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Figure S1: Schematic illustration of principles underlying the scoring method. A. Regulatory genes
(rGene) were scored based on proximity to the Lead or its linked SNPs within a distance window (D)
considering chromatin state of the region containing the SNP and constraining for genomic organization
(has to be within the same topologically associated domain (TAD), Eqn 2 and 3). B. The qGenes are
scored by incorporating information regarding the variation of various quantitative traits of genomic
origin and utilizing significance of association with the framework of a percentile rank based scoring

method (empirical cumulative distribution function, eCDF, Eqn 4 and 5). C. The cGenes are scored



considering the strength of Enhancer-Gene interaction due to chromatin conformation and activity and
accessibility of the enhancer modelled though empirical cumulative distribution function (¢CDF) on the

interaction score (Eqn 6, 7 and 8). Details of process is further described in supplementary note.
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Figure S2: Simultaneous optimization of influential distance for rGene and protein interactome
exploration parameters for random walk. A. Heatmaps displaying the area under the receiver
operating characteristic curve (AUC) for gene prioritization performance under varying parameter
settings as indicated below, evaluated separately for EAS and EUR populations. The optimization
integrates genomic parameters—distance window and decay kernel (Constant, Linear, Rapid, Slow)—
with network exploration parameters defined by restart probabilities (0.1 to 0.9) which were used for
random walk with restart (RWR). The distance window denotes the genomic span within which SNP—

gene associations are considered, while the decay kernel governs how SNP influence decays with



distance. AUC is calculated based on the model’s ability to distinguish gold standard positives (GSPs)
from gold standard negatives (GSNs). (i) AUC values upon exclusion of GSPs and their first-order
neighbors (GSN) from evaluation. (ii) AUC values when both first- and second neighbors of GSPs
(GSN) are excluded. Benchmarking: Performance of four integration strategies—Fisher’s method
(meta-analysis-like), sum of predictor scores, maximum score and harmonic prioritization methods
evaluated for ovary assessed by comparing AUC obtained from different prioritization methods in its
ability to distinguish GSPs and GSNs in EAS (B (i)), and EUR (C (i)) respectively. (ii). Benchmarking
of our gene prioritization methods evaluated in other tissues (used in our study) except ovary in

comparison to Open Targets (Text Mining and Genetic Association) in EAS (B (ii)), and EUR (C (ii))
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Figure S3: Cross-tissue comparison and convergence of prioritized genes and pathways in PCOS.
(A) UpSet plots illustrating the overlap of top 100 prioritized core and peripheral genes across tissues.
(i) and (ii) represent core genes in EAS (EAS) and EUR (EUR) populations, respectively. (iii) and (iv)
represent peripheral genes in EAS and EUR populations, respectively. (B) Pathway enrichment analysis
of common core and peripheral genes across tissues, performed using one-sided Fisher’s exact test and
significance derived from Benjamini-Hochberg method. Pathways enriched with the common

peripheral genes only were marked red asterisk.
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Figure S4: Comparison and consistency analysis of enriched pathways. Prioritized pathways are
derived from the top 100 prioritized genes in ovary tissue for both the populations. (A) Forest plot (Left)
depicting the top 5 significantly enriched Reactome pathways in (i) EAS Ovary, (ii) EUR Ovary. The
pathways are ranked by odds ratio, with enrichment significance indicated by —logio(FDR) from
Benjamini-Hochberg method in one-sided Fisher’s exact test. Right: Binary Heatmaps member genes
corresponding to the enriched pathways, sorted by occurrence frequency recurrence across pathways.
Genes common to both populations are marked with red asterisks. (B) Consistent pathway
prioritization with increasing numbers of top-ranked genes. (i) EAS Ovary, (ii) EUR Ovary. Scatter
plots showing enrichment of Reactome pathways for top 50, 75, 100, and 175 prioritized genes.
Bubble size indicates the number of overlapping genes; the top 5 pathways by Z-score (P1-P5) are
labelled in each panel. The enrichment z-score, the false discovery rate (FDR), odds ratio (OR), 95%

confidence interval are all estimated using Fisher’s exact test.
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Figure S5: Grouping of enriched Reactome pathway in to hierarchical subgraphs in EAS
population: Circular overview of pathway enrichment among the top 100 prioritized genes in ovary

tissue for EAS population, grouped by pathway hierarchy into (A) Signal Transduction (B) Immune



System (C) Disease-associated pathways. Each node represents a Reactome pathway, hierarchically
organized under major biological categories (e.g., Signal Transduction, Immune System, and Disease).
Node size corresponds to enrichment strength (logz odds ratio). Node color intensity reflects statistical

significance (—logo adjusted P).
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Figure S6: Grouping of enriched Reactome pathway in to hierarchical subgraphs in EUR

population: Circular overview of pathway enrichment among the top 100 prioritized genes in ovary

tissue for EUR population, grouped by pathway hierarchy into (A) Signal Transduction (B) Immune



System (C) Disease-associated pathways. Each node represents a Reactome pathway, hierarchically
organized under major biological categories (e.g., Signal Transduction, Immune System, and Disease).
Node size corresponds to enrichment strength (logz odds ratio). Node color intensity reflects statistical

significance (—logo adjusted P).
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Figure S7: Genetic links of PCOS pathology with the immune, metabolic and androgen related

Pathways: (A) Ridge plots displaying the density distribution and Si rating for the top 100 prioritized

genes of ovary and their direct neighbors belonging to important functional pathways (immune,

metabolic and androgen related). (B&C) Protein interaction networks of inflammasome (B) and

interleukin-6 (C) centered on top 100 genes and their first neighbors. Gene nodes are color-coded by Si

rating and shapes indicate whether they are functionally annotated for the pathway. (i) EAS Ovary (ii)

EUR Ovary. (D) Ridge plots displaying the density distribution and Si rating for the top 100 prioritized

genes of ovary and their direct neighbors belonging to pathways related to Insulin Resistance from



Human Pathway Ontology (HPO). (E) Scatter plot illustrating the enrichment of immune, metabolic
and hormonal pathways in DEGs of PCOS patients. Statistical significance of enrichment analysis were

calculated using with 20000 permutations.
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Figure S8: Representation of shared pathway among tissues: A (i) and B (i) Network-like
representation of inter tissue (denoted as circular nodes) relationship based on overlap of top 25 (ranked
by odds ratio) enriched Reactome pathways (denoted as triangular nodes) identified from the top 100
prioritized genes across tissues in EAS and EUR respectively. Pathway nodes are sized according to
the number of tissues in which they are common. A (ii) and (ii) B Summary of the inter-tissue
relationship of EAS and EUR respectively presented as connectivity network based on shared enriched

pathways (>5). Edges thickness represents the number of shared pathways.
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TSEA of PCOS drug targets in other disease relevant tissues: Each panel displays the

leading edge of target set enrichment analysis in various tissues (i-vi) within EAS (A) and EUR (B)

population. Known PCOS drug targets (Phase 2 and above) recovered within the leading edge of gene

priority list across tissues are marked.
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Figure S10: Therapeutic potential of know PCOS drug targets across tissue (A) Scatterplots
summarizing TSEA-based therapeutic potential across all tissues for each ancestry group. Normalized
Enrichment Score (NES), target coverage (that is, the total number within the leading edge for that
tissue/total number of PCOS drug targets), and significance (—logioFDR) are shown for (i) EAS and (ii)
EUR tissues. Enrichment of obesity (B) and T2D-related (C) genes in the prioritized gene list of PCOS
for EAS (i), and (ii) EUR.
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Figure S11: Pathway crosstalk analysis: Illustration of pathway cross-talk network of prioritized
genes from ovary tissue in (A) EAS, (B) EUR. Each node represents a gene labeled with its symbol and
Si score (formatted as “rating @ rank”), colored by magnitude. Edges indicate protein—protein

interactions (PPIs). The core genes are designated according to the annotation categories. Both the



networks were found to be statistically significant while performing degree preserving node
permutation test. (C) Heatmap depicting the shared and unique genes of pathway cross talk in both the
population.
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Figure S12: Node Removal Analysis of pathway cross-talk in ovary: Effect of single or
combinatorial node removal on network robustness was assessed by determining the fraction of nodes
disconnected from the largest connected component in EAS (A) and EUR population (B). The y-axis
represents the fraction of nodes disconnected, while the x-axis denotes the sequential removal of nodes
marked by blue circles in the upset plots presented below the x-axis. The plots also illustrates the node
combination used for the removal analysis. Nodes having highest removal effect either as single or in
combinations are labelled on the cross-talk networks (only the single node and 4 node combinatorial

removal analysis on the network are shown).
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Figure S13: Modular Analysis of cross-tissue pathway crosstalk in EAS population: (A)
Community detection analysis by measuring modularity of merged pathway crosstalk networks across
tissues in EAS population revealed six modules, each annotated by functional enrichment using one-
sided Fisher’s exact test. Module-based visualization of pathway crosstalk genes from EAS. (B) The

same modular network layout from panel (A) is shown with nodes colored by Si score of each individual

tissue.



A @ sun

IFNALGY @ .1yk1~ SIREL
o { s Rurs @uvact
IFNAT C gt
i MARCA4
" ” .*ka @I Bar &
M5 (n=45) wisg ‘,_,,‘,.‘, G5 OREL Wipac2
Cellular response to starvation o
\ll boli ‘RN RrLsigy Gess s oy C e Ll M6 (n=61)
'tg 3 { ]
etabolism of A : ,ﬁ"w o . g~ Scrm) ) : E— o
RPS3A ) TUNG O3 i i Regulation of TP53 Activity
L or NPME Tive AP RCAT S & 2
B e couii KEARY " giics L DNA Repair
§ 3 MEDI . ati
# prd ERBim 12/ ‘”’"’"”um SUMOylation
DXMTSB  eru® o i
GSOMRy ok s
e % ’ MAPREL o Suxrr— Bcp:
RS2 2] < Q4RSI 1# Orre” O ‘H"“".A'lz( cl
) =) =
J 3R sl @00 B, Bearz @64
{ 3 7 NKP
RPLISAGES ; ’ e [
M1 (n=2 iAPYD]
Sy ( ) Ay ) .f"".fcumu-z
¥ RIN3g i M3 (n=13)
R . 159 ®rasse : :
= e O o5 RAB SDENVDIA Vesicle-mediated transport
i i - \ CGB. GBS, K5 @RrABSE
o (B RPLISA & P S
RPL2S o (GPHEG oy mq.l( 2R
o . & g’””“ GPtliy ® @Hins
pSY - ‘ ;>
HIA-P® .Mkl)r”,‘m‘, TSHRD. ‘\,,.RI . Dn’{[,’{'lr
M2 (n=5) ,,p8  @HLF g Q‘"’;“’ 5% "'. M4 (n=25)
s § ’ s 7 g PTGER? . A :
Adaptive immune system DRDS Gy @E . é O Signaling by GPCR
Interferon signalin pro® ST TSHE e
g g o e
B Ovary Adipose Liver Muscle
. * s AR B
o . * e
P L) . = N .
. . .
f 45 ° P20 Vs Y ° & .
PR .
o * LS Tt . L ’ .
2 S '."- 3 2 ‘ ¥ = % ® Py 3¢
. o . of » . "
° PR 't ° fion; . . -
5 .
-
. .
Si score =) Si score owe Si score Si score
Lo ] [ e ] m . [ ]
1.4 5 1.4 5 1 5 0.9 N
Pancreas Pituitary Cortex
P ®
* e
ot Ll o 3
- .
. - - > - » & £ o o o . .
= 2 > . . B 2 » 2
. . . .
» . P Y 5
» » ° i - ° . .
e . X - » & » = » .
&SR yl ¢ 52 . = haprat: i< T r 2
G, e
o2 £ . O 3 .
L] P - . o
. ° L o
» ¥ .
. 2 P .
° L —
Si score S’ Si score Si score
] = - N e ]
0.8 5 1.1 S 0.5 5

Figure S14: Modular Analysis of cross-tissue pathway crosstalk in EUR population: (A)
Community detection analysis by measuring the modularity of merged pathway crosstalk networks
across tissues in EUR population revealed six modules, each annotated by functional enrichment using
one-sided Fisher’s exact test. Module-based visualization of pathway crosstalk genes from EUR. (B)
The same modular network layout from panel (A) is shown with nodes colored by Si score of each

individual tissue.
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Figure S15: Cross-tissue prioritization gene clustering: The clustered 2D hexagonal map with target
genes listed per hexagon (H1 - H37) indexed circularly outward from the center in (A) EAS and (B)
EUR.
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Figure S16: Pathway enrichments of target genes in the high scored and druggable clusters in
populations: Reactome pathway enrichment analysis of high scored and druggable cluster; cluster 3 in
EAS (A) and cluster 2 EUR population (B) are presented. Enrichment was performed using one-sided
Fisher’s exact test. Pathways are hierarchically organized in a circular bubble layout where the bubble

size indicates the odds ratio (OR) and color intensity corresponds to the false discovery rate.



Supplementary Note:

GWAS summary-level data collection and processing

To identify genetic variants associated with polycystic ovary syndrome (PCOS), we accessed summary-
level GWAS data from the NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas), using the Experimental
Factor Ontology (EFO) term for PCOS "EFO:0000660" as our primary search criterion. This query
yielded 12 studies reporting genome-wide significant associations with PCOS, of which 6 studies were
from Han Chinese and Korean (which comprised our EAS (EAS) Group)'® and 5 studies were from
individuals of EUR origin (comprising our EUR (EUR) group)®'°. One study'' was not considered
because it originated from mixed population. In addition to these GWAS, one more study'? identified
through literature search was included in the EAS group. For each selected study, we extracted lead
SNPs that met the genome-wide association significance (P-value < 5 x 10~). This yielded a total of
with 107 and 53 SNPs in EAS and in EUR respectively (Table S1, 1% Tab). To capture additional genetic
variants, potentially associated to the lead SNPs due to linkage disequilibrium, we conducted linkage
disequilibrium (LD) expansion and enlisted linked SNPs with r* > 0.5 within a genomic window of
+500 kb in a population specific manner. LD calculations were based on Phase 3 of the 1000 Genomes
Project, using the LDProxy tool'
accordingly. This process yielded LD-expanded SNP sets of 2013 and 1873 SNPs for EAS and EUR

and selected ancestry-matched reference populations (EUR or EAS)

populations respectively (Table S1, 1¥! Tab). To evaluate the relative contribution of each SNP to PCOS,
we computed a composite SNP score (Eql, Figure S1) that integrates both association significance (P-
value) of lead SNP and corresponding LD strength (r?) of linked SNP from LDProxy (as mentioned in
the earlier study'#). We have used the threshold of significance =5 x 10~5. Codes used in entire analysis
were obtained from publicly available repositories, including https:/github.com/r-
forge/pi3 14/tree/master/pkg and https://github.com/hfang-bristol.

Identification of core genes under genomic influence

To systematically identify core genes involved in PCOS pathophysiology, we integrated scored SNPs
with functional genomic regulatory data (see below). A comprehensive scoring framework was adapted
from a previous study'* and used to capture and evaluate the regulatory impact of SNPs across relevant
tissues both linear genomic influence and influence on higher-order chromatin architecture. Briefly, the
scoring was primarily based upon three types of genomic evidence: (i) genomic proximity with
regulatory implication (rGene): determined by the distance between SNP-to-gene within an influential
range window combined with the regulatory information from ENCODE and REP" (detailed below);
(i1) Quantitative Trait Loci (QTLs), obtained from the quantitative associations of SNPs with different
genetic/molecular traits like protein abundance (pQTLs), gene expression (eQTLs) etc. (detailed list of
QTLs studied are presented in Table S1, 3™ Tab). Collectively they are termed as qGenes (iii) cGenes
obtained from the evidence measured from the strength of Enhancer regions containing SNPs,
interacting physically with gene promoters using ABC scoring method!®. The details of this

identification are accounted below.



Optimization for rGene Annotation:

Before rGene annotation, an optimization step to determine two critical parameters (Genomic
influential range and Network influential range) required for SNP-to-nearest gene mapping was done:
1) Genomic Influential Range: The regulatory impact of a genomic region containing SNPs typically
decays with increasing distance from a gene. To model this phenomenon, we used a similar method
reported previously'*. Briefly, we evaluated combinations of distance windows (0 kb to 1 Mb) with
different decay functions (constant, linear, slow decay and rapid decay) to quantify how the influence
of SNPs decay of on nearby genes within defined window by accessing the ability to discriminate Gold
standard positives drug targets of PCOS (GSPs) from Gold standard negatives (GSNs) from the
ChEMBL version 34 database'’.

o Defining Gold Standard Positives (GSPs): Genes targeted by drugs that are in clinical
development phase 2 or above, indicating possible evidence of their efficacy in treating PCOS,
were considered positive targets (Table S1, 2™ Tab). To reduce bias, we excluded drugs with
more than 5 targets, as it becomes challenging to determine which among these targets are of
clinical significance pertaining to the disease of our interest and can bias our down-stream
analysis.

o Simulating Gold Standard Negatives (GSNs): Negative targets were simulated based on the
GSPs. The first step involved forming a druggable landscape by including all drug targets
reported for Homo sapiens, regardless of the diseases or drug development phases. We
constructed a druggable space by extracting a network by overlaying these targets on the
background PPI network. GSNs were derived by excluding GSPs and their interacting
neighbors (1% and 2™ degree neighbors), ensuring that the remaining genes represented true
negatives. The 1% and 2" degree neighbors were defined according to the integrated PPI
network (as mentioned below).

o PPI Network used: We have combined protein-protein interaction information from various
sources. The said network was constructed by integrating two high-confidence interaction
information sources: the human interactome compiled by Cheng, F. ef a/'® and the STRING
database (v12.0)" . The interactome by Cheng, F. et al was derived from the integration of 15
publicly available databases and their in-house resource, collectively encompassing diverse
categories of experimentally supported interactions. These included binary yeast two-hybrid
(Y2H) interactions, kinase—substrate relationships, affinity purification followed by mass
spectrometry (AP-MS), interactions inferred from 3D protein structural data, and curated
signaling pathways. UBC was removed from the Cheng, F.ef al network due to its

overrepresentation, and to reduce bias. In parallel, we retrieved PPI data from the STRING



database and filtered it to retain only those interactions that were either experimentally
validated or database-supported, applying a confidence score threshold of > 700. The combined

network comprised approximately 17,500 unique genes.

2. Network Influential Range: To propagate the influence of proximal genes within protein-protein
interactome (PPI) in order to identify additional genes relevant with respect to the proximal gene list,
depending on network connectivity, we performed Random Walk with Restart (RWR) (described in
details below) with restart probabilities ranging between 0.1 and 0.9. This generated a ranked gene list
based on RWR affinity scores for each combination of distance windows and decay functions. The
performance of each parameter combination was evaluated based on its ability in discriminating GSPs
from GSNs (defined above). The parameter set that maximally separates GSPs from GSNs was selected
as the optimal genomic influential range and network influential range. Both of these influence

information are needed to identify clinically relevant rGenes.

rGene identification:

Quantification of genomic proximity evidence: To evaluate the regulatory potential of PCOS-associated
variants on nearby genes, we developed a scoring framework based on chromatin states, topological
architecture, and linear genomic distance. For the EAS dataset, we applied a constant decay model with
a distance threshold of 20,000 for fetching core genes and a restart probability of 0.7 to capture
peripheral genes within the network. Similarly, for the EUR dataset, we employed a linear decay model
with a distance threshold of 10,000 for identifying core genes and a restart probability of 0.6 for
retrieving peripheral genes (Figure S2A). All these parameters were optimized from the previous step.
Tissue specific chromatin states were sourced form Roadmap Epigenomics Project using ChromHMM'®
and TAD (topologically associating domain) data is sourced from Schmitt, A. D. et al *° . List of disease
relevant tissues and the corresponding datasets are presented in Table S1, 3™ Tab. All the chromatin
states were categorized into two functional types—active, and inactive (repressed and quiescent)}—and
assigned weights reflecting transcriptional activity. +1 weights were assigned to active, -1 to repressed
and quiescent states. Active states includes the epigenetic signature associated to: Active TSS, Flanking
Active TSS, Transcribed state observed at gene 5' and 3', Strong transcription, Weak transcription,
Genic enhancers, Enhancers and ZNF genes & repeats. Inactive states includes epigenetic signature
associated to: Heterochromatin, Bivalent/Poised TSS, Flanking Bivalent TSS/Enh, Bivalent Enhancer,
Repressed PolyComb, Weak Repressed PolyComb and Quiescent/Low. A sigmoid function (Eqn 2 and
3, Figure S1A) was applied to integrate these weights into a proximity-based scoring. For all the tissues
except pituitary, for which epigenetic data is not available, we used equation 2 and 3. Whereas, for
pituitary the equations used were the same as those used in Fang, H. ef al'*. rGene score ranging from
0 to 1 were computed for each gene. A higher score indicates a greater likelihood that the gene is

functionally influenced by a nearby PCOS-associated SNP. An additional filtering was done



constraining only the SNP-gene pair which were present within the same topologically associating
domain (TAD) boundary. Adipose and pituitary were excluded from this exercise due to unavailability
of data.

qGene Annotation:

Quantification of QTL evidence: To assess associations of PCOS-associated variants with various
quantitative genomic traits, we collected the significance score from the statistically significant,
population and tissue specific quantitative trait loci (QTL) data from GTEx?' and QTLbase?? without
disease or drug treatment) (Table S1, 3™ Tab). qGene Scoring: SNP-gene associations were normalized
within each population group for a given tissue using an empirical cumulative distribution function
(eCDF, Eqn 4, Figure S1B). This transformation normalized the significance scores to a 0—1 range (Eqn
5, Figure S1B).

cGene Annotation:

To enlist the PCOS variants overlapping with an Enhancer element and can potentially interact with
gene promoters and thus modulate the regulation of genes, we collected the strength of interactions
from tissue specific Hi-C datasets (Table S1, 3™ Tab) which forms the basis of our scoring. The entire
method is adapted from the Activity-by-Contact (ABC) scoring schema using default parameters!® .
ABC model uses chromatin accessibility (ATAC-seq or DNase-seq), histone modifications (H3K27ac
ChIP-seq to predict enhancer—gene connections for a tissue and interaction frequency for the contact.
We have used ABC scores for each element—gene pair, where the enhancer element is constrained
within 5 Mb from the TSS of a gene. Candidate enhancers were defined from ENCODE DNase-seq
data and H3K27ac using MACS?2 peak calling with a P-value cut-off of 0.1'°. The top 150,000 peaks
(by read count) were resized to 500 bp around summits. Only genes with measurable expression from
polyA plus RNA-seq from ENCODE were included in this step. This combined Enhancer/TSS list
comprised our candidate elements. Candidate enhancer activity denoted as Ag in Eqn 6, Figure SI1C
was quantified by calculating the geometric mean of DNase-seq and H3K27ac ChIP-seq signals across
each region. We next computed ABC scores by integrating enhancer activity (Ag) with Hi-C contact
frequencies obtained from tissue specific Hi-C datasets (C g, where E and G denotes an enhancer and
a gene respectively). The ABC score is expressed as the relative contribution of an element on gene
expression to the total effect of all elements within 5SMb. ABC scores were computed for ovary, adipose,
liver, muscle, and pancreas. Next we used xSNP2cGene, https://github.com/r-
forge/pi3 14/tree/master/pkg) to include those ABC scores for which a PCOS-associated SNP position
overlaps with either of an enhancer or a promoter (Eqn 7 and 8, Figure S1C). For brain, in the absence
of chromatin accessibility and H3K27ac data, we have used only Hi-C contact frequencies for cGene
annotation (accordingly the final equation is modified). No information was available for pituitary. So
this tissue was excluded from cGene scoring.

Annotation of core genes with functional evidences

To add additional weightage to these core genes with respect to disease relevance we incorporated



various functional evidences. Specifically, core genes were annotated based on three distinct categories
of prior knowledge: (i) function evidence, genes (fGene) that have been shown to be associated to PCOS
through expression studies; (ii) phenotype evidence, genes (pGene) associated with specific associated
phenotypes frequently observed in individuals with PCOS; and (iii) disease evidence, genes (dGene)
annotated to PCOS manifestation. In brief, functional annotations were sourced from PCOSKB?, a
manually curated knowledgebase for PCOS-associated genes, from where we have enlisted the genes
reported only from expression studies. Phenotype—genes were curated from Human Phenotype
Ontology (HPO)* based on phenotype searches including polycystic ovarian morphology,
hyperandrogenism and ovulatory dysfunction. Specific HPO terms like polycystic ovaries
(HP:0000147), increased circulating androgen concentration (HP:0030348), oligomenorrhea
(HP:0000876), amenorrhea (HP:0000141), hirsutism (HP:0001007), alopecia of scalp (HP:0002293),
insulin resistance (HP:0000855), acanthosis nigricans (HP:0000956), hyperinsulinemia (HP:0000842),
hyperglycemia (HP:0003074), abnormal circulating luteinizing hormone concentration (HP:0030345),
abnormal circulating follicle-stimulating hormone concentration (HP:0030346) and abnormal
circulating testosterone concentration (HP:0030087) were used. Disease-related genes of PCOS were
annotated using data from DisGeNet* (ID: C0032460), a platform that integrates gene-disease
association information from multiple sources.
Identification of peripheral genes with network evidence
To identify peripheral genes (non-core) that are influenced by core genes (core) through Protein-Protein
interaction network connectivity with a concept of “guilt by association”, we employed Random Walk
with Restart (RWR)?® | an algorithm based on network diffusion with the core genes obtained from the
above described categories (rGene, qGene, cGene, dGene, pGene and fGene), using an optimized
restarting probability (as described above). For each category, we initialized a random walker at the
core nodes. Genes within the PPI network more frequently visited by the walker starting from the cores,
due to higher connectivity to core, are assigned higher affinity scores (Eqn 9), highlighting their
potential functional relevance despite lacking direct genomic evidence.

The probability vector at iteration t, denoted by P, was updated according to the following
equation:

P,=(1—-7)xnadjM X Pr_, +1 X P, Eq.9

Where P, represents the initial probability vector, where core genes are assigned their respective scores
(as defined in earlier scoring schemes), and all non-cores are set to zero. The matrix nadjM denotes the
normalized Laplacian adjacency matrix of the network, which encodes the transition probabilities
between nodes. The parameter r is the restart probability, governing the likelihood of returning to a core
node at each step, while 1-r corresponds to the probability of continuing the random walk to neighboring
nodes. The process is iterated until convergence, defined as when the difference between P, and P

falls below a predefined threshold. The resulting steady-state vector captures the affinity of each gene



to the core gene set, reflecting both functional and topological relevance within the interaction network.
Following this step, we constructed a gene-predictor matrix comprising all the categories of core genes
(a total of six categories), wherein each row corresponds to a gene (core or peripheral), and each column

corresponds to a specific category or predictor.

Gene-predictor matrix to gene prioritization

To combine affinity scores from both genomic annotations and functional evidences (Six categories) to
get a single consolidated score for a gene (Core or peripheral), the scores from gene-predictor matrix,
we employed direct and indirect combining methods. The direct combining methods include sum
(summing up evidences), max (taking maximum of evidences) and harmonic (sequentially weighting
evidence), while indirect combination is a method similar to Fisher’s combined meta-analysis (as
described before!. Briefly, first, for gene-predictor matrix belonging to each category, we transformed
the raw affinity scores into P-like values by applying the eCDF [Eq. 10]. These P-like values represent
the relative rank of a gene for that particular category, ensuring comparability across heterogeneous
categories. Next, for each gene, these P-like values across all categories were combined using Fisher’s
method to derive a single combined P-like value (Eq. 11 -13). This integrated metric was then rescaled
into a Significance Index (Si), ranging from 0 to 5 (using Eq. 14), to yield a standardized prioritization

score for each gene.
P! = eCDF(AF]) Eq.10
Where AFE denotes the affinity score for the ith gene concerning the jth predictor, Pij is the

corresponding converted P-value, and eCDF is estimated based on all genes

x=-2 Z; log(Pij) Eq.11
x~x*(2)) Eq.12
CP, = CDF(x) Eq.13

where ] is the number of the predictors, x2(2J) denotes Chi-Squared distribution with 2J degrees of
freedom, CP; is the final combined P-value for the i gene (i.e., CDF of Chi-Squared distribution valued
at x).

x; = —log(CPy)

xi—MIN(xk)
MAX (x)—MIN (xy)

Si; = 5 X Eq.14

Where Si; is the Si score (Significance Score) for the i gene, MIN and MAX for the minimum and
maximum value respectively.

Pathway enrichment analysis

Enrichment analysis was conducted using human Reactome pathways derived from the Molecular
Signatures Database (MSigDB) version 2023.2, specifically the curated gene sets under category C2%7.
The analysis was performed using the xEnricher function from the Pi package in R (version 2.10.0), which



implements a one-sided Fisher’s exact test (hypergeometric test) to assess statistical significance.
Enrichment results were represented with three metrics: Z-score, odds ratio (OR) and 95% confidence
interval (CI), and p-value. The p-values obtained were adjusted for multiple hypothesis testing using the
Benjamini-Hochberg (BH) procedure to control the false discovery rate (FDR). Z-scores and ORs were
used to rank the enriched terms. To visualize the broader biological context of the enriched pathways, the
Reactome pathway hierarchy was utilized. The "Pathway hierarchy relationship" file (version 90), containing
parent—child relationships, was downloaded from the Reactome database. This file includes two columns: the
first corresponding to the parent pathway and the second to the child pathway. A hierarchical tree of pathway
relationships was constructed from this file, while only relevant enriched pathways (based on OR) were

extracted and used for visualizations.

Benchmarking the scoring strategy

Benchmarking of this approach was done by comparing the performance of Si approach (this study)
with other competing methods. The process is also was also based on evaluating AUC to determine
how well our approach separates ‘clinical proof-of-concept targets’ (Gold standard Positives) of PCOS
from negative controls) (See above). Specifically, this approach was compared with ‘Open Targets?®
text mining’ (an approach of evaluating the importance of a gene associated to a disease by using
Natural Language Processing based text mining from scientific literature and ‘Open Targets Genetic
association’ (based on curated genetic associations to a disease from literature, UK biobank and

FinnGen.

Target set enrichment analysis (Validation 1)

To quantify the extent to which known PCOS drug targets at different phases of clinical development
are enriched at the top of the significance matrix (Si Matrix) obtained in the previous stage, we
conducted a rank-based gene set enrichment analysis (GSEA) using the xPierGSEA function from the
Pi package in R. This enrichment was visually represented as the leftmost region of the peak (leading
edge) in the running enrichment plot generated by the analysis. We additionally calculated the
Normalized Enrichment Score (NES) using the fgsea package in R (version 1.24.0). The NES was
determined by dividing the observed running enrichment score by the mean of the null distribution of
enrichment scores, which was generated through permutation testing. We performed 20,000
permutations to estimate the null distribution and assess the statistical significance of the observed
enrichment. The resulting p-values were adjusted for multiple testing using the Benjamini-Hochberg

(BH) procedure to control the false discovery rate (FDR).

Genetics-to-Current-Therapeutics (G2CT) potential
To assess and quantitate the importance of the prioritized genes in revealing current therapeutics for a

specific tissue, we used a composite metric termed Gene-to-Current-Therapy (G2CT) potential (as



described previously'®. Breifly, this metric integrates three key aspects of enrichment analysis: (i)
Normalized enrichment score (NES), (ii) Enrichment score significance assessed through adjusted p-
value and (iii) Enrichment coverage defined as the fraction of GSPs (F) located within the "leading
leftmost peak". Together, these components reflect how well prioritized genes capture known

therapeutic targets.

G2CT = logo™n Eq.15

This formulation ensures that tissues with stronger enrichment signals, higher statistical confidence,
and broader leading-edge representation receive higher G2CT potential scores, reflecting their greater

relevance for therapeutic prioritization.

CREEDS (Validation 2)

We utilized disease-specific gene signatures v1.0 sourced from CREEDS? , a crowdsourced repository
that curates and identifies gene signatures from the Gene Expression Omnibus (GEO). For our analysis,
we specifically focused on human PCOS-associated GEO identifiers. Further, we used the GEO
identifiers to access the metadata including tissue and population information. To check the enrichment
of tissue specific differentially expressed genes, we performed Gene Set Enrichment Analysis (GSEA).
Tissues considered for the analyses were adipose tissue and skeletal muscle, as these were the only
relevant tissues available. The GEO datasets used for these tissues are GSE5090 (adipose tissue),
GSE6798 (skeletal muscle), and GSE8157 (skeletal muscle). We performed 20,000 permutations to

estimate the null distribution and assess the statistical significance.

Assessment of Obesity and T2D DEGs in ranked list:

In addition to PCOS-associated signatures, we also extended our analysis to relevant metabolic
disorders including Obesity and type 2 diabetes (T2D) with gene signatures obtained from GEO
datasets. We utilized GEO2R from the GEO data repository to analyze available datasets from these
conditions. For obesity, we processed adipose tissue datasets from EAS region (GSE217007 and
GSE283367) and EUR region (GSE24883, GSE25401, GSE94752, GSE59034, GSE12050,
GSE110729, GSE141432 and GSE166047). For T2D we analyzed GSE23343 of liver from EAS region,
adipose tissue datasets (GSE141432 and GSE166047) and pancreas tissue datasets (GSE38642 and
GSE25724) from EUR region. [log,FC| > 0.5 and P-value < 0.05 were applied as cutoff criteria to
identify differentially expressed genes (DEGs). Subsequently, we performed gene set enrichment
analysis with the tissue-specific prioritized gene list of adipose, pancreas and liver. We performed

20,000 permutations to estimate the null distribution and assess the statistical significance.

Validation with patient data



We used the GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)] from GEO data repository®® to
analyze microarrays data (EUR: GSE98595) and RNA-seq (EAS: GSE155489, GSE138518,
GSE106724) to identify differentially expressed genes (DEGs) in PCOS patient derived tissues with
respect to and healthy control. Microarray data was processed with Limma package and RNA-seq was
processed with DESeq2.| logoFC| > 0.5 and P-value <0.05 were used as the cut-off to obtain DEGs.
DEGs were further categorized into upregulated (log2 FC > 0.5) and downregulated (log2FC < -0.5)
genes. Subsequently, we filtered out the gene members of the following Reactome pathways (Immune:
Innate immune system (R-HSA-168249), Cytokine signaling in immune system (R-HSA-1280215);
Metabolic:Signaling by insulin receptor (R-HSA-74752), Translocation of SLC2A4 (GLUT4) to the
plasma membrane (R-HSA-1445148); Hormone: Peptide hormone metabolism (R-HSA-2980736),
Metabolism of steroids (R-HSA-8957322)) from the DEGs as well as from the prioritized matrix of
ovary (containing the ranked genes with Significance score greater than 0). Finally we checked for the

enrichment of the filtered DEGs in the filtered priority Matrix by using Gene Set Enrichment Analysis.

Pathway crosstalk

To explore the potential interaction and crosstalk between different pathways to which the prioritized
genes affiliate to, we constructed a subset of the PPI network using MSigDB version 2023.23!
comprising of curated human genes derived from the reactome pathway database. The genes from all
the pathways in MSigDB were pooled, and duplicate genes were removed. The resulting gene set was
then overlaid onto the PPI network and the largest connected subnetwork was extracted. We then used
the dnet package in R (version 1.1.7) to extract a subnetwork overlaying the prioritized genes from the
Si matrix on the subnetwork from the previous step, while allowing a limited number of lower-priority
genes to serve as linkers to maintain network connectivity. The approach begins by converting
significance score to P values (xPierSubnet), assigning positive scores to nodes with P values below a
user-defined threshold (0.01), indicating nodes of interest, while nodes with P values exceeding this
threshold are given negative scores. Following score transformation, the pipeline searches for a
connected subgraph enriched in positively scored nodes, allowing a limited number of negatively scored
nodes to act as linkers. This subgraph search is facilitated through a minimum spanning tree algorithm,
which serves as a heuristic solution to the prize-collecting Steiner tree problem®?. To evaluate the
statistical significance of the observed subnetwork, we conducted a degree-preserving node permutation
test. This procedure was repeated 100 times to generate a null distribution of subnetworks that are
expected by chance. The statistical significance of the subnetwork was calculated based on how often

a subnetwork of equal or higher prioritization score appeared in the null distribution.

Construction of Pathway-centric connectivity map (minimum spanning tree)
In addition to conventional gene-level network visualization, the identified crosstalk was also

represented as a pathway-centric connectivity map. In this representation, each node corresponds to a



significantly enriched pathway, and edges denote inferred connections between these pathways. Only
pathways that were significantly overrepresented among the crosstalk genes (based on enrichment
analysis) were retained as nodes. Initially, edges were introduced between pathways that shared genes.
To refine the map, a minimum spanning tree was computed using the igraph package, and only the
edges present in the resulting tree were retained. Edge thickness in the final visualization was
proportional to the number of shared genes between the connected pathways, reflecting the strength of

their functional association.

Repurposing of drugs

We utilized the ChEMBL database as the primary source of information on therapeutic agents,
including details on drugs, their target genes, clinical development phases, and associated disease
indications. ChEMBL curates data from authoritative sources such as ATC classification,
ClinicalTrials.gov, DailyMed, and the U.S. FDA. For each disease indication under investigation, we
retrieved drug and its targets, provided that the mechanism of action of the target gene is available. For
each target, we retrieved the drug that had achieved the highest clinical development phase. The
corresponding disease indication for this highest-phase drug was also recorded. PCOS drug targets were

removed from the list.

Node removal analysis

To assess the importance of individual genes in the crosstalk network, we performed node removal
analysis in two modes (single-node removal and combinatorial node removal). In both the cases, single
node and nodes in different combinations were removed from the network, and the resulting
fragmentation was evaluated by quantifying the fraction of nodes disconnected from the largest
connected component. . The combinatorial node removal was done to model the potential synergistic
effects of targeting multiple genes. The effect of both single and combinatorial node removal was

visualized using upset plots generated with the ggupset package.

Determining inter-tissue cross-talk network modularity:

To investigate inter-tissue communication at the molecular level, we constructed a tissue—tissue
crosstalk network based on crosstalk genes of all tissues pulled together. To uncover modular
organization within the crosstalk network, we used clusterspinglass function of igraph package in R
(version 2.0.3) to identify network modules by simulating annealing. The spin-glass model®? is a method
used in community detection, a process of grouping nodes in a network, based on their internal
connections, to find clusters that are more densely connected internally. For each module, we conducted

enrichment analyses.

Cluster analysis



We employed the supraHex** R package to construct a cross-tissue topological map to cluster cross-
talk genes having similar Significance score or drugability across tissues. A supra-hexagonal map
consisting of 37 hexagons was trained on Significance scores of the crosstalk genes across tissues. The
map was generated using a self-organizing learning algorithm. These trained maps represented tissue-
specific cross-talk gene prioritization profiles, with different tissues organized in 2D axis in such a way
that tissues with similar Si score distribution were placed close to each other. Subsequently, a single
integrated hexagonal map was generated to capture this similarity in Si scoring across tissues with each
cluster capturing a set of cross-talk genes with similar prioritization trends across tissues. To assess
druggability, binary druggable pocket (presence or absence) annotations from Bao, C. ef al*® were
overlaid on the map. Genes were classified as tractable if their corresponding protein structures (sourced
from the Protein Data Bank, PDB) contained predicted drug-like binding sites, as identified using
fpocket software*®. We identified the cluster exhibiting high prioritization scores and high druggability.

Genes within this cluster were subjected to pathway enrichment analysis.
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