for chemical sophistication by measuring whether models adjust scaffold importance based on molecular modifications rather than mechanically assigning consistent attributions. Context awareness quantifies the relative variability in scaffold importance adjustments through context responsiveness:


where IQR represents the interquartile range of scaffold deltas. Higher responsiveness indicates the model recognizes that scaffold contribution depends on molecular context, the hallmark of sophisticated chemical understanding that distinguishes intelligent SAR reasoning from simple memorization. A mechanistic model would assign similar scaffold importance regardless of molecular context, yielding low IQR values and poor context awareness. Conversely, a chemically sophisticated model adapts scaffold attributions based on structural modifications, creating meaningful variability in values that reflects genuine context-dependent behavior. For this component metric, we implement Levene's test (Brown & Forsythe 1974) which validates that variance heterogeneity across antibiotic classes reflects genuine context-dependent behavior rather than noise (, H₀: equal variance).[46,47] This  approach designed to detect meaningful variance differences under non-normal conditions typical of attribution data. The context awareness score normalizes responsiveness to a 0-1 scale: 

The scaling factor of 3.0 provides appropriate normalization to a 0-1 scale while maintaining discriminative sensitivity across the expected range of context responsiveness values. This threshold ensures that models with high context-dependent behavior receive near-maximum scores without premature saturation, enabling meaningful comparison across different model architectures and antibiotic classes. This enables comparison across models and antibiotic classes while rewarding models that demonstrate sophisticated chemical reasoning.
The 35% weighting for CA score equals that of Directionality, reflecting the equal importance of fundamental chemical correctness and sophisticated context-dependent understanding in interpretable drug discovery. The balanced weighting ensures that models must excel at both basic chemical principles and advanced SAR reasoning, preventing compensation of poor fundamental understanding through spurious context-dependent behavior before moving on to the discriminative ability of the models.
The last component metric is the structural Discrimination Score (DS - 30% weight) which evaluates whether models identify specific modifications responsible for activity differences through model-specific approaches that answer the practical question: "Which exact structural change caused the activity cliff?" For RGCN/CNN models, discrimination analyses whether substructures unique to inactive compounds (appearing in top-10 inactive attributions but absent from top-10 active attributions) receive appropriately negative attributions, indicating recognition of activity-destroying modifications. For Random Forest models, discrimination examines per-feature attribution shifts for non-scaffold functional groups, identifying features with positive attribution differences exceeding a meaningful threshold () that indicate discriminative importance in actives. The discrimination score equals the proportion of activity cliff pairs where models demonstrate targeted change detection capabilities. A binomial test (Clopper & Pearson 1934) validates above-chance performance (, H₀: discrimination rate = 50%), ensuring that observed discrimination reflects genuine modification identification rather than random feature selection.[48,49] This component complements context-aware scaffold evaluation with practical modification identification validated against chance-level baselines. 
The 30% weighting reflects the practical utility of modification identification while acknowledging that scaffold-level understanding (captured by the combined 70% weight of Directionality and Context Awareness) represents the primary concern for interpretable drug discovery. This weighting hierarchy aligns with medicinal chemistry practice, where understanding core scaffold behavior precedes detailed modification analysis, though both capabilities contribute to comprehensive SAR interpretation.
The combined context sensitivity (CS) score integrates all components with balanced emphasis on fundamental correctness and sophisticated chemical understanding:

This weighting scheme reflects the hierarchical nature of medicinal chemistry reasoning, that is, models must first demonstrate basic chemical correctness (Directionality), then show sophisticated context-dependent understanding (Context Awareness), and finally provide practical modification identification capabilities (Discrimination). The near-equal weighting of Directionality and Context Awareness ensures that fundamental chemical principles and advanced SAR reasoning receive comparable emphasis, preventing models from achieving high scores through excellence in only one dimension.
2.5.3 Internal Consistency: Prediction-Explanation Alignment
Internal consistency addresses a fundamental requirement for trustworthy XAI where explanations must logically support their corresponding predictions to ensure faithful attribution. [7,50] This evaluation differs from uncertainty quantification by focusing on explanation-prediction coherence rather than predictive confidence intervals, specifically auditing whether explanatory evidence contradicts predicted results. We assess internal consistency using a simple sign-matching criterion that compares mean attribution polarity with prediction direction across ensemble members. For each compound, we compute the mean attribution across all explanatory units and determine whether this net explanatory stance aligns with the predicted class direction: positive mean attribution for active predictions (probability ≥0.5) and negative mean attribution for inactive predictions.
Attribution values are extracted according to model architecture requirements, with Random Forest models utilizing only chemically present molecular features (feature value >0) while graph-based and convolutional models incorporate all molecular fragment attributions. Internal consistency is calculated as the proportion of compounds where sign(mean attribution) matches the expected prediction direction, providing a universally interpretable metric that works across attribution scales and model architectures without dataset-specific calibration. This simple criterion distinguishes between weak explanatory signal and contradictory explanatory evidence by focusing on directional consistency, directly testing whether explanations support their corresponding predictions while providing a practical baseline that can be implemented in any XAI framework with minimal complexity.
2.5.4 Model Independence: Cross-Fold Attribution Stability
Model independence evaluates explanation stability across different training conditions to validate that explanations remain consistent across different training runs. While ensemble models may achieve prediction consensus, they often exhibit dramatic attribution disagreement, undermining explanation trustworthiness when identical predictions are supported by fundamentally different reasoning pathways. This evaluation is essential for pharmaceutical applications where consistent reasoning is crucial for regulatory validation and clinical translation.
We assess attribution consistency across the five individual models comprising each ensemble using two complementary stability metrics. Cross-fold stability quantifies whether different model instances identify the same important features and rank them consistently across all activity cliff molecular pairs. Attribution overlap (Jaccard similarity) metric measures agreement on which features are identified as most important by extracting the top-K attributed features from each model pair and calculating their overlap. Like the scaffold recognition, we employ K=3 for CNN and RGCN models and K=7 for Random Forest models to ensure meaningful coverage without exceeding available features.

where  and  represent the sets of top-K features from models and , respectively. The final  attribution overlap score averages Jaccard similarity across all pairwise model comparisons.
Ranking consistency (Spearman rank correlation) complements the overlap analysis by assessing consistency of feature importance ordering across model instances. For Random Forest models, we calculate correlation using common features present in both models, while for CNN and RGCN models, we correlate attribution magnitudes for the top-K identified substructures. This metric captures whether models assign consistent relative importance rankings, which is crucial for understanding the hierarchy of structural modifications in drug optimization.

where  represents the rank difference for feature   between two models, and  is the number of features being compared.
Both stability metrics range from 0 to 1, with higher values indicating greater consistency across training runs. We establish threshold criteria based on practical deployment requirements: excellent stability (≥0.90) suitable for pharmaceutical applications requiring high reproducibility, moderate stability (0.70–0.89) acceptable for exploratory analysis, and poor stability (<0.70) indicating systematic inconsistencies that compromise reliability. These metrics prioritize whether models consistently identify the same chemical features for modification rather than requiring precise numerical agreement in attribution magnitudes, aligning with how medicinal chemists utilize explanations to guide structural modifications.
3. Results and discussion
3.1. Predictive performance validation
To support a fair and unbiased comparison of explainability methods, we first evaluated whether observed performance differences across models were not only statistically significant but also practically meaningful. Using a comprehensive statistical framework applied to 25 cross-validation runs, we assessed antimicrobial activity prediction accuracy through two complementary approaches, the Holm-Bonferroni[51] correction for proper repeated measures analysis, and  second-generation p-values[52] to assess practical significance using pre-specified effect size thresholds (δ = 0.02 for ROC-AUC, representing ~7–10× measurement variance ensuring the detection of meaningful large effects). Established significance testing identified CNN vs RF differences as statistically significant (p = 0.038), while second-generation p-values correctly flagged these as trivial (pδ = 1.000), thereby avoiding false conclusions about model superiority. In contrast, RGCN superiority was confirmed across all methods with robust practical significance (pδ = 0.000–0.350), demonstrating genuine performance advantages of 0.029–0.091 ROC-AUC improvement.
Table 1. Performance across 25 Cross-Validation Runs evaluated on held-out test set.
	Method
	ROC-AUC
	AP
	MCC

	
	
	
	

	
	
	
	

	RGCN
	0.901 ± 0.068
	0.947 ± 0.038
	0.623 ± 0.150

	
	
	
	

	
	
	
	


*vs. RGCN with Holm-Bonferroni correction, δ** = 0.02 threshold for practical significance, p-values are ROC-AUC.
RGCN demonstrated consistent superiority across all evaluation metrics (Table 1), with statistical significance confirmed across AP and MCC (all p < 0.032), and comprehensive statistical comparisons provided in Supplementary Information (Tables S4-S7).This validation confirms that RGCN's performance advantages exceed measurement noise and cross-validation variance, providing the foundation for meaningful XAI comparison. With predictive performance validated, we next evaluate each model's XAI outputs based on the four XAI evaluation criteria. For subsequent analysis, we use an ensemble method made up of five models, each one from each CV fold in each architecture. 
3.2 Explainable AI Framework Performance Analysis
The four-tier evaluation framework successfully distinguished between architectures suitable for pharmaceutical deployment and those requiring fundamental methodological improvements. Results revealed stark performance differences across molecular representation approaches, with graph-based methods demonstrating superior chemical understanding while sequence-based approaches failed to capture essential pharmacophoric relationships. The following tier-by-tier analysis presents performance across scaffold recognition (Tier 1), context sensitivity (Tier 2), internal consistency (Tier 3), and model independence (Tier 4), establishing deployment readiness criteria for explainable artificial intelligence in drug discovery applications.
3.2.1 Scaffold Recognition: Essential Drug Core Identification
Scaffold recognition performance revealed fundamental differences in how molecular representations enable drug core identification, establishing clear architectural hierarchies for pharmaceutical deployment readiness. Random Forest achieved excellent overall scaffold recognition (97.7%) with outstanding performance across antibiotic classes(Table 2), demonstrating perfect recognition for β-lactams and oxazolidinones (100.0% each), and strong identification of fluoroquinolones (93.0%). The perfect β-lactam and oxazolidinone recognition reflects effective capture of these scaffold components through dedicated RDKit functional group descriptors (fr_lactam, fr_oxazole), while the slightly reduced fluoroquinolone recognition indicates challenges in coordinating both quinolone core and carboxylic acid components when they require integration across multiple descriptor categories. Random Forest's feature-based approach using functional group descriptors enables direct scaffold matching without requiring attribution magnitude thresholds, demonstrating that expert-curated molecular descriptors effectively capture essential pharmacophoric elements when scaffold complexity aligns with predetermined feature granularity. However, RF's apparent simplicity masks significant limitations, the architecture generates attributions across all 85 functional group descriptors, requiring post-processing filtering to identify scaffold-relevant features and match them to actual molecular structures. This post-processing dependency prevents organic scaffold discovery and complicates novel pattern identification, explaining why RF requires expert filtering despite achieving high scaffold recognition scores
Table 2. Scaffold Recognition Performance Across Antibiotic Classes Evaluation of 300 active compounds (100 per class) from activity cliff pairs
	Model
	Antibiotic Class
	Pred. Active
	Complete Recognition
	Implementation Notes

	RF
	β-lactam
	100
	100%
	Perfect feature recognition

	
	Fluoroquinolones
	100
	93%
	Feature-based recognition

	
	Oxazolidinone
	100
	100%
	Perfect feature recognition

	CNN
	β-lactam
	85
	52% (0%)
	Partial only (amide fragments)

	
	Fluoroquinolones
	77
	0% (0%)
	Cannot match even relaxed patterns

	
	Oxazolidinone
	86
	72% (0%)
	Partial only (lactone-like fragments)

	RGCN
	β-lactam
	100
	95% (100% top-K, 95% >0.1)
	Excellent recognition

	
	Fluoroquinolones
	98
	74% (89% top-K, 74% >0.1)
	Full scaffold components recognized

	
	Oxazolidinone
	100
	99% (100% top-K, 99% >0.1)
	Excellent recognition


Overall Complete Recognition Performance: RF = 97.7%, CNN = 41.3% (0% strict), RGCN = 89.3% Key: CNN shows Partial (Complete) format - Partial uses relaxed patterns, Complete uses strict scaffold matching
CNN demonstrated catastrophic scaffold recognition failures that expose fundamental limitations in sequence-based molecular representations. Table 2 reveals CNN's severe deficiencies with dual evaluation metrics showing the stark contrast between partial fragment detection and complete scaffold recognition. CNN achieved moderate partial recognition (41.3% overall) by matching simple chemical fragments like benzene rings, pyridine structures, and amide groups, but achieved zero complete scaffold recognition (0% across all classes) when evaluated using strict SMARTS patterns requiring full scaffold components. This failure pattern demonstrates that CNN extracts character-level molecular fragments rather than meaningful pharmacophoric units, identifying individual aromatic rings or functional groups while completely failing to recognize integrated scaffold structures essential for drug activity. The partial recognition of β-lactams (52%) and oxazolidinones (72%) through detection of amide and lactone-like fragments, respectively, creates misleading explanations that appear chemically relevant but lack the structural specificity required for pharmaceutical applications. These results demonstrate that computational sophistication without appropriate molecular representation produces explanations that fundamentally contradict chemical principles, making CNN unsuitable for any pharmaceutical deployment where authentic scaffold understanding is essential.
RGCN  achieved strong scaffold recognition (89.3% overall) demonstrating authentic chemical understanding through native molecular graph representation using strict SMARTS patterns for complete scaffold component matching. RGCN showed excellent performance for β-lactams (95.0%) and oxazolidinones (99.0%), with more challenging but solid recognition of fluoroquinolones (74.0%) as detailed in Table 2.  The architecture successfully captured four-membered lactam rings and associated functional groups in β-lactams, effectively recognized oxazolidinone ring structures with near-perfect accuracy, and demonstrated robust understanding of complex fluoroquinolone scaffolds requiring coordination between bicyclic quinolone cores and carboxylic acid positioning. RGCN's dual-metric evaluation reveals its sophisticated pattern matching capabilities, achieving excellent top-K recognition (89-100% across classes) combined with strong attribution magnitude requirements (>0.1 threshold). This confirms that identified components receive sufficient attribution weight to indicate genuine chemical understanding rather than superficial feature detection. The more modest fluoroquinolone performance (74% complete vs 89% top-K recognition) reflects the inherent complexity of coordinating multiple scaffold components through graph convolutions but still demonstrates meaningful chemical comprehension. RGCN achieves this performance without requiring post-processing filters or feature matching steps, as graph-based attributions directly correspond to molecular substructures. RGCN's strong overall performance stems from preserving both topological and electronic relationships essential for scaffold recognition while maintaining flexibility for novel pattern discovery beyond predetermined descriptors, establishing the architecture as providing the most authentic chemical understanding for pharmaceutical deployment.
3.2.2 Context Sensitivity: Activity Cliff Discrimination Analysis
Context sensitivity evaluation across 300 activity cliff pairs revealed distinct architectural capabilities for structure-activity relationship understanding (Table 3). Random Forest achieved the highest overall context sensitivity performance (0.72) by leveraging expert-curated chemical knowledge rather than sophisticated learned representations. All RF directionality scores achieved statistical significance (p < 0.001), with particularly strong positive scaffold bias for oxazolidinones (95% positive deltas) and fluoroquinolones (86% positive deltas), demonstrating robust scaffold recognition through human expert knowledge embedded in molecular descriptors. The discrimination performance exceeded chance levels (p < 0.001) for all antibiotic classes, achieving near-perfect modification detection rates for oxazolidinones (98%) and beta-lactams (95%), reflecting the precision of expert-curated chemical understanding rather than emergent model learning. However, RF exhibited limited context awareness (0.22–0.63), with relatively low context responsiveness scores (0.65–1.89) indicating consistent unidirectional attribution patterns that lack the bidirectional scaffold modulation characteristic of sophisticated chemical reasoning. This performance profile demonstrates that while expert-curated descriptors can achieve excellent practical results for discrimination tasks, they fundamentally constrain the model to human-encoded chemical knowledge and cannot capture the adaptive, context-dependent scaffold importance assessment that represents genuine chemical sophistication.
Table 3. Context Sensitivity Performance: Three-Component Framework Analysis Evaluation across 300 activity cliff pairs (100 per antibiotic class) with statistical validation
	Model
	Antibiotic Class
	Directionality (35%)
	Context Awareness (35%)
	Discrimination (30%)
	 CS Score

	RF
	Beta-lactam
	0.81
	0.39
	0.95
	0.70

	
	Fluoroquinolones
	0.86
	0.63
	0.83
	0.77

	
	Oxazolidinones
	0.95
	0.22
	0.98
	0.70

	CNN
	Beta-lactam
	0.00
	0.00
	0.32*
	0.00

	
	Fluoroquinolones
	0.00
	0.00
	0.22*
	0.00

	
	Oxazolidinones
	0.00
	0.00
	0.58*
	0.00

	RGCN
	Beta-lactam
	0.72
	0.75
	0.58*
	0.52

	
	Fluoroquinolones
	0.71
	0.77
	0.92
	0.79

	
	Oxazolidinones
	0.63
	1.00
	0.88
	0.83


Overall Performance Rankings: RF (0.72) ~ RGCN (0.71) > CNN (0.00), *p > 0.05
CNN demonstrated fundamental context sensitivity limitations, achieving zero overall performance due to complete scaffold recognition failure across all antibiotic classes under strict evaluation criteria. As established earlier,  and therefore cannot compute valid scaffold-based deltas, resulting in zero scores across all CS components. However, discrimination rates varied across antibiotic classes (32% for beta-lactams, 22% for fluoroquinolones, 58% for oxazolidinones), none achieved statistical significance above chance levels (p > 0.05), indicating that observed discrimination reflected random attribution patterns rather than genuine modification identification capabilities. This performance pattern reveals that sequential molecular representations fundamentally limit the model's ability to recognize established drug scaffolds, preventing meaningful SAR analysis and constraining practical utility for pharmaceutical applications where reliable scaffold understanding represents a prerequisite for interpretable predictions.
Conversely, RGCN achieved strong overall context sensitivity performance (0.71), demonstrating authentic chemical sophistication through systematic performance across all three framework components. RGCN showed solid directionality scores across all antibiotic classes (0.63–0.72), with consistently positive scaffold attribution differences and substantial bidirectional capability (28–37% negative deltas) indicating sophisticated understanding that scaffold modifications can render scaffolds detrimental rather than beneficial. The architecture demonstrated exceptional context awareness capabilities with high responsiveness scores (0.75–1.00), achieving perfect oxazolidinone performance and significant variance heterogeneity across classes (Levene's test, p < 0.001), confirming genuine context-dependent scaffold importance modulation rather than mechanical attribution patterns. However, discrimination performance was highly variable across antibiotic classes, with excellent performance for fluoroquinolones (0.92) and oxazolidinones (0.88, both p < 0.001) but β-lactams failing to reach significance (0.58, p > 0.05). This inconsistent modification identification capability across different scaffold types prevents RGCN from achieving uniformly high context sensitivity scores despite excellent directionality and context awareness performance, establishing RGCN as demonstrating the most authentic chemical sophistication though with scaffold-dependent discrimination limitations. 
The CS framework highlights a clear distinction between curated discrimination (RF), learned context-aware reasoning (RGCN), and representational failure (CNN). RF delivers strong modification detection but lacks adaptive scaffold reasoning due to  functional group descriptors limitation. RGCN demonstrates genuine chemical sophistication by learning context-dependent scaffold modulation with substantial bidirectional capability. 
3.2.3 Internal Consistency: Prediction-Explanation Alignment
Internal consistency evaluation assessed whether explanations logically support their corresponding predictions across different architectural approaches and antibiotic classes (Table 4). Random Forest demonstrated moderate internal consistency (92.7%) with substantial variation across antibiotic classes, achieving strong alignment for β-lactam (93.7%) and fluoroquinolone (96.2%) classes but weaker performance for oxazolidinone compounds (88.0%). The architecture's reliance on sparse, expert-curated molecular features creates explanation patterns that occasionally contradict prediction confidence, particularly for structurally diverse oxazolidinone scaffolds where distributed feature importance conflicts with prediction logic. These inconsistencies reflect the inherent limitations of decomposition-based attribution methods when applied to feature-engineered representations that may not capture the full complexity of structure-activity relationships underlying model predictions.
Table 4. Internal Consistency: Prediction-Attribution Alignment
Evaluation of explanation-prediction coherence across 450 unique compounds from activity cliff pairs
	Model
	Antibiotic Class
	N
	Alignment Rate (%)

	RF

	β-lactam
	143
	93.7

	
	Fluoroquinolone
	157
	96.2

	
	Oxazolidinone
	150
	88.0

	CNN

	β-lactam
	143
	94.4

	
	Fluoroquinolone
	157
	88.5

	
	Oxazolidinone
	150
	92.7

	RGCN

	β-lactam
	143
	96.5

	
	Fluoroquinolone
	157
	98.1

	
	Oxazolidinone
	150
	92.7


Overall Performance: RF = 92.7%, CNN = 91.9%, RGCN = 95.8%


CNN achieved high internal consistency (91.9% overall) with uniform performance across antibiotic classes, but this apparent strength reflects architectural constraints rather than genuine explanation quality. CNN's sequential molecular representation produces coherent attribution patterns precisely because it consistently fails to recognize authentic chemical scaffolds, instead generating stable attributions on the same types of sequential fragments (aromatic rings, simple functional groups) regardless of their pharmacological relevance. The architecture demonstrates consistent explanation-prediction alignment for β-lactam (94.4%) and oxazolidinone (92.7%) classes not through chemical understanding, but because its fragment-based attributions reliably correlate with prediction outcomes through learned sequential patterns rather than scaffold recognition. This high internal consistency represents a methodological artifact where systematic misunderstanding produces consistent results. CNN's inability to distinguish essential pharmacophores from peripheral structures creates reproducible attribution patterns that align with predictions through non-chemical associations. The slightly lower fluoroquinolone consistency (88.5%) reflects the complex heterocyclic structures that challenge even CNN's fragment-detection capabilities, but the overall high scores demonstrate that architectural stability can masquerade as explanation quality when internal consistency metrics cannot distinguish between authentic chemical reasoning and systematic pattern recognition failures.
RGCN achieved exceptional internal consistency (95.8% overall) with strong performance across all antibiotic classes, demonstrating superior alignment for fluoroquinolones (98.1%), β-lactams (96.5%), and oxazolidinones (92.7%). RGCN's graph-based representation captures molecular relationships most effectively, producing attribution patterns that consistently support prediction logic through chemically meaningful explanation pathways. The architecture's ability to model atomic connectivity and functional group relationships directly translates to more reliable explanations, with minimal prediction-attribution mismatches occurring primarily in structurally complex oxazolidinone compounds where even sophisticated graph representations face interpretability challenges.
3.2.4 Model Independence: Cross-Fold Attribution Stability
Model independence evaluation exposed critical differences in explanation stability that proved decisive for pharmaceutical deployment readiness, distinguishing between beneficial ensemble diversity and concerning methodological artifacts. Table 5 shows Random Forest demonstrating excellent model independence with consistent stability across ensemble members, exhibiting high stability for both Attribution overlap (0.706 ± 0.022) and strong rank correlation performance (0.796 ± 0.023). Individual decision trees naturally emphasized different combinations among RDKit descriptors while maintaining prediction consensus, creating explanation variability that represents healthy ensemble behavior rather than methodological failure. The moderate rank correlation reflects the expected diversity in feature importance ordering across different trees when multiple descriptor combinations can achieve similar predictive accuracy. This robust stability demonstrates that the functional group descriptors provide consistent explanation foundations while preserving beneficial ensemble diversity, establishing RF as meeting deployment requirements for attribution consistency essential in pharmaceutical applications where explanation reproducibility impacts clinical translation decisions.

Table 5. Cross-fold attribution stability assessment across 5-fold ensemble members (10 pairwise comparisons)
	Model
	Attribution Overlap (±SD)
	Ranking Consistency (±SD)

	RF
	0.706 ± 0.022
	0.796 ± 0.023

	CNN
	0.828 ± 0.038
	1.000 ± 0.000

	RGCN
	0.709 ± 0.036
	1.000 ± 0.000


Overall Deployment Assessment: RF = Excellent, CNN = Concerning, RGCN = Outstanding
CNN achieved high model independence scores that raised significant methodological concerns regarding excessive uniformity rather than representing genuine stability advantages. CNN demonstrated the highest attribution overlap (0.828 ± 0.038) among all architectures, substantially exceeding both RF (0.706 ± 0.022) and RGCN (0.709 ± 0.036), combined with perfect rank correlation (1.000 ± 0.000). This excessive attribution overlap suggests that ensemble members identify nearly identical molecular regions with minimal exploration of alternative interpretations, suggesting over constraint in learning pathways that eliminates the beneficial diversity ensemble approaches are designed to capture. The high uniformity reflects CNN's systematic focus on the same sequential molecular fragments across all ensemble members, consistent with the representational limitations observed in scaffold recognition where the architecture consistently misidentifies peripheral structures as important regardless of pharmacological relevance. This pattern raises concerns about methodological soundness rather than deployment readiness, as the high model independence scores reflect architectural constraints that force convergence to similar sequential patterns rather than authentic chemical understanding diversity that would strengthen ensemble reliability.
RGCN achieved optimal model independence representing the gold standard for deployment-ready attribution consistency. RGCN demonstrated excellent attribution overlap (0.709 ± 0.036) with perfect rank correlation (1.000 ± 0.000), indicating outstanding consistency in both feature identification and importance ranking across ensemble members. This exceptional stability pattern reflects deployment-ready attribution consistency where different model instances identify the same critical molecular regions with identical importance hierarchies, essential for lead optimization where explanation reproducibility directly impacts decision-making confidence. The perfect rank correlation combined with moderate attribution overlap demonstrates that RGCN achieves optimal balance between attribution consistency and appropriate ensemble diversity for peripheral features unlike CNN's excessive overlap (0.828) that suggests over constraint. This outstanding Tier 4 performance, combined with strong scaffold recognition, solid context sensitivity, and exceptional internal consistency, establishes RGCN as the definitive choice for explainable drug discovery applications requiring both chemical accuracy and methodological rigor necessary for pharmaceutical deployment.
These quantitative findings across 600 molecular pairs establish the foundation for understanding how architectural differences manifest in practical drug discovery scenarios. The following case studies illustrate how this systematic performance patterns translate into specific molecular interpretation challenges, demonstrating the real-world implications of scaffold recognition capabilities, context sensitivity limitations, and attribution stability differences identified through our hierarchical evaluation framework.
3.2.5  XAI Case Studies: Explaining Activity Cliffs and Model Failures
This section presents representative case studies that corroborate and illustrate the quantitative findings from our 4-dimensional XAI framework evaluation across 600 molecular pairs. We focus on activity cliff pairs with correct predictions across all models to isolate XAI evaluation without prediction confounding, as activity cliffs provide optimal evaluation of scaffold recognition and context sensitivity. Though CNN failed to correctly predict the inactive β-lactam analog as true negative, representing the only prediction error in our selected cliff examples, all other cliff pairs demonstrate correct predictions across architectures. Beyond these primary examples, we examine misclassification cases to assess whether XAI can diagnose prediction failures and reveal training biases, alongside prediction-attribution misalignment examples that show fundamental limitations of post-hoc explanation methods. These complementary analyses demonstrate how our framework's quantitative metrics translate into practical insights for drug discovery and validate the diagnostic capabilities of systematic XAI evaluation.
3.2.5.1 Β-Lactam Activity Cliff Analysis
The β-lactam activity cliff provides direct validation of the Tier 1 scaffold recognition performance differences identified in our systematic evaluation (RF: 100%, CNN: 52% partial/0% strict, RGCN: 95% for β-lactam class specifically), demonstrating how quantitative framework metrics manifest in molecular-level attribution patterns.
Random Forest demonstrates the functional group-based recognition patterns that drive both its perfect Tier 1 β-lactam scaffold recognition performance (100%) and its solid Tier 2 context sensitivity (0.70 for β-lactams). In the active compound, RF correctly assigns strong positive attributions to the lactam functionality (+0.092), carboxylate groups (+0.055), and thiophene-containing heterocycle (+0.051), directly corresponding to the cyan regions around the β-lactam core in Figure 4. These specific attribution values validate RF's perfect β-lactam scaffold recognition rate (100%) by demonstrating recognition of essential elements through RDKit descriptors. The chemical accuracy of these attributions, with lactam receiving the highest weight (+0.092) as the primary binding motif, explains RF's perfect scaffold recognition and contributes to its solid β-lactam context sensitivity performance (0.70). The attribution magnitude patterns directly corroborate our framework findings that RF demonstrates excellent chemical understanding through expert-encoded features but faces methodological constraints in unified scaffold assessment without feature filtering.
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Figure 4. Attribution patterns for β-lactam activity cliff pair showing architectural differences in scaffold recognition across RF, CNN and RGCN models. Active compound (A) shows MIC: 10 μg/mL  while inactive compound (B) shows MIC: >100 μg/mL with correct predictions except for CNN (False Positive -FP). Cyan indicates positive attribution (increases activity), orange indicates negative attribution (decreases activity), with shade intensity reflecting attribution magnitude.

CNN reveals the attribution instability patterns that quantitatively explain its severe Tier 1 scaffold recognition limitations (52% partial, 0% strict for β-lactams) while providing molecular-level evidence for why the architecture failed deployment criteria across all evaluation tiers. This β-lactam pair represents challenging evaluation conditions where RF and RGCN achieved correct predictions for both compounds, while CNN generated a false positive (P = 0.936) for the inactive compound, exemplifying the prediction accuracy limitations underlying CNN's systematic framework failures. Figure 4 reveals CNN's fundamental scaffold recognition deficiency through specific attribution values. In the active compound, CNN assigns strong positive attribution to the benzyl aromatic ring (+0.530) and the thiazine heterocycle (+0.170) but critically fails to identify the essential β-lactam ring itself as the primary scaffold. The attribution magnitude of +0.530 on peripheral benzyl structures versus absent attribution on the actual β-lactam core quantitatively demonstrates the fragment-based misrecognition that limited CNN to 52% partial β-lactam scaffold recognition while achieving 0% strict pattern matching. CNN's systematic Tier 1 failure becomes more pronounced in the inactive compound, where it assigns an exceptionally strong positive attribution to the dioxolane protecting group (+0.860), nearly double its highest attribution in the active molecule (+0.530).  This positive score on a deactivating modification provides molecular-level validation of CNN's sequential representation limitations that caused complete scaffold recognition failures under strict evaluation criteria across all antibiotic classes and its zero context sensitivity scores.
On the contrary, RGCN demonstrated superior context-dependent recognition patterns that quantitatively validate its strong Tier 1 performance (95% for β-lactams) and illustrate the molecular-level chemical understanding driving its deployment-ready framework scores. Figure 4's RGCN panels provide direct evidence of scaffold recognition excellence through the concentrated attribution pattern. The intense cyan highlighting on the complete β-lactam-dihydrothiazine-acid scaffold as a unified structural unit (+0.490). This comprehensive scaffold attribution of +0.490 as a single entity quantitatively demonstrates the integrated chemical recognition that distinguishes RGCN's 95% β-lactam scaffold recognition from CNN's fragmented approach (52% partial). The attribution magnitude directly corroborates RGCN's excellent comprehensiveness performance by showing recognition of the complete scaffold rather than individual fragments, explaining its consistent scaffold recognition across classes (95% β-lactams, 74% fluoroquinolones, 99% oxazolidinones). RGCN's context-dependent reasoning, which contributed to its moderate Tier 2 context sensitivity performance (0.52 for β-lactams), becomes quantitatively evident in the inactive analog where the identical core scaffold receives strong negative attribution (-0.410) when bearing the dioxolane protecting group. The sign reversal from +0.490 to -0.410 for the same molecular framework based on chemical context provides direct molecular evidence of the sophisticated context-dependent scaffold importance modulation that distinguishes RGCN from RF's feature-constrained approach and CNN's systematic failures. Additionally, RGCN's assignment of negative attribution to the acyl side chain (-0.100) demonstrates the nuanced chemical understanding that structural modifications can modulate scaffold effectiveness, contributing to RGCN's superior deployment readiness across all evaluation tiers despite moderate β-lactam context sensitivity compared to its exceptional performance in other classes (0.79 fluoroquinolones, 0.83 oxazolidinones).
3.2.5.2 Fluoroquinolone Activity Cliff
The fluoroquinolone activity cliff provides direct molecular validation of significant Tier 1 performance differences in our framework evaluation. Random Forest's fluoroquinolone analysis demonstrates both the chemical insights driving its highest Tier 2 context sensitivity performance (0.77) and the methodological advantages enabling its strong Tier 1 scaffold recognition (93%). In the active compound, RF assigns positive attributions to carboxylate-related features (fr_COO2: +0.043, fr_Ar_COO: +0.036, fr_COO: +0.035) and fluorine (fr_halogen: +0.027), with these specific attribution values corresponding to cyan highlighting on the quinolone 3-carboxylate and 4-keto acid motifs in Figure 5. The attribution magnitude hierarchy with carboxylate features receiving the highest weights (+0.043 leading) validates RF's chemical understanding that drives its exceptional fluoroquinolone context sensitivity performance (0.77, the highest among all classes), as the model correctly prioritizes the pharmacophoric elements essential for DNA gyrase binding. In the inactive analog, RF assigns weak negative attributions to phosphate-related features (fr_phos_ester: -0.000057, fr_phos_acid: -0.000016) while maintaining positive attributions for the same carboxylate and halogen features, illustrating effective discrimination between beneficial and detrimental structural modifications. The attribution patterns validate why fluoroquinolones achieved RF's highest context sensitivity score (0.77) while maintaining strong scaffold recognition. The architecture leverages expert-encoded chemical knowledge to achieve SAR understanding within established descriptor categories.
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Figure 5. Attribution patterns for fluoroquinolone activity cliff pair. Active compound (A, MIC: 4 μg/mL) and inactive compound (B, MIC: >4 μg/mL).
CNN exhibits the attribution inconsistencies that provide molecular-level validation of its complete fluoroquinolone scaffold recognition failure (0% strict recognition) and explain why this represents the most severe limitation across all models and classes in our framework evaluation. Figure 5 shows CNN assigning positive attributions to the cyclopropane substituent (+0.500) and pyridine ring (+0.280) in the active compound. The +0.280 attribution on the pyridine ring demonstrates CNN's capability for local feature recognition, but this fragmented approach, recognizing individual aromatic rings and substituents rather than integrated scaffolds  explains CNN's complete failure under strict SMARTS evaluation criteria that require coordinated scaffold component recognition. CNN's attribution patterns exemplify why the architecture achieved 0% strict scaffold recognition across all antibiotic classes despite demonstrating partial recognition of individual fragments (52% β-lactams, 72% oxazolidinones). The context-dependent recognition becomes evident in the inactive analog where the identical quinolone core dramatically shifts from positive (+0.278) to neutral attribution (0.014), representing a total magnitude change of 0.264 for the same structural motif. This seems to provide some context sensitivity albeit that it doesn’t recognize the core scaffold which is the most important metric. However, CNN's failure to recognize the  bisphosphonate group as the specific detrimental modification causing the activity cliff results in zero discrimination capability. This corroborates our framework conclusion that CNN's sequential representation fundamentally limits pharmaceutical deployment regardless of computational sophistication.
RGCN provides molecular-level validation of its solid Tier 1 performance (74% for fluoroquinolones) and exceptional Tier 2 context sensitivity (0.79, the highest among all architectures for this class) through mechanistically coherent attribution patterns that demonstrate authentic chemical understanding. Figure 5's RGCN panels show attribution magnitude hierarchy that directly supports mechanistic understanding: highest attribution to the carboxylic acid functionality (+0.720) and substantial positive attribution to the quinolone core (+0.290) in the active compound. The attribution value of +0.720 for the carboxylic acid significantly higher than other molecular regions quantitatively validates RGCN's recognition of this group's critical role in DNA gyrase binding through magnesium coordination, while the moderate quinolone core attribution (+0.290) reflects the complexity of this heterocyclic system. The combined attribution pattern demonstrates why RGCN achieved solid 74% fluoroquinolone scaffold recognition by capturing essential pharmacophoric relationships through graph-based molecular understanding. RGCN's exceptional fluoroquinolone context sensitivity (0.79) becomes quantitatively evident in the inactive analog where the carboxylic acid and fluroquinolone core have neutral attributions( 0.07 and -0.05 respectively). This demonstrates RGCN's sophisticated understanding that core binding elements retain some activity potential even in deactivating molecular contexts, while the strong negative attribution (-0.829) on the modified bisphosphonate indicates authentic recognition of structure-activity relationships. This nuanced attribution pattern exemplifies the chemical reasoning that distinguished RGCN's exceptional fluoroquinolone context sensitivity (0.79) as the highest performance among all architecture-class combinations, validating its deployment-ready chemical understanding capabilities.
3.2.5.3 Oxazolidinone Activity Cliff
The oxazolidinone activity cliff provides direct validation of Random Forest's chemical reasoning through quantitative attribution analysis that explains both its perfect scaffold recognition (100%) and solid context sensitivity (0.70). In the active compound, RF assigns its strongest positive attribution to the fr_lactone descriptor (+0.132), which captures the oxazolidinone core ring structure and represents the maximum scaffold attribution observed across all antibiotic classes, alongside supporting nitrogen functionalities (fr_NH1: +0.037, fr_NH0: +0.035, fr_aniline: +0.027). This +0.132 fr_lactone attribution directly explains why oxazolidinones achieved RF's joint-highest scaffold recognition rate alongside β-lactams, with the hierarchical attribution pattern validating established pharmacology where the heterocyclic ring and amine functionalities enable ribosomal binding. RF's context-dependent discrimination becomes evident in the inactive analog where the same fr_lactone descriptor receives minimal attribution (+0.0036), a 36-fold reduction while the model correctly identifies the fr_azide modification as the primary liability (-0.079), followed by fr_morpholine ring interference (-0.068). The dramatic fr_lactone attribution shift from +0.132 to +0.0036, combined with the model's accurate identification of the fr_azide as the strongest negative contributor, demonstrates RF's ability to modulate scaffold importance based on chemical context while maintaining interpretable structure-activity relationship recognition within its descriptor framework.
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Figure 6. Attribution patterns for oxazolidinone activity cliff pair. Active compound (A, MIC: 8 μg/mL) and inactive compound (B, MIC: >64.26 μg/mL ).
CNN reveals attribution instability patterns that provide molecular validation of its moderate oxazolidinone partial recognition (72%) but complete strict pattern failure (0%) and illustrate the consistency limitations identified across all framework tiers. In the active compound, CNN assigns strong positive attributions to the cyclopropane (+0.690), oxazolidinone core (+0.424), and benzene ring (+0.195). The +0.424 attribution on the oxazolidinone core represents CNN's capability for individual fragment recognition that enables 72% partial scaffold detection, but the higher attribution on the cyclopropane (+0.690) indicates misplaced chemical emphasis that prevents coordinated scaffold understanding required for strict pattern matching. CNN's sophisticated context awareness becomes quantitatively evident in the inactive analog, where identical pharmacophoric elements receive appropriately reversed attributions that demonstrate genuine chemical understanding. The oxazolidinone core shifts from +0.424 to -0.183  and the benzene ring changes from +0.195 to -0.155. These attribution reversals for chemically identical substructures provide direct evidence of the context-dependent reasoning that enables CNN's moderate context sensitivity performance, the model correctly recognizes that the same scaffold elements become detrimental when combined with activity-destroying modifications. However, CNN's fundamental limitation lies in its discrimination ability: the model's substructure-based attribution system fails to identify the azide modification responsible for the activity cliff, explaining why CNN achieves context awareness through scaffold modulation but cannot pinpoint the specific structural changes that create activity differences across antibiotic classes..
RGCN provides molecular validation of its near-perfect oxazolidinone scaffold recognition (99%) and exceptional context sensitivity (0.83), the highest among all architecture-class combinations) through attribution patterns that demonstrate the chemical understanding underlying its outstanding framework performance across all evaluation tiers. RGCN panels show the model assigned its highest attribution to the oxazolidinone ring as a complete structural unit (+0.816), representing the strongest single attribution observed across all architectures and molecular examples examined. This maximum attribution value (+0.816) quantitatively explains RGCN's near-perfect oxazolidinone scaffold recognition (99%), with the concentrated attribution pattern directly validating RGCN's exceptional Tier 1 comprehensiveness scores as the model recognizes the complete pharmacophoric scaffold rather than fragmenting recognition across peripheral features. RGCN's outstanding context-dependent recognition becomes quantitatively striking in the inactive analog, where the azide substitution receives strong negative attribution (-0.444) while the oxazolidinone core maintains minimal positive attribution (+0.093) demonstrating RGCN's sophisticated understanding that azide presence diminishes rather than destroys binding potential. The dramatic attribution shift from +0.816 to +0.093 for the identical oxazolidinone core (8.8-fold reduction), combined with the strong negative attribution (-0.444) on the deactivating azide modification, provides direct evidence of the context-sensitive chemical reasoning that drives RGCN's exceptional oxazolidinone context sensitivity (0.83). This demonstrates RGCN's exceptional ability across Tier 1 (scaffold recognition), Tier 2 (context sensitivity), and Tier 3 (prediction-explanation alignment), validating its position as achieving deployment-ready performance across all framework dimensions.
3.2.5.4 Prediction-Explanation Alignment Analysis
Internal consistency evaluation revealed progressive improvement across architectures, demonstrating that prediction-explanation mismatches can occur even for correct predictions due to the fundamental limitations of post-hoc attribution methods. The RF example (Figure 7a) shows a correctly predicted borderline active compound (P = 0.548, MIC = 20 μg/mL) despite conflicting attribution signals, with TreeSHAP revealing specific attribution values. Positive contributions from lactam functionality (+0.013) and carbonyl groups (+0.021) compete with negative contributions from ester groups (-0.018), reflecting the model's accurate recognition of both activity-promoting β-lactam core and activity-limiting ester modifications. This exemplifies a key limitation of RF's functional group approach, as the molecule contains multiple carbonyl groups with no direct mapping to specify which particular carbonyl contributes the +0.021 attribution, requiring post-hoc inference from related features like fr_ester and fr_lactam to understand the underlying chemical reasoning. The narrow decision margin (P = 0.548 vs threshold 0.500) demonstrates that RF's apparent mismatches consistently occur at borderline probabilities, representing uncertainty quantification rather than true prediction-explanation misalignment, as corroborated by RF's high alignment rates across antibiotic classes (β-lactam: 93.7%, fluoroquinolone: 96.2%, oxazolidinone: 88.0%).
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Figure 7. Examples of prediction-explanation mismatches across RF, CNN, and RGCN models where attributions contradict predicted outcomes. 
CNN exhibits classic attribution-prediction divergence patterns that validate the architectural constraints underlying post-hoc explanation methods while maintaining prediction accuracy. The CNN example (Figure 7b) demonstrates quantitative contradiction between its correct inactive prediction (P = 0.299, MIC > 20 μg/mL) and strong positive attributions to β-lactam (+0.250) and dihydrothiazine motifs (+0.221), with combined positive scaffold attribution (+0.471) appearing to contradict the accurate negative prediction. This specific attribution-prediction divergence provides molecular evidence of the non-additive interaction limitations that enable CNN to achieve correct predictions through distributed feature processing that post-hoc attribution methods cannot fully reconstruct. The substantial positive attributions on essential pharmacophoric elements indicate authentic local chemical recognition, but the accurate inactive prediction demonstrates that sequential architectures achieve correct decisions through complex distributed interactions that linear attribution decomposition fundamentally cannot capture. CNN's ability to correctly identify this inactive compound despite positive scaffold attributions reflects sophisticated chemical reasoning that operates beyond the scope of additive explanation methods, with this example representing the minority of cases that contribute to CNN's overall alignment rates (β-lactam: 94.4%, fluoroquinolone: 88.5%, oxazolidinone: 92.7%).
RGCN showed the most sophisticated attribution-prediction relationships while maintaining prediction accuracy, with apparent mismatches reflecting the practical upper limits of post-hoc XAI methodology rather than chemical understanding failures. The RGCN example shows strong positive attribution to the β-lactam core (+0.454) accompanying a correct inactive prediction (P = 0.370, MIC > 100 μg/mL), with the attribution magnitude representing RGCN's accurate identification of necessary pharmacophoric elements despite overall negative assessment of compound activity. The substantial positive attribution (+0.454) validates RGCN's sophisticated scaffold recognition capabilities while the accurate inactive prediction reflects successful integration of contextual deactivating factors from hydrazone substituents that graph-based reasoning correctly identifies but post-hoc methods cannot express through simple additive attribution scores. This molecular example provides the fundamental limitations of attribution faithfulness when applied to sophisticated architectures that achieve correct predictions through complex interactions that resist decomposition into additive feature contributions.
These quantitative findings establish that prediction-explanation mismatches can occur even for correct predictions due to the Rashomon effect, where multiple well-performing models produce different explanations for identical predictions, and post-hoc attribution methods yield inconsistent results even when applied to the same correct prediction[50,51]. Although we attempted to mitigate this effect by averaging both attributions and predictions across the 5-model ensemble used, the observed mismatches demonstrate that methodological constraints in post-hoc explanation methods persist beyond ensemble approaches, emphasizing scaffold recognition and context sensitivity as primary deployment criteria over attribution faithfulness.
3.2.5.5 Understanding Model Failures Through Explainability
Attribution analysis of misclassification cases provides direct validation of the systematic limitations identified in our framework evaluation. Herein, we look at example case of the same molecule which is predicted wrongly in all three models. The example molecule is a fluoroquinolone attached to a long alkyl chain alkyl (Figure 8). RF’s misclassified fluoroquinolone analysis validates both the chemical insight driving its exceptional overall context sensitivity (0.72) and the integration challenges that can constrain prediction accuracy despite strong scaffold recognition capabilities. RF assigns negative attribution to the extended alkyl chain feature (-0.077), with this attribution magnitude representing recognition that excessive lipophilicity detriments antimicrobial activity. This demonstrates the sophisticated chemical reasoning that enables RF's strong fluoroquinolone scaffold recognition (93%) and excellent context sensitivity (0.77). The -0.077 attribution on the problematic hydrophobic tail validates . The attribution pattern (+0.043 carboxylate features, -0.077 alkyl chain) demonstrates Despite RF's capability to identify both beneficial and detrimental structural elements,  the misclassification reveals challenges in integrating these opposing chemical signals into unified molecular assessments. This quantitative attribution evidence supports our framework findings that while RF achieves excellent scaffold recognition (97.7% overall) and strong context sensitivity (0.72), occasional prediction failures can occur when competing chemical signals require complex integration beyond predefined functional group categories.
[image: ]
Figure 8. Attribution patterns for fluoroquinolone misclassification demonstrating how different models explain prediction failures. All three models incorrectly predicted (FP-False Positives) this compound as active despite MIC: 125,000 nM (67.96 μg/mL). RF and RGCN correctly identifies problematic alkyl chain features, while CNN shows incomplete spatial recognition.
CNN's misclassification further validates the model’s failure in tier 1 and 2 across all framework evaluation tiers, including poor overall scaffold recognition  and complete context sensitivity failure (0.00). The model assigns positive attribution to the quinolone core phenyl ring (+0.125), showing partial scaffold detection. However, CNN simultaneously assigns negative attribution to the piperazine substituent (-0.196), with this attribution magnitude nearly double the positive core recognition, illustrating the incomplete spatial integration that drives CNN's systematic failures across all evaluation tiers except for  prediction attribution alignment. The attribution ratio of negative piperazine (-0.196) to positive core (+0.125) creates a net negative signal (-0.071) that contradicts the known beneficial effects of piperazine substitutions in fluoroquinolones, providing direct molecular evidence of the sequential representation limitations that caused CNN's complete scaffold recognition failure under strict evaluation (0% across all classes). This incomplete integration pattern show CNN as unsuitable for pharmaceutical deployment, as the architecture fails to achieve the integrated chemical understanding required for reliable drug discovery applications despite moderate internal consistency (91.9%).
RGCN's false positive prediction provides attribution validation that distinguishes between architectural excellence and practical training limitations, demonstrating how our framework evaluation correctly identified RGCN's superior chemical understanding capabilities. RGCN shows chemically coherent attribution patterns, strong positive attribution on the carboxylic acid (+0.550), modest positive attribution on the quinolone core (+0.120), and strong negative attribution on the extended alkyl chain (-0.360). The attribution hierarchy (+0.550 acid, +0.120 core, -0.360 alkyl) demonstrates sophisticated chemical understanding that validates RGCN's solid fluoroquinolone scaffold recognition performance (74%), as the model correctly identifies beneficial pharmacophoric elements while recognizing detrimental structural modifications through graph-based molecular representation. The strong negative attribution (-0.360) on the problematic lipophilic extension provides direct evidence of the mechanistic reasoning that drives RGCN's strong overall Tier 1 performance (89.3%) and solid context sensitivity (0.71), demonstrating authentic chemical understanding despite occasional prediction errors. The false positive prediction despite chemically accurate explanations suggests that this may be due to training data limitations rather than architectural deficiencies, illustrating how attribution analysis can distinguish between model versus data-related issues while validating our framework's assessment of RGCN's deployment-ready chemical understanding capabilities. This molecular-level validation supports our conclusion that RGCN represents the optimal architecture for pharmaceutical deployment, with occasional practical limitations addressable through targeted training improvements rather than fundamental architectural changes.
4. Conclusion
This study established a comprehensive four-dimensional evaluation framework that successfully distinguished between architectures suitable for pharmaceutical deployment and those requiring fundamental methodological improvements. The hierarchical assessment system implemented Tier 1 scaffold recognition as the essential gatekeeper criterion (≥90% threshold), Tier 2 context sensitivity for chemical sophistication validation, Tier 3 internal consistency for trustworthy explanation-prediction alignment, and Tier 4 model independence for deployment reliability. This tiered approach prevented misleading conclusions that might arise from single-metric evaluations, ensuring that computational sophistication aligned with appropriate molecular representation to achieve genuine chemical understanding rather than superficial pattern recognition. The framework's emphasis on scaffold recognition as the foundational criterion proved decisive in identifying reliable chemical understanding capabilities across diverse architectural paradigms, with applicability extending beyond antimicrobial research to broader drug discovery applications and molecular property prediction tasks.
Building upon this systematic evaluation, RGCN emerged as the superior architecture for pharmaceutical deployment when evaluated holistically across all assessment dimensions. RGCN had the best performance when evaluated on the test set, strong scaffold recognition through genuinely learned molecular understanding (89.3% overall), solid context sensitivity (0.71), exceptional internal consistency (95.8%), and outstanding model independence (0.709). Critically, RGCN achieves this performance through authentic chemical learning from molecular graph structures. The slight reduction in fluoroquinolone scaffold recognition (74% vs 95-99% for other classes) reflects the inherent complexity of this two-component pharmacophore system (fluoroquinolone core + carboxylic acid), where quantitative measurement becomes more challenging compared to unified scaffold systems like β-lactams and oxazolidinones.
In contrast, Random Forest achieved excellent scaffold recognition (97.7%) but through fundamentally different mechanisms that rely on expert-curated RDKit functional group descriptors rather than learned chemical understanding. While RF demonstrates sophisticated chemical reasoning within predefined feature categories and achieves the highest context sensitivity (0.72), this approach essentially incorporates external chemical knowledge as input features representing a form of "chemical cheating" rather than genuine molecular learning. RF's perfect recognition for β-lactams and oxazolidinones (100% each) and strong fluoroquinolone performance (93%) validate the effectiveness of expert-encoded chemical knowledge but limit the architecture's ability to discover novel chemical patterns beyond predetermined functional groups. CNN exhibited systematic failures across all chemical understanding metrics with poor scaffold recognition (41.3%, 0% under strict criteria), complete context sensitivity failure (0.00), and concerning model independence patterns (0.828) despite achieving high internal consistency (91.9%) through architectural stability rather than meaningful chemical comprehension. However, this shows that even a simple model like RF can be more valuable than complex deep learning architectures like CNN.
Nevertheless, the evaluation revealed fundamental constraints that affect all contemporary XAI approaches, regardless of architectural sophistication. An ideal XAI method would achieve perfect scaffold recognition through learned chemical understanding, complete context sensitivity with perfect discrimination ability, zero prediction-explanation mismatches, and strong cross-fold stability (95-98%, as excessive uniformity would indicate concerning overfitting). While these theoretical targets may never be practically attainable, they establish the gold standard against which all architectures should be measured. Post-hoc XAI limitations affected all architectures through prediction-explanation disagreements stemming from additive decomposition assumptions that fail to capture complex molecular interaction contexts. Case study analysis showed that Random Forest's apparent misalignments reflected transparent uncertainty within feature-constrained reasoning, CNN's mismatches exemplified fundamental sequential representation limitations, and RGCN's rare disagreements illustrated the methodological constraints inherent to post-hoc explanation methods when applied to sophisticated relational reasoning that surpasses current attribution methodologies.
Therefore, this work establishes RGCN as the optimal architecture for pharmaceutical deployment by achieving the best balance of learned chemical understanding, prediction accuracy, and attribution consistency across all evaluation dimensions. RGCN's graph-based molecular representation enables genuine chemical learning that aligns with medicinal chemistry intuition while maintaining superior performance across all framework tiers. Future progress requires developing mechanistic models with XAI principles integrated from the outset rather than retrofitted through post-hoc methods. The hierarchical framework provides practical deployment guidelines positioning graph-based architectures as the most promising approach for augmenting traditional medicinal chemistry expertise through authentic molecular understanding. Implementation should incorporate ensemble consensus for both predictions and attributions (though the latter may be computational intensive), magnitude-weighted attribution metrics, and dual reliability gating combining prediction-attribution alignment with domain knowledge validation to maximize RGCN's chemical learning capabilities while addressing current post-hoc XAI limitations.
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Table S1. Performance comparison of 24 machine learning classifiers using LazyPredict for S. aureus antimicrobial activity classification.

	Model
	Accuracy
	Balanced Accuracy
	AUCROC
	F1 Score
	MCC

	RandomForestClassifier
	0.820
	0.783
	0.883
	0.869
	0.585

	ExtraTreesClassifier
	0.817
	0.788
	0.865
	0.865
	0.583

	BaggingClassifier
	0.799
	0.769
	0.864
	0.850
	0.543

	KNeighborsClassifier
	0.786
	0.743
	0.833
	0.845
	0.504

	ExtraTreeClassifier
	0.777
	0.752
	0.762
	0.832
	0.501

	DecisionTreeClassifier
	0.776
	0.753
	0.762
	0.830
	0.500

	NuSVC
	0.782
	0.721
	0.834
	0.847
	0.484

	SVC
	0.748
	0.660
	0.804
	0.830
	0.390

	LGBMClassifier
	0.746
	0.657
	0.807
	0.830
	0.384

	GaussianNB
	0.480
	0.585
	0.637
	0.410
	0.196

	NearestCentroid
	0.564
	0.601
	0.601
	0.600
	0.193

	BernoulliNB
	0.629
	0.597
	0.640
	0.714
	0.188

	LogisticRegression
	0.679
	0.561
	0.689
	0.792
	0.174

	AdaBoostClassifier
	0.677
	0.563
	0.688
	0.789
	0.172

	CalibratedClassifierCV
	0.680
	0.560
	0.688
	0.793
	0.172

	LinearDiscriminantAnalysis
	0.679
	0.558
	0.688
	0.793
	0.169

	LinearSVC
	0.681
	0.554
	0.688
	0.796
	0.167

	RidgeClassifierCV
	0.682
	0.552
	0.688
	0.798
	0.167

	RidgeClassifier
	0.682
	0.552
	0.688
	0.798
	0.167

	SGDClassifier
	0.663
	0.542
	0.639
	0.781
	0.120

	Perceptron
	0.586
	0.551
	0.583
	0.679
	0.099

	QuadraticDiscriminantAnalysis
	0.368
	0.521
	0.641
	0.120
	0.089

	PassiveAggressiveClassifier
	0.586
	0.517
	0.530
	0.700
	0.036

	DummyClassifier
	0.668
	0.500
	0.500
	0.801
	0.000






Table S2. Hyperparameter optimization results for Convolutional Neural Network (CNN)
	N
	Layers
	Filters
	Kernel size
	Dropout
	Learning rate
	Best epoch
	Loss
	AUCROC

	0
	2
	32
	3
	0.1082
	0.0041
	5
	0.412
	0.748

	1
	1
	128
	5
	0.2169
	0.0001
	100
	0.419
	0.690

	2
	2
	256
	7
	0.4863
	0.0015
	89
	0.359
	0.807

	3
	3
	128
	3
	0.2247
	0.0003
	100
	0.373
	0.779

	4
	3
	64
	3
	0.1181
	0.0001
	100
	0.402
	0.726

	5
	3
	128
	7
	0.4089
	0.0000
	100
	0.380
	0.771

	6
	2
	64
	5
	0.2324
	0.0000
	100
	0.418
	0.691

	7
	3
	64
	5
	0.4084
	0.0002
	100
	0.376
	0.774

	8
	1
	128
	5
	0.2642
	0.0011
	100
	0.399
	0.734

	9
	3
	64
	3
	0.4570
	0.0003
	100
	0.397
	0.736

	10
	2
	256
	7
	0.3402
	0.0045
	95
	0.360
	0.805

	11
	2
	256
	7
	0.3494
	0.0049
	100
	0.359
	0.800

	12
	2
	256
	7
	0.4974
	0.0015
	95
	0.356
	0.811

	13
	2
	256
	7
	0.4867
	0.0011
	81
	0.358
	0.811

	14
	2
	256
	7
	0.4334
	0.0010
	55
	0.358
	0.809

	15
	2
	256
	7
	0.4961
	0.0006
	100
	0.358
	0.808

	16
	1
	32
	7
	0.3654
	0.0019
	100
	0.395
	0.740

	17
	2
	256
	7
	0.4643
	0.0005
	100
	0.359
	0.807

	18
	2
	256
	7
	0.3012
	0.0023
	74
	0.363
	0.812

	19
	2
	256
	7
	0.1588
	0.0026
	74
	0.381
	0.807

	20
	1
	32
	7
	0.2836
	0.0006
	100
	0.408
	0.717

	21
	2
	256
	7
	0.3886
	0.0025
	83
	0.365
	0.806

	22
	2
	256
	7
	0.3098
	0.0012
	92
	0.375
	0.809

	23
	2
	256
	7
	0.4404
	0.0008
	100
	0.360
	0.812

	24
	2
	256
	7
	0.4387
	0.0007
	100
	0.361
	0.806

	25
	2
	256
	7
	0.1711
	0.0004
	85
	0.373
	0.808

	26
	2
	256
	7
	0.3218
	0.0001
	100
	0.365
	0.794

	27
	2
	256
	7
	0.4018
	0.0024
	89
	0.359
	0.810

	28
	1
	32
	5
	0.4651
	0.0004
	100
	0.416
	0.698

	29
	2
	32
	3
	0.3760
	0.0031
	74
	0.402
	0.728

	30
	2
	256
	3
	0.4335
	0.0009
	87
	0.388
	0.751

	31
	2
	256
	7
	0.4871
	0.0017
	100
	0.359
	0.810

	32
	2
	256
	7
	0.4695
	0.0015
	100
	0.359
	0.810

	33
	2
	256
	7
	0.4931
	0.0033
	100
	0.355
	0.807

	34
	2
	128
	7
	0.4349
	0.0009
	100
	0.360
	0.801

	35
	2
	256
	7
	0.4604
	0.0019
	100
	0.361
	0.810

	36
	3
	256
	7
	0.2697
	0.0014
	100
	0.384
	0.820

	37
	3
	128
	5
	0.2563
	0.0001
	100
	0.377
	0.774

	38
	3
	64
	3
	0.2160
	0.0008
	100
	0.381
	0.771

	39
	3
	256
	7
	0.1908
	0.0035
	87
	0.392
	0.812

	40
	3
	64
	5
	0.1730
	0.0033
	100
	0.360
	0.802

	41
	3
	256
	7
	0.2055
	0.0012
	100
	0.409
	0.820

	42
	3
	256
	7
	0.2023
	0.0013
	63
	0.415
	0.815

	43
	3
	256
	7
	0.1992
	0.0002
	72
	0.402
	0.828

	44
	3
	256
	7
	0.1212
	0.0002
	70
	0.434
	0.826

	45
	3
	128
	7
	0.1041
	0.0002
	89
	0.393
	0.823

	46
	3
	128
	3
	0.1049
	0.0002
	100
	0.377
	0.780

	47
	3
	128
	7
	0.1176
	0.0001
	76
	0.362
	0.785

	48
	3
	128
	7
	0.1358
	0.0001
	100
	0.386
	0.815

	49
	3
	128
	7
	0.1254
	0.0000
	100
	0.368
	0.788
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Table S3. Hyperparameter optimization for Relational Graph Convolutional Network (RGCN)
	N
	Learning rate
	Weight decay
	RGCN hidden 
features
	FFN  hidden features
	FFN dropout
	RGCN dropout
	Best epoch
	Loss
	AUCROC

	0
	0.00073
	0.00001
	128-256
	64
	0.4
	0.5
	33
	0.601
	0.692

	1
	0.00234
	0.00002
	64-128-256
	64
	0.3
	0.2
	57
	0.530
	0.786

	2
	0.00012
	0.00001
	64-64-128
	64
	0.3
	0.3
	99
	0.599
	0.698

	3
	0.00052
	0.00000
	256-256
	64
	0.2
	0.1
	63
	0.525
	0.820

	4
	0.00011
	0.00000
	64-128
	32
	0.1
	0.2
	91
	0.553
	0.752

	5
	0.00610
	0.00004
	128-128-256
	64
	0.5
	0.3
	23
	0.610
	0.656

	6
	0.00053
	0.00082
	128-256
	64
	0.2
	0.2
	32
	0.566
	0.747

	7
	0.00030
	0.00015
	64-128
	32
	0.3
	0.2
	99
	0.581
	0.744

	8
	0.00747
	0.00000
	64-128-256
	32
	0.3
	0.4
	70
	0.595
	0.699

	9
	0.00595
	0.00022
	256-256
	32
	0.5
	0.5
	17
	0.625
	0.642

	10
	0.00191
	0.00000
	256-256
	64
	0.2
	0.1
	53
	0.502
	0.816

	11
	0.00159
	0.00000
	256-256
	64
	0.2
	0.1
	56
	0.522
	0.801

	12
	0.00164
	0.00000
	256-256
	64
	0.2
	0.1
	53
	0.463
	0.843

	13
	0.00035
	0.00000
	256-256
	64
	0.2
	0.1
	63
	0.486
	0.831

	14
	0.00030
	0.00001
	256-256
	64
	0.2
	0.1
	83
	0.501
	0.825

	15
	0.00026
	0.00001
	128-128-256
	64
	0.4
	0.1
	64
	0.632
	0.728

	16
	0.00024
	0.00003
	64-64-128
	64
	0.1
	0.4
	99
	0.573
	0.738

	17
	0.00041
	0.00001
	256-256
	64
	0.2
	0.1
	60
	0.492
	0.826

	18
	0.00019
	0.00002
	256-256
	32
	0.2
	0.1
	29
	0.530
	0.775

	19
	0.00092
	0.00006
	256-256
	64
	0.2
	0.1
	62
	0.517
	0.809

	20
	0.00016
	0.00000
	64-128
	64
	0.4
	0.3
	77
	0.631
	0.658

	21
	0.00039
	0.00001
	256-256
	64
	0.2
	0.1
	72
	0.472
	0.834

	22
	0.00041
	0.00001
	256-256
	64
	0.2
	0.1
	36
	0.499
	0.820

	23
	0.00072
	0.00001
	256-256
	64
	0.2
	0.1
	40
	0.503
	0.800

	24
	0.00035
	0.00001
	256-256
	64
	0.2
	0.4
	58
	0.564
	0.764

	25
	0.00020
	0.00000
	64-64-128
	64
	0.5
	0.5
	54
	0.621
	0.642

	26
	0.00054
	0.00006
	128-128-256
	32
	0.1
	0.1
	38
	0.506
	0.823

	27
	0.00112
	0.00001
	64-128-256
	64
	0.2
	0.1
	44
	0.497
	0.819

	28
	0.00023
	0.00000
	128-256
	64
	0.2
	0.1
	49
	0.534
	0.782

	29
	0.00312
	0.00001
	128-256
	64
	0.4
	0.5
	48
	0.563
	0.734

	30
	0.00084
	0.00002
	256-256
	64
	0.2
	0.1
	60
	0.478
	0.832

	31
	0.00041
	0.00001
	256-256
	64
	0.2
	0.1
	66
	0.546
	0.801

	32
	0.00062
	0.00001
	256-256
	64
	0.2
	0.1
	51
	0.506
	0.808

	33
	0.00015
	0.00001
	256-256
	64
	0.2
	0.1
	94
	0.475
	0.840

	34
	0.00036
	0.00000
	256-256
	64
	0.2
	0.3
	63
	0.516
	0.791

	35
	0.00030
	0.00001
	64-128-256
	64
	0.3
	0.1
	61
	0.589
	0.752

	36
	0.00118
	0.00000
	64-64-128
	64
	0.1
	0.2
	57
	0.515
	0.801

	37
	0.00044
	0.00003
	256-256
	64
	0.5
	0.1
	61
	0.600
	0.735

	38
	0.00011
	0.00000
	64-128
	32
	0.2
	0.3
	99
	0.581
	0.720

	39
	0.00065
	0.00000
	128-128-256
	64
	0.4
	0.4
	99
	0.582
	0.741

	40
	0.00015
	0.00000
	128-256
	64
	0.3
	0.2
	68
	0.554
	0.754

	41
	0.00048
	0.00001
	256-256
	64
	0.2
	0.1
	49
	0.504
	0.815

	42
	0.00033
	0.00001
	256-256
	64
	0.2
	0.1
	56
	0.511
	0.812

	43
	0.00041
	0.00000
	256-256
	64
	0.2
	0.1
	51
	0.519
	0.798

	44
	0.00026
	0.00001
	256-256
	32
	0.2
	0.5
	92
	0.553
	0.752

	45
	0.00057
	0.00038
	256-256
	64
	0.2
	0.1
	49
	0.446
	0.852

	46
	0.00021
	0.00002
	256-256
	64
	0.2
	0.1
	93
	0.513
	0.813

	47
	0.00020
	0.00009
	64-128-256
	64
	0.5
	0.1
	89
	0.606
	0.738

	48
	0.00013
	0.00002
	64-128
	64
	0.1
	0.2
	99
	0.550
	0.765

	49
	0.00029
	0.00002
	256-256
	32
	0.3
	0.1
	49
	0.597
	0.738






Table S4. Test set evaluation of Random Forest models from 5×5 cross-validation (selected 5 models are in bold).
	CV ID
	AUCROC
	Precision
	MCC

	CV1 R1
	0.866
	0.924
	0.558

	CV1 R2
	0.863
	0.922
	0.517

	CV1 R3
	0.863
	0.920
	0.544

	CV1 R4
	0.868
	0.924
	0.553

	CV1 R5
	0.867
	0.921
	0.559

	CV2 R1
	0.868
	0.922
	0.553

	CV2 R2
	0.870
	0.924
	0.545

	CV2 R3
	0.867
	0.921
	0.548

	CV2 R4
	0.869
	0.924
	0.553

	CV2 R5
	0.869
	0.925
	0.572

	CV3 R1
	0.865
	0.924
	0.558

	CV3 R2
	0.869
	0.924
	0.549

	CV3 R3
	0.862
	0.918
	0.559

	CV3 R4
	0.865
	0.923
	0.536

	CV3 R5
	0.865
	0.920
	0.553

	CV4 R1
	0.865
	0.920
	0.529

	CV4 R2
	0.868
	0.923
	0.554

	CV4 R3
	0.868
	0.923
	0.548

	CV4 R4
	0.868
	0.924
	0.549

	CV4 R5
	0.868
	0.923
	0.536

	CV5 R1
	0.865
	0.925
	0.519

	CV5 R2
	0.861
	0.921
	0.550

	CV5 R3
	0.862
	0.922
	0.534

	CV5 R4
	0.865
	0.923
	0.521

	CV5 R5
	0.866
	0.924
	0.534



Table S5. Test set evaluation of CNN models from 5×5 cross-validation (selected 5 models are in bold)
	CV ID
	AUCROC
	Precision
	MCC

	CV1 R1
	0.860
	0.918
	0.543

	CV1 R2
	0.862
	0.921
	0.550

	CV1 R3
	0.861
	0.919
	0.515

	CV1 R4
	0.861
	0.919
	0.550

	CV1 R5
	0.869
	0.924
	0.552

	CV2 R1
	0.864
	0.920
	0.526

	CV2 R2
	0.862
	0.919
	0.547

	CV2 R3
	0.864
	0.922
	0.540

	CV2 R4
	0.863
	0.920
	0.533

	CV2 R5
	0.867
	0.923
	0.538

	CV3 R1
	0.867
	0.923
	0.547

	CV3 R2
	0.864
	0.920
	0.543

	CV3 R3
	0.854
	0.916
	0.505

	CV3 R4
	0.790
	0.880
	0.376

	CV3 R5
	0.864
	0.919
	0.539

	CV4 R1
	0.860
	0.918
	0.540

	CV4 R2
	0.862
	0.920
	0.537

	CV4 R3
	0.864
	0.920
	0.551

	CV4 R4
	0.863
	0.918
	0.539

	CV4 R5
	0.857
	0.915
	0.539

	CV5 R1
	0.864
	0.921
	0.535

	CV5 R2
	0.860
	0.921
	0.523

	CV5 R3
	0.862
	0.919
	0.543

	CV5 R4
	0.865
	0.923
	0.530

	CV5 R5
	0.862
	0.918
	0.563




Table S6: Test set evaluation of RGCN models from 5×5 cross-validation (selected 5 models are in bold)
	CV ID
	AUCROC
	Precision
	MCC

	CV1 R1
	0.966
	0.983
	0.766

	CV1 R2
	0.908
	0.953
	0.607

	CV1 R3
	0.876
	0.934
	0.554

	CV1 R4
	0.829
	0.908
	0.474

	CV1 R5
	0.939
	0.969
	0.690

	CV2 R1
	0.831
	0.909
	0.464

	CV2 R2
	0.768
	0.870
	0.371

	CV2 R3
	0.839
	0.916
	0.480

	CV2 R4
	0.926
	0.962
	0.664

	CV2 R5
	0.849
	0.921
	0.492

	CV3 R1
	0.975
	0.988
	0.807

	CV3 R2
	0.982
	0.991
	0.831

	CV3 R3
	0.792
	0.886
	0.409

	CV3 R4
	0.899
	0.947
	0.607

	CV3 R5
	0.974
	0.987
	0.794

	CV4 R1
	0.931
	0.964
	0.674

	CV4 R2
	0.947
	0.973
	0.711

	CV4 R3
	0.984
	0.992
	0.845

	CV4 R4
	0.930
	0.963
	0.676

	CV4 R5
	0.823
	0.903
	0.462

	CV5 R1
	0.813
	0.898
	0.433

	CV5 R2
	0.980
	0.990
	0.819

	CV5 R3
	0.847
	0.918
	0.485

	CV5 R4
	0.964
	0.982
	0.762

	CV5 R5
	0.946
	0.973
	0.705






Table S9: Context sensitivity by antibiotic class. Directionality and Discrimination use scaffold both.
	Model
	Class
	#Pairs
	Scaffold Both
	Directionality† 
	Discrimination† 

	RF
	Beta-lactam
	100
	78
	75.6%
	0.0%*

	RF
	Fluoroquinolones
	98
	70
	81.4%
	0.0%*

	RF
	Oxazolidinone
	100
	89
	94.4%
	0.0%*

	CNN
	Beta-lactam
	100
	88
	68.2%
	50.0%

	CNN
	Fluoroquinolones
	98
	15
	73.3%
	100.0%

	CNN
	Oxazolidinone
	100
	85
	76.5%
	82.0%

	RGCN
	Beta-lactam
	100
	100
	72.0%
	57.0%

	RGCN
	Fluoroquinolones
	98
	77
	70.1%
	92.9%

	RGCN
	Oxazolidinone
	100
	67
	46.3%
	88.0%


   *RF discrimination is 0% due to TreeSHAP producing positive attributions for present features.
† Scaffold recognition in both compounds is required before context sensitivity can be assessed
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Fig. S1: Distrubtion of the BRICS fragment contribution scores for 230 unique compounds from the activity cliff, for the different models.
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