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Supplementary Fig. 1 | Project design schematic representation. Schematic representation
of project design and rationale for the comparison of the selected cohorts and analysis of
biological samples in monocytes. Fresh CD14+ monocytes were isolated from peripheral blood
within 3 hours of blood drawn from 233 donors with neurological diseases, as well as 41
unaffected subjects (controls) generating a total of 274 samples. Genome-wide genotyping was
performed using DNA isolated from all donors and all subjects are from Ashkenazi Jewish
European ancestry. The following analyses were performed with this dataset: (i) differential
expression analysis; (ii) weighted gene co-expression analysis; (iii) gene set enrichment analysis.



Supplementary Fig. 2 | (A) Heatmaps comparing the corrected, scaled SVA expression key
genes associated with the biological processes significantly deregulated in GBA1- and LRRK2-
PD monocytes relative to iPD (resolved from Fig. 1F). All displayed genes were significantly
differentially expressed in either or both GBA1- and LRRK2-PD monocytes (FDR < 0.05, method
= BH). Scaled expression is defined as z-score-transformed mean expression per gene,
calculated by centering and standardizing SVA-corrected normalized expression. (B) Boxplots
comparing the SVA corrected expression of core genes involved in the integrated stress response
(ISR) signaling. Displayed genes are from the gene ontology term GO:0140467 (ISR signaling).
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Supplementary Fig. 3 | Covariate selection and correlation with possible confounders. (A)
Heatmap showing the correlation of the first 11 SVs (x-axis) and the known covariates (y-axis).
(B) Scatter plot showing the results from the principal component (PC) analysis before and after
surrogate variable analysis (SVA).
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Supplementary Fig. 4 | Gene network construction in human monocytes using WGCNA.
53 unique co-expression modules were obtained using WGCNA. (A) Heatmap showing the
correlation of the first 11 SVs (x-axis) and the known covariates (y-axis). (B) Right: Evaluation of
network topology with different soft-thresholding powers. The y-axis represents the scale-free fit
index as a function of the soft-thresholding power (x-axis). Left: The mean connectivity (y-axis)
as a function of the soft-thresholding power. (C) Gene dendrogram using “Dynamic Tree Cut” to
assign genes to different modules and modules to colors, showing before and after collapsing
modules into 65 final networks. (D) Module eigengenes clustering dendrogram based on
topological overlap. Modules below the threshold (Module Dissimilarity = 0.25) indicated by the
red line were merged. These values correspond to a correlation of 0.75.
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Supplementary Fig. 5 | Modules Eigengene expression comparison between groups.
Boxplots show eigengene expressions for all modules except M6, M10 and M12, displayed in Fig.
3B. Boxplots indicate median, quartiles, and whiskers (1.5x IQR). Eigengene expression was
compared via Wilkoxon sum-rank test, nominal p-value thresholds: *p < 0.05, **p < 0.01, *p <
0.001.



Supplementary Fig. 6 | Altered lysosomal proteolysis rates in PD monocyte-derived
macrophages (MDMs) measured with DQ-BSA. (A) Time course of covariate-adjusted DQ-
BSA processing rates (a.u./h; mean + SEM) in MDMs from controls (CTR), GBA1-PD, iPD and
LRRK2-PD patients over 24 h. Rates were obtained as time-derivatives of generalized additive
model (GAM)-fitted fluorescence trajectories, and compared between groups using linear mixed-
effects models with donor as a random effect and age, clinic, ancestry, weeks frozen and assay
date as covariates. Text reports slope (groupxtime) contrasts versus the indicated reference
group (B, a.u./h; p). (B) Significant per-time-point differences in DQ-BSA processing rates
between CTR and each PD subgroup, assessed by Wilcoxon rank-sum tests with Benjamini—
Hochberg FDR correction; table lists time (h), comparison and FDR-adjusted g-values.



Supplementary Fig. 6 | Mitochondrial membrane potential dynamics in PD monocyte-
derived macrophages. (A) Time course of covariate-adjusted rates of change in TMRM
fluorescence (AWm; a.u./h, mean + SEM) in monocyte-derived macrophages (MDMs) from
controls (CTR), GBA1-PD, iPD and LRRK2-PD patients at baseline. Rates were obtained as first
derivatives of generalized additive model (GAM)-fitted TMRM trajectories and compared between
groups with linear mixed-effects models. Text reports slope (groupxtime) contrasts between the
indicated groups (B, a.u./h; p). (B) Box-and-whisker plots (min—max, line = median; each point =
one donor) of subject-level TMRM area under the curve AUC at baseline. Group differences were
assessed by Kruskal-Wallis test followed by pairwise Wilcoxon rank-sum tests with Benjamini—
Hochberg FDR correction; g-values are shown above brackets. (C) Detailed time course of A¥Ym
response rates (a.u./h, mean + SEM) following 100 uM ADP, with accompanying table listing time
points (h) at which CTR differed from each PD subgroup by Wilcoxon rank-sum tests (FDR-
adjusted g-values).






