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Figure S1: Schematic illustration of principles underlying the scoring method. A. Regulatory genes 

(rGene) were scored based on proximity to the Lead or its linked SNPs within a distance window (D) 

considering chromatin state of the region containing the SNP and constraining for genomic organization 

(has to be within the same topologically associated domain (TAD), Eqn 2 and 3). B. The qGenes are 

scored by incorporating information regarding the variation of various quantitative traits of genomic 

origin and utilizing significance of association with the framework of a percentile rank based scoring 

method (empirical cumulative distribution function, eCDF, Eqn 4 and 5). C. The cGenes are scored 



considering the strength of Enhancer-Gene interaction due to chromatin conformation and activity and 

accessibility of the enhancer modelled though empirical cumulative distribution function (eCDF) on the 

interaction score (Eqn 6, 7 and 8). Details of process is further described in supplementary note. 

 

 

 

 

 

 

 



 

 

Figure S2: Simultaneous optimization of influential distance for rGene and protein interactome 

exploration parameters for random walk. A. Heatmaps displaying the area under the receiver 

operating characteristic curve (AUC) for gene prioritization performance under varying parameter 

settings as indicated below, evaluated separately for EAS and EUR populations. The optimization 

integrates genomic parameters—distance window and decay kernel (Constant, Linear, Rapid, Slow)—

with network exploration parameters defined by restart probabilities (0.1 to 0.9) which were used for 

random walk with restart (RWR). The distance window denotes the genomic span within which SNP–

gene associations are considered, while the decay kernel governs how SNP influence decays with 



distance. AUC is calculated based on the model’s ability to distinguish gold standard positives (GSPs) 

from gold standard negatives (GSNs). (i) AUC values upon exclusion of GSPs and their first-order 

neighbors (GSN) from evaluation. (ii) AUC values when both first- and second neighbors of GSPs 

(GSN) are excluded. Benchmarking: Performance of four integration strategies—Fisher’s method 

(meta-analysis-like), sum of predictor scores, maximum score and harmonic prioritization methods 

evaluated for ovary assessed by comparing AUC obtained from different prioritization methods in its 

ability to distinguish GSPs and GSNs in EAS (B (i)),  and EUR (C (i))  respectively. (ii). Benchmarking 

of our gene prioritization methods evaluated in other tissues (used in our study) except ovary in 

comparison to Open Targets (Text Mining and Genetic Association) in EAS (B (ii)),  and EUR (C (ii)) 
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Figure S3: Cross-tissue comparison and convergence of prioritized genes and pathways in PCOS. 

(A) UpSet plots illustrating the overlap of top 100 prioritized core and peripheral genes across tissues. 

(i) and (ii) represent core genes in EAS (EAS) and EUR (EUR) populations, respectively. (iii) and (iv) 

represent peripheral genes in EAS and EUR populations, respectively. (B) Pathway enrichment analysis 

of common core and peripheral genes across tissues, performed using one-sided Fisher’s exact test and 

significance derived from Benjamini-Hochberg method. Pathways enriched with the common 

peripheral genes only were marked red asterisk. 

  



 

Figure S4: Comparison and consistency analysis of enriched pathways. Prioritized pathways are 

derived from the top 100 prioritized genes in ovary tissue for both the populations. (A) Forest plot (Left) 

depicting the top 5 significantly enriched Reactome pathways in (i) EAS Ovary, (ii) EUR Ovary. The 

pathways are ranked by odds ratio, with enrichment significance indicated by –log₁₀(FDR) from 

Benjamini-Hochberg method in one-sided Fisher’s exact test. Right: Binary Heatmaps member genes 

corresponding to the enriched pathways, sorted by occurrence frequency recurrence across pathways. 

Genes common to both populations are marked with red asterisks. (B) Consistent pathway 

prioritization with increasing numbers of top-ranked genes. (i) EAS Ovary, (ii) EUR Ovary. Scatter 

plots showing enrichment of Reactome pathways for top 50, 75, 100, and 175 prioritized genes. 

Bubble size indicates the number of overlapping genes; the top 5 pathways by Z-score (P1–P5) are 

labelled in each panel. The enrichment z-score, the false discovery rate (FDR), odds ratio (OR), 95% 

confidence interval are all estimated using Fisher’s exact test. 



 

Figure S5: Grouping of enriched Reactome pathway in to hierarchical subgraphs in EAS 

population: Circular overview of pathway enrichment among the top 100 prioritized genes in ovary 

tissue for EAS population, grouped by pathway hierarchy into (A) Signal Transduction (B) Immune 



System (C) Disease-associated pathways. Each node represents a Reactome pathway, hierarchically 

organized under major biological categories (e.g., Signal Transduction, Immune System, and Disease). 

Node size corresponds to enrichment strength (log₂ odds ratio). Node color intensity reflects statistical 

significance (–log₁₀ adjusted P).  



 

 Figure S6: Grouping of enriched Reactome pathway in to hierarchical subgraphs in EUR 

population: Circular overview of pathway enrichment among the top 100 prioritized genes in ovary 

tissue for EUR population, grouped by pathway hierarchy into (A) Signal Transduction (B) Immune 



System (C) Disease-associated pathways. Each node represents a Reactome pathway, hierarchically 

organized under major biological categories (e.g., Signal Transduction, Immune System, and Disease). 

Node size corresponds to enrichment strength (log₂ odds ratio). Node color intensity reflects statistical 

significance (–log₁₀ adjusted P).  

 

 

 

 

 



 

Figure S7: Genetic links of PCOS pathology with the immune, metabolic and androgen related 

Pathways: (A) Ridge plots displaying the density distribution and Si rating for the top 100 prioritized 

genes of ovary and their direct neighbors belonging to important functional pathways (immune, 

metabolic and androgen related). (B&C) Protein interaction networks of inflammasome (B) and 

interleukin-6 (C) centered on top 100 genes and their first neighbors. Gene nodes are color-coded by Si 

rating and shapes indicate whether they are functionally annotated for the pathway. (i) EAS Ovary (ii) 

EUR Ovary. (D) Ridge plots displaying the density distribution and Si rating for the top 100 prioritized 

genes of ovary and their direct neighbors belonging to pathways related to Insulin Resistance from 



Human Pathway Ontology (HPO). (E) Scatter plot illustrating the enrichment of immune, metabolic 

and hormonal  pathways in DEGs of PCOS patients. Statistical significance of enrichment analysis were 

calculated using with 20000 permutations. 

  



 

Figure S8: Representation of shared pathway among tissues: A (i) and B (i) Network-like 

representation of inter tissue (denoted as circular nodes) relationship based on overlap of top 25 (ranked 

by odds ratio) enriched Reactome pathways (denoted as triangular nodes) identified from the top 100 

prioritized genes across tissues in EAS and EUR respectively. Pathway nodes are sized according to 

the number of tissues in which they are common. A (ii) and (ii) B Summary of the inter-tissue 

relationship of EAS and EUR respectively presented as connectivity network based on shared enriched 

pathways (>5). Edges thickness represents the number of shared pathways. 



 

 Figure S9: TSEA of PCOS drug targets in other disease relevant tissues: Each panel displays the 

leading edge of target set enrichment analysis in various tissues (i-vi) within EAS (A) and EUR (B) 

population. Known PCOS drug targets (Phase 2 and above) recovered within the leading edge of gene 

priority list across tissues are marked.  



 

Figure S10: Therapeutic potential of know PCOS drug targets across tissue (A) Scatterplots 

summarizing TSEA-based therapeutic potential across all tissues for each ancestry group. Normalized 

Enrichment Score (NES), target coverage (that is, the total number within the leading edge for that 

tissue/total number of PCOS drug targets), and significance (–log₁₀FDR) are shown for (i) EAS and (ii) 

EUR tissues. Enrichment of obesity (B) and T2D-related (C) genes in the prioritized gene list of PCOS 

for EAS (i), and (ii) EUR.  



 

Figure S11: Pathway crosstalk analysis: Illustration of pathway cross-talk network of prioritized 

genes from ovary tissue in (A) EAS, (B) EUR. Each node represents a gene labeled with its symbol and 

Si score (formatted as “rating @ rank”), colored by magnitude. Edges indicate protein–protein 

interactions (PPIs). The core genes are designated according to the annotation categories.  Both the 



networks were found to be statistically significant while performing degree preserving node 

permutation test. (C) Heatmap depicting the shared and unique genes of pathway cross talk in both the 

population.  

Figure S12: Node Removal Analysis of pathway cross-talk in ovary: Effect of single or 

combinatorial node removal on network robustness was assessed by determining the fraction of nodes 

disconnected from the largest connected component in EAS (A) and EUR population (B). The y-axis 

represents the fraction of nodes disconnected, while the x-axis denotes the sequential removal of nodes 

marked by blue circles in the upset plots presented below the x-axis. The plots also illustrates the node 

combination used for the removal analysis. Nodes having highest removal effect either as single or in 

combinations are labelled on the cross-talk networks (only the single node and 4 node combinatorial 

removal analysis on the network are shown).  



 

 

Figure S13: Modular Analysis of cross-tissue pathway crosstalk in EAS population: (A) 

Community detection analysis by measuring modularity of merged pathway crosstalk networks across 

tissues in EAS population revealed six modules, each annotated by functional enrichment using one-

sided Fisher’s exact test. Module-based visualization of pathway crosstalk genes from EAS. (B) The 

same modular network layout from panel (A) is shown with nodes colored by Si score of each individual 

tissue.  



 

Figure S14: Modular Analysis of cross-tissue pathway crosstalk in EUR population: (A) 

Community detection analysis by measuring the modularity of merged pathway crosstalk networks 

across tissues in EUR population revealed six modules, each annotated by functional enrichment using 

one-sided Fisher’s exact test. Module-based visualization of pathway crosstalk genes from EUR. (B) 

The same modular network layout from panel (A) is shown with nodes colored by Si score of each 

individual tissue.  

 



 



Figure S15: Cross-tissue prioritization gene clustering: The clustered 2D hexagonal map with target 

genes listed per hexagon (H1 - H37) indexed circularly outward from the center in (A) EAS and (B) 

EUR. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S16: Pathway enrichments of target genes in the high scored and druggable clusters in 

populations: Reactome pathway enrichment analysis of high scored and druggable cluster; cluster 3 in 

EAS (A) and cluster 2 EUR population (B) are presented. Enrichment was performed using one-sided 

Fisher’s exact test. Pathways are hierarchically organized in a circular bubble layout where the bubble 

size indicates the odds ratio (OR) and color intensity corresponds to the false discovery rate.  

 

 

 

 

 

 

 



Supplementary Note: 

GWAS summary-level data collection and processing 

To identify genetic variants associated with polycystic ovary syndrome (PCOS), we accessed summary-

level GWAS data from the NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas), using the Experimental 

Factor Ontology (EFO) term for PCOS "EFO:0000660" as our primary search criterion. This query 

yielded 12 studies reporting genome-wide significant associations with PCOS, of which 6 studies were 

from Han Chinese and Korean (which comprised our EAS (EAS) Group)1–5 and 5 studies were from 

individuals of EUR origin (comprising our EUR (EUR) group)6–10. One study11 was not considered 

because it originated from mixed population. In addition to these GWAS, one more study12 identified 

through literature search was included in the EAS group. For each selected study, we extracted lead 

SNPs that met the genome-wide association significance (P-value < 5 × 10⁻5). This yielded a total of 

with 107 and 53 SNPs in EAS and in EUR respectively (Table S1, 1st Tab). To capture additional genetic 

variants, potentially associated to the lead SNPs due to linkage disequilibrium, we conducted linkage 

disequilibrium (LD) expansion and enlisted linked SNPs with r² ≥ 0.5 within a genomic window of 

±500 kb in a population specific manner. LD calculations were based on Phase 3 of the 1000 Genomes 

Project, using the LDProxy tool13  and selected ancestry-matched reference populations (EUR or EAS) 

accordingly. This process yielded LD-expanded SNP sets of 2013 and 1873 SNPs for EAS and EUR 

populations respectively (Table S1, 1st Tab). To evaluate the relative contribution of each SNP to PCOS, 

we computed a composite SNP score (Eq1, Figure S1) that integrates both association significance (P-

value) of lead SNP and corresponding LD strength (r²) of linked SNP from LDProxy (as mentioned in 

the earlier study14). We have used the threshold of significance =5 × 10−5. Codes used in entire analysis 

were obtained from publicly available repositories, including https://github.com/r-

forge/pi314/tree/master/pkg and https://github.com/hfang-bristol. 

Identification of core genes under genomic influence 

To systematically identify core genes involved in PCOS pathophysiology, we integrated scored SNPs 

with functional genomic regulatory data (see below). A comprehensive scoring framework was adapted 

from a previous study14  and used to capture and evaluate the regulatory impact of SNPs across relevant 

tissues both linear genomic influence and influence on higher-order chromatin architecture. Briefly, the 

scoring was primarily based upon three types of genomic evidence: (i) genomic proximity with 

regulatory implication (rGene): determined by the distance between SNP-to-gene within an influential 

range window combined with the regulatory information from ENCODE and REP15  (detailed below); 

(ii) Quantitative Trait Loci (QTLs), obtained from the quantitative associations of SNPs with different 

genetic/molecular traits like protein abundance (pQTLs), gene expression (eQTLs)  etc. (detailed list of 

QTLs studied are presented in Table S1, 3rd Tab). Collectively they are termed as qGenes (iii) cGenes 

obtained from the evidence measured from the strength of Enhancer regions containing SNPs, 

interacting physically with gene promoters using ABC scoring method16. The details of this 

identification are accounted below.  



 

Optimization for rGene Annotation: 

Before rGene annotation, an optimization step to determine two critical parameters (Genomic 

influential range and Network influential range) required for SNP-to-nearest gene mapping was done: 

1) Genomic Influential Range: The regulatory impact of a genomic region containing SNPs typically 

decays with increasing distance from a gene. To model this phenomenon, we used a similar method 

reported previously14. Briefly, we evaluated combinations of distance windows (0 kb to 1 Mb) with 

different decay functions (constant, linear, slow decay and rapid decay) to quantify how the influence 

of SNPs decay of on nearby genes within defined window by accessing the ability to discriminate Gold 

standard positives drug targets of PCOS (GSPs) from Gold standard negatives (GSNs) from the 

ChEMBL version 34 database17.  

 

•  Defining Gold Standard Positives (GSPs): Genes targeted by drugs that are in clinical 

development phase 2 or above, indicating possible evidence of their efficacy in treating PCOS, 

were considered positive targets (Table S1, 2nd Tab). To reduce bias, we excluded drugs with 

more than 5 targets, as it becomes challenging to determine which among these targets are of 

clinical significance pertaining to the disease of our interest and can bias our down-stream 

analysis.  

• Simulating Gold Standard Negatives (GSNs): Negative targets were simulated based on the 

GSPs. The first step involved forming a druggable landscape by including all drug targets 

reported for Homo sapiens, regardless of the diseases or drug development phases. We 

constructed a druggable space by extracting a network by overlaying these targets on the 

background PPI network. GSNs were derived by excluding GSPs and their interacting 

neighbors (1st and 2nd degree neighbors), ensuring that the remaining genes represented true 

negatives. The 1st and 2nd degree neighbors were defined according to the integrated PPI 

network (as mentioned below). 

• PPI Network used: We have combined protein-protein interaction information from various 

sources. The said network was constructed by integrating two high-confidence interaction 

information sources: the human interactome compiled by Cheng, F. et al18 and the STRING 

database (v12.0)19 . The interactome by Cheng, F. et al was derived from the integration of 15 

publicly available databases and their in-house resource, collectively encompassing diverse 

categories of experimentally supported interactions. These included binary yeast two-hybrid 

(Y2H) interactions, kinase–substrate relationships, affinity purification followed by mass 

spectrometry (AP-MS), interactions inferred from 3D protein structural data, and curated 

signaling pathways. UBC was removed from the Cheng, F. et al. network due to its 

overrepresentation, and to reduce bias. In parallel, we retrieved PPI data from the STRING 



database and filtered it to retain only those interactions that were either experimentally 

validated or database-supported, applying a confidence score threshold of ≥ 700. The combined 

network comprised approximately 17,500 unique genes.  

 

2. Network Influential Range: To propagate the influence of proximal genes within protein-protein 

interactome (PPI) in order to identify additional genes relevant with respect to the proximal gene list, 

depending on network connectivity, we performed Random Walk with Restart (RWR) (described in 

details below) with restart probabilities ranging between 0.1 and 0.9. This generated a ranked gene list 

based on RWR affinity scores for each combination of distance windows and decay functions. The 

performance of each parameter combination was evaluated based on its ability in discriminating GSPs 

from GSNs (defined above). The parameter set that maximally separates GSPs from GSNs was selected 

as the optimal genomic influential range and network influential range. Both of these influence 

information are needed to identify clinically relevant rGenes.  

 

rGene identification: 

Quantification of genomic proximity evidence: To evaluate the regulatory potential of PCOS-associated 

variants on nearby genes, we developed a scoring framework based on chromatin states, topological 

architecture, and linear genomic distance. For the EAS dataset, we applied a constant decay model with 

a distance threshold of 20,000 for fetching core genes and a restart probability of 0.7 to capture 

peripheral genes within the network. Similarly, for the EUR dataset, we employed a linear decay model 

with a distance threshold of 10,000 for identifying core genes and a restart probability of 0.6 for 

retrieving peripheral genes (Figure S2A). All these parameters were optimized from the previous step. 

Tissue specific chromatin states were sourced form Roadmap Epigenomics Project using ChromHMM15 

and TAD (topologically associating domain) data is sourced from Schmitt, A. D. et al 20 . List of disease 

relevant tissues and the corresponding datasets are presented in Table S1, 3rd Tab. All the chromatin 

states were categorized into two functional types—active, and inactive (repressed and quiescent)—and 

assigned weights reflecting transcriptional activity. +1 weights were assigned to active, -1 to repressed 

and quiescent states. Active states includes the epigenetic signature associated to: Active TSS, Flanking 

Active TSS, Transcribed state observed at gene 5' and 3', Strong transcription, Weak transcription, 

Genic enhancers, Enhancers and ZNF genes & repeats. Inactive states includes epigenetic signature 

associated to: Heterochromatin, Bivalent/Poised TSS, Flanking Bivalent TSS/Enh, Bivalent Enhancer, 

Repressed PolyComb, Weak Repressed PolyComb and Quiescent/Low. A sigmoid function (Eqn 2 and 

3, Figure S1A) was applied to integrate these weights into a proximity-based scoring. For all the tissues 

except pituitary, for which epigenetic data is not available, we used equation 2 and 3. Whereas, for 

pituitary the equations used were the same as those used in Fang, H. et al14.  rGene score ranging from 

0 to 1 were computed for each gene. A higher score indicates a greater likelihood that the gene is 

functionally influenced by a nearby PCOS-associated SNP. An additional filtering was done 



constraining only the SNP-gene pair which were present within the same topologically associating 

domain (TAD) boundary. Adipose and pituitary were excluded from this exercise due to unavailability 

of data. 

qGene Annotation: 

Quantification of QTL evidence: To assess associations of PCOS-associated variants with various 

quantitative genomic traits, we collected the significance score from the statistically significant, 

population and tissue specific quantitative trait loci (QTL) data from GTEx21 and QTLbase22 without 

disease or drug treatment) (Table S1, 3rd Tab).  qGene Scoring: SNP-gene associations were normalized 

within each population group for a given tissue using an empirical cumulative distribution function 

(eCDF, Eqn 4, Figure S1B). This transformation normalized the significance scores to a 0–1 range (Eqn 

5, Figure S1B).  

cGene Annotation:  

To enlist the PCOS variants overlapping with an Enhancer element and can potentially interact with 

gene promoters and thus modulate the regulation of genes, we collected the strength of interactions 

from tissue specific Hi-C datasets (Table S1, 3rd Tab) which forms the basis of our scoring. The entire 

method is adapted from the Activity-by-Contact (ABC) scoring schema using default parameters16 . 

ABC model uses chromatin accessibility (ATAC-seq or DNase-seq), histone modifications (H3K27ac 

ChIP–seq to predict enhancer–gene connections for a tissue and interaction frequency for the contact. 

We have used ABC scores for each element–gene pair, where the enhancer element is constrained 

within 5 Mb from the TSS of a gene. Candidate enhancers were defined from ENCODE DNase-seq 

data and H3K27ac using MACS2 peak calling with a P-value cut-off of 0.116. The top 150,000 peaks 

(by read count) were resized to 500 bp around summits. Only genes with measurable expression from 

polyA plus RNA-seq from ENCODE were included in this step. This combined Enhancer/TSS list 

comprised our candidate elements. Candidate enhancer activity denoted as AE in Eqn 6, Figure S1C 

was quantified by calculating the geometric mean of DNase-seq and H3K27ac ChIP-seq signals across 

each region. We next computed ABC scores by integrating enhancer activity (AE) with Hi-C contact 

frequencies obtained from tissue specific Hi-C datasets (C E,G, where E and G denotes an enhancer and 

a gene respectively). The ABC score is expressed as the relative contribution of an element on gene 

expression to the total effect of all elements within 5Mb. ABC scores were computed for ovary, adipose, 

liver, muscle, and pancreas. Next we used xSNP2cGene, https://github.com/r-

forge/pi314/tree/master/pkg) to include those ABC scores for which a PCOS-associated SNP position 

overlaps with either of an enhancer or a promoter (Eqn 7 and 8, Figure S1C). For brain, in the absence 

of chromatin accessibility and H3K27ac data, we have used only Hi-C contact frequencies for cGene 

annotation (accordingly the final equation is modified). No information was available for pituitary. So 

this tissue was excluded from cGene scoring.  

Annotation of core genes with functional evidences 

To add additional weightage to these core genes with respect to disease relevance we incorporated 



various functional evidences. Specifically, core genes were annotated based on three distinct categories 

of prior knowledge: (i) function evidence, genes (fGene) that have been shown to be associated to PCOS 

through expression studies; (ii) phenotype evidence, genes (pGene) associated with specific associated 

phenotypes frequently observed in individuals with PCOS; and (iii) disease evidence, genes (dGene) 

annotated to PCOS manifestation. In brief, functional annotations were sourced from PCOSKB23, a 

manually curated knowledgebase for PCOS-associated genes, from where we have enlisted the genes 

reported only from expression studies. Phenotype–genes were curated from Human Phenotype 

Ontology (HPO)24 based on phenotype searches including polycystic ovarian morphology, 

hyperandrogenism and ovulatory dysfunction. Specific HPO terms like polycystic ovaries 

(HP:0000147), increased circulating androgen concentration (HP:0030348), oligomenorrhea 

(HP:0000876),  amenorrhea (HP:0000141), hirsutism (HP:0001007), alopecia of scalp (HP:0002293),  

insulin resistance (HP:0000855),  acanthosis nigricans (HP:0000956), hyperinsulinemia (HP:0000842), 

hyperglycemia (HP:0003074), abnormal circulating luteinizing hormone concentration (HP:0030345), 

abnormal circulating follicle-stimulating hormone concentration (HP:0030346) and abnormal 

circulating testosterone concentration (HP:0030087) were used. Disease-related genes of PCOS were 

annotated using data from DisGeNet25 (ID: C0032460), a platform that integrates gene-disease 

association information from multiple sources.  

Identification of peripheral genes with network evidence 

To identify peripheral genes (non-core) that are influenced by core genes (core) through Protein-Protein 

interaction network connectivity with a concept of “guilt by association”, we employed Random Walk 

with Restart (RWR)26 , an algorithm based on network diffusion with the core genes obtained from the 

above described categories (rGene, qGene, cGene, dGene, pGene and fGene), using an optimized 

restarting probability (as described above). For each category, we initialized a random walker at the 

core nodes. Genes within the PPI network more frequently visited by the walker starting from the cores, 

due to higher connectivity to core, are assigned  higher affinity scores (Eqn 9), highlighting their 

potential functional relevance despite lacking direct genomic evidence.  

The probability vector at iteration 𝑡, denoted by 𝑃𝑡, was updated according to the following 

equation:   

                                                 𝑃𝑡
⃗⃗  ⃗ = (1 − 𝑟) × 𝑛𝑎𝑑𝑗𝑀 × 𝑃𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑟 × 𝑃0
⃗⃗⃗⃗                                             Eq.9 

Where P0 represents the initial probability vector, where core genes are assigned their respective scores 

(as defined in earlier scoring schemes), and all non-cores are set to zero. The matrix nadjM denotes the 

normalized Laplacian adjacency matrix of the network, which encodes the transition probabilities 

between nodes. The parameter r is the restart probability, governing the likelihood of returning to a core 

node at each step, while 1-r corresponds to the probability of continuing the random walk to neighboring 

nodes. The process is iterated until convergence, defined as when the difference between Pt and Pt−1 

falls below a predefined threshold. The resulting steady-state vector captures the affinity of each gene 



to the core gene set, reflecting both functional and topological relevance within the interaction network. 

Following this step, we constructed a gene-predictor matrix comprising all the categories of core genes 

(a total of six categories), wherein each row corresponds to a gene (core or peripheral), and each column 

corresponds to a specific category or predictor.  

 

Gene-predictor matrix to gene prioritization 

To combine affinity scores from both genomic annotations and functional evidences (Six categories) to 

get a single consolidated score for a gene (Core or peripheral), the scores from gene-predictor matrix, 

we employed direct and indirect combining methods. The direct combining methods include sum 

(summing up evidences), max (taking maximum of evidences) and harmonic (sequentially weighting 

evidence), while indirect combination is a method similar to Fisher’s combined meta-analysis (as 

described before14. Briefly, first, for gene-predictor matrix belonging to each category, we transformed 

the raw affinity scores into P-like values by applying the eCDF [Eq. 10]. These P-like values represent 

the relative rank of a gene for that particular category, ensuring comparability across heterogeneous 

categories. Next, for each gene, these P-like values across all categories were combined using Fisher’s 

method to derive a single combined P-like value (Eq. 11 -13). This integrated metric was then rescaled 

into a Significance Index (Si), ranging from 0 to 5 (using Eq. 14), to yield a standardized prioritization 

score for each gene.  

                                                                  𝑃𝑖
𝑗
= 𝑒𝐶𝐷𝐹(𝐴𝐹𝑖

𝑗
)                                                          Eq.10 

Where AFi
j
 denotes the affinity score for the ith gene concerning the jth predictor, Pi

j
 is the 

corresponding converted P-value, and eCDF is estimated based on all genes 

                                          𝑥 = −2∑ 𝑙𝑜𝑔(𝑃𝑖
𝑗
)𝐽

𝑗                                                              Eq.11    

                                                          𝑥~𝜒2(2𝐽)                                                                   Eq.12 

                                                    𝐶𝑃𝑖 = 𝐶𝐷𝐹(𝑥)                                                                   Eq.13 

where J is the number of the predictors, χ2(2𝐽)
 
denotes Chi-Squared distribution with 2J degrees of 

freedom, CPi is the final combined P-value for the ith gene (i.e., CDF of Chi-Squared distribution valued 

at x). 

                                                                𝑥𝑖 = −𝑙𝑜𝑔(𝐶𝑃𝑖)                  

                                                        𝑆𝑖𝑖 = 5 ×
𝑥𝑖−𝑀𝐼𝑁(𝑥𝑘)

𝑀𝐴𝑋(𝑥𝑘)−𝑀𝐼𝑁(𝑥𝑘)
                                                       Eq.14 

Where Sii is the Si score (Significance Score) for the ith gene, MIN and MAX for the minimum and 

maximum value respectively. 

Pathway enrichment analysis 

Enrichment analysis was conducted using human Reactome pathways derived from the Molecular 

Signatures Database (MSigDB) version 2023.2, specifically the curated gene sets under category C227. 

The analysis was performed using the xEnricher function from the Pi package in R (version 2.10.0), which 



implements a one-sided Fisher’s exact test (hypergeometric test) to assess statistical significance. 

Enrichment results were represented with three metrics: Z-score, odds ratio (OR) and 95% confidence 

interval (CI), and p-value. The p-values obtained were adjusted for multiple hypothesis testing using the 

Benjamini-Hochberg (BH) procedure to control the false discovery rate (FDR). Z-scores and ORs were 

used to rank the enriched terms. To visualize the broader biological context of the enriched pathways, the 

Reactome pathway hierarchy was utilized. The "Pathway hierarchy relationship" file (version 90), containing 

parent–child relationships, was downloaded from the Reactome database. This file includes two columns: the 

first corresponding to the parent pathway and the second to the child pathway. A hierarchical tree of pathway 

relationships was constructed from this file, while only relevant enriched pathways (based on OR) were 

extracted and used for visualizations.  

 

Benchmarking the scoring strategy 

Benchmarking of this approach was done by comparing the performance of Si approach (this study) 

with other competing methods. The process is also was also based on evaluating AUC to determine 

how well our approach separates ‘clinical proof-of-concept targets’ (Gold standard Positives) of PCOS 

from negative controls) (See above). Specifically, this approach was compared with ‘Open Targets28 

text mining’ (an approach of evaluating the importance of a gene associated to a disease by using 

Natural Language Processing based text mining from scientific literature and ‘Open Targets Genetic 

association’ (based on curated genetic associations to a disease from literature, UK biobank and 

FinnGen. 

 

Target set enrichment analysis (Validation 1) 

To quantify the extent to which known PCOS drug targets at different phases of clinical development 

are enriched at the top of the significance matrix (Si Matrix) obtained in the previous stage, we 

conducted a rank-based gene set enrichment analysis (GSEA) using the xPierGSEA function from the 

Pi package in R. This enrichment was visually represented as the leftmost region of the peak (leading 

edge) in the running enrichment plot generated by the analysis. We additionally calculated the 

Normalized Enrichment Score (NES) using the fgsea package in R (version 1.24.0). The NES was 

determined by dividing the observed running enrichment score by the mean of the null distribution of 

enrichment scores, which was generated through permutation testing. We performed 20,000 

permutations to estimate the null distribution and assess the statistical significance of the observed 

enrichment. The resulting p-values were adjusted for multiple testing using the Benjamini-Hochberg 

(BH) procedure to control the false discovery rate (FDR).  

 

Genetics-to-Current-Therapeutics (G2CT) potential 

To assess and quantitate the importance of the prioritized genes in revealing current therapeutics for a 

specific tissue, we used a composite metric termed Gene-to-Current-Therapy (G2CT) potential (as 



described previously14. Breifly, this metric integrates three key aspects of enrichment analysis: (i) 

Normalized enrichment score (NES), (ii) Enrichment score significance assessed through adjusted p-

value and (iii) Enrichment coverage defined as the fraction of GSPs (F) located within the "leading 

leftmost peak". Together, these components reflect how well prioritized genes capture known 

therapeutic targets. 

                                                                   𝐺2𝐶𝑇 = 𝑙𝑜𝑔10
𝑁𝐸𝑆×𝐹

𝐹𝐷𝑅
                                                       Eq.15 

This formulation ensures that tissues with stronger enrichment signals, higher statistical confidence, 

and broader leading-edge representation receive higher G2CT potential scores, reflecting their greater 

relevance for therapeutic prioritization. 

 

CREEDS (Validation 2) 

We utilized disease-specific gene signatures v1.0 sourced from CREEDS29 , a crowdsourced repository 

that curates and identifies gene signatures from the Gene Expression Omnibus (GEO). For our analysis, 

we specifically focused on human PCOS-associated GEO identifiers. Further, we used the GEO 

identifiers to access the metadata including tissue and population information. To check the enrichment 

of tissue specific differentially expressed genes, we performed Gene Set Enrichment Analysis (GSEA). 

Tissues considered for the analyses were adipose tissue and skeletal muscle, as these were the only 

relevant tissues available. The GEO datasets used for these tissues are GSE5090 (adipose tissue), 

GSE6798 (skeletal muscle), and GSE8157 (skeletal muscle).We performed 20,000 permutations to 

estimate the null distribution and assess the statistical significance.  

 

 

Assessment of Obesity and T2D DEGs in ranked list: 

In addition to PCOS-associated signatures, we also extended our analysis to relevant metabolic 

disorders including Obesity and type 2 diabetes (T2D) with gene signatures obtained from GEO 

datasets. We utilized GEO2R from the GEO data repository to analyze available datasets from these 

conditions. For obesity, we processed adipose tissue datasets from EAS region (GSE217007 and 

GSE283367) and EUR region (GSE24883, GSE25401, GSE94752, GSE59034, GSE12050, 

GSE110729, GSE141432 and GSE166047). For T2D we analyzed GSE23343 of liver from EAS region, 

adipose tissue datasets (GSE141432 and GSE166047) and pancreas tissue datasets (GSE38642 and 

GSE25724) from EUR region. |log2FC| > 0.5 and P-value < 0.05 were applied as cutoff criteria to 

identify differentially expressed genes (DEGs). Subsequently, we performed gene set enrichment 

analysis with the tissue-specific prioritized gene list of adipose, pancreas and liver. We performed 

20,000 permutations to estimate the null distribution and assess the statistical significance. 

 

Validation with patient data 



We used the GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)] from GEO data repository30 to 

analyze microarrays data (EUR: GSE98595) and RNA-seq (EAS: GSE155489, GSE138518, 

GSE106724) to identify differentially expressed genes (DEGs) in PCOS patient derived tissues with 

respect to and healthy control. Microarray data was processed with Limma package and RNA-seq was 

processed with DESeq2.| log2FC| > 0.5 and P-value < 0.05 were used as the cut-off to obtain DEGs. 

DEGs were further categorized into upregulated (log2 FC > 0.5) and downregulated (log2FC < -0.5) 

genes. Subsequently, we filtered out the gene members of the following Reactome pathways (Immune: 

Innate immune system (R-HSA-168249), Cytokine signaling in immune system (R-HSA-1280215); 

Metabolic:Signaling by insulin receptor (R-HSA-74752), Translocation of SLC2A4 (GLUT4) to the 

plasma membrane (R-HSA-1445148); Hormone: Peptide hormone metabolism (R-HSA-2980736), 

Metabolism of steroids (R-HSA-8957322)) from the DEGs as well as from the prioritized matrix of 

ovary (containing the ranked genes with Significance score greater than 0). Finally we checked for the 

enrichment of the filtered DEGs in the filtered priority Matrix by using Gene Set Enrichment Analysis.   

 

Pathway crosstalk 

To explore the potential interaction and crosstalk between different pathways to which the prioritized 

genes affiliate to, we constructed a subset of the PPI network using MSigDB version 2023.231 

comprising of curated human genes derived from the reactome pathway database. The genes from all 

the pathways in MSigDB were pooled, and duplicate genes were removed. The resulting gene set was 

then overlaid onto the PPI network and the largest connected subnetwork was extracted. We then used 

the dnet package in R (version 1.1.7)  to extract a subnetwork overlaying the prioritized genes from the 

Si matrix on the subnetwork from the previous step, while allowing a limited number of lower-priority 

genes to serve as linkers to maintain network connectivity. The approach begins by converting 

significance score to P values (xPierSubnet), assigning positive scores to nodes with P values below a 

user-defined threshold (0.01), indicating nodes of interest, while nodes with P values exceeding this 

threshold are given negative scores. Following score transformation, the pipeline searches for a 

connected subgraph enriched in positively scored nodes, allowing a limited number of negatively scored 

nodes to act as linkers. This subgraph search is facilitated through a minimum spanning tree algorithm, 

which serves as a heuristic solution to the prize-collecting Steiner tree problem32. To evaluate the 

statistical significance of the observed subnetwork, we conducted a degree-preserving node permutation 

test. This procedure was repeated 100 times to generate a null distribution of subnetworks that are 

expected by chance. The statistical significance of the subnetwork was calculated based on how often 

a subnetwork of equal or higher prioritization score appeared in the null distribution.  

 

Construction of Pathway-centric connectivity map (minimum spanning tree) 

In addition to conventional gene-level network visualization, the identified crosstalk was also 

represented as a pathway-centric connectivity map. In this representation, each node corresponds to a 



significantly enriched pathway, and edges denote inferred connections between these pathways. Only 

pathways that were significantly overrepresented among the crosstalk genes (based on enrichment 

analysis) were retained as nodes. Initially, edges were introduced between pathways that shared genes. 

To refine the map, a minimum spanning tree was computed using the igraph package, and only the 

edges present in the resulting tree were retained. Edge thickness in the final visualization was 

proportional to the number of shared genes between the connected pathways, reflecting the strength of 

their functional association. 

 

Repurposing of drugs 

We utilized the ChEMBL database as the primary source of information on therapeutic agents, 

including details on drugs, their target genes, clinical development phases, and associated disease 

indications. ChEMBL curates data from authoritative sources such as ATC classification, 

ClinicalTrials.gov, DailyMed, and the U.S. FDA. For each disease indication under investigation, we 

retrieved drug and its targets, provided that the mechanism of action of the target gene is available. For 

each target, we retrieved the drug that had achieved the highest clinical development phase. The 

corresponding disease indication for this highest-phase drug was also recorded. PCOS drug targets were 

removed from the list.  

 

Node removal analysis 

To assess the importance of individual genes in the crosstalk network, we performed node removal 

analysis in two modes (single-node removal and combinatorial node removal). In both the cases, single 

node and nodes in different combinations were removed from the network, and the resulting 

fragmentation was evaluated by quantifying the fraction of nodes disconnected from the largest 

connected component. . The combinatorial node removal was done to model the potential synergistic 

effects of targeting multiple genes. The effect of both single and combinatorial node removal was 

visualized using upset plots generated with the ggupset package. 

 

Determining inter-tissue cross-talk network modularity: 

To investigate inter-tissue communication at the molecular level, we constructed a tissue–tissue 

crosstalk network based on crosstalk genes of all tissues pulled together. To uncover modular 

organization within the crosstalk network, we used clusterspinglass function of igraph package in R 

(version 2.0.3) to identify network modules by simulating annealing. The spin-glass model33 is a method 

used in community detection, a process of grouping nodes in a network, based on their internal 

connections, to find clusters that are more densely connected internally. For each module, we conducted 

enrichment analyses.  

 

Cluster analysis 



We employed the supraHex34 R package to construct a cross-tissue topological map to cluster cross-

talk genes having similar Significance score or drugability across tissues.  A supra-hexagonal map 

consisting of 37 hexagons was trained on Significance scores of the crosstalk genes across tissues. The 

map was generated using a self-organizing learning algorithm. These trained maps represented tissue-

specific cross-talk gene prioritization profiles, with different tissues organized in 2D axis in such a way 

that tissues with similar Si score distribution were placed close to each other. Subsequently, a single 

integrated hexagonal map was generated to capture this similarity in Si scoring across tissues with each 

cluster capturing a set of cross-talk genes with similar prioritization trends across tissues. To assess 

druggability, binary druggable pocket (presence or absence) annotations from Bao, C. et al35 were 

overlaid on the map. Genes were classified as tractable if their corresponding protein structures (sourced 

from the Protein Data Bank, PDB) contained predicted drug-like binding sites, as identified using 

fpocket software36. We identified the cluster exhibiting high prioritization scores and high druggability. 

Genes within this cluster were subjected to pathway enrichment analysis. 
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