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I. More numerical results for U(1)-breaking Hamiltonian with NNN terms

A. The time evolution of charge probability distribution for the antiferromagnetic state at γ = 0.9

Fig. S1 displays the time evolution of the charge probability distribution PQ for the antiferromagnetic (AF) state
at γ = 0.9. Despite the distribution being confined to only three sectors Q = 0 and Q = ±4, the AF state exhibits
clear thermalization behavior, a consequence of the exponentially large Hilbert space dimensions associated with these
sectors, consistent with our findings described in the main text.

B. The time evolution of charge probability distribution for ferromagnetic and antiferromagnetic states at
γ = 0.3

Fig. S2(a) demonstrates that the charge probability PQ spreads across all accessible sectors for the ferromagnetic (F)
state. indicating the onset of thermalization as symmetry-breaking strength 1 − γ increases. Meanwhile, Fig. S2(b)
reveals enhanced thermalization in the AF case, evidenced by a more pronounced shift of spectral weight to the
Q = ±4 and ±8 sectors compared to Fig. S1.
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FIG. S1. The time evolution of charge distributions PQ(t) for AF initial state for L = 12. Q = 12, 8,−8,−12 sectors are
omitted as they contain negligible population. Note that PQ=−4 (not shown) equals PQ=4 by symmetry.

FIG. S2. The time evolution of charge distributions PQ(t) for (a) F and (b) AF initial state in a system of size L = 12
with symmetry-breaking strength γ = 0.3. For the AF case, the Q = 12 and Q = −12 sectors are omitted due to negligible
population. By symmetry, the PQ=−4 and PQ=−8 (not shown) distributions are equal to PQ=4 and PQ=8 respectively.

C. Log-linear scaling plot for ferromagnetic and antiferromagnetic states

Here, we replot the data from Fig. 2(a) and (b) on a log-linear scale. For the ferromagnetic initial state (Fig. S3(a)),
the data at γ = 0.3 exhibit a linear trend, whereas the data at γ = 0.9 show a clear deviation from linearity.
In contrast, the antiferromagnetic state (Fig. S3(b)) exhibits a consistent linear relationship for both values of γ,
indicating exponential scaling with system size.

D. Entanglement entropy scaling in singly spin-flipped ferromagnetic states

Fig. S4 shows the system-size scaling of late-time entanglement entropy for a F state with a single spin flip at the
L/2-th site under different γ. At γ = 0.9 (weakly symmetry breaking), the EE remains approximately constant with
increasing system size L, demonstrating the characteristic area-law scaling of non-thermal states. In contrast, for
stronger symmetry breaking γ = 0.3, the EE exhibits volume law linear scaling with system size, a clear signature of
thermalization.
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FIG. S3. Log-linear plots of N versus system size for (a) F and (b) AF initial states at different symmetry-breaking strengths
γ of HU1. The black solid and dashed lines are the corresponding linear fits.

FIG. S4. The steady-state half-chain entanglement entropy S∞
L/2 is plotted as a function of system size L for symmetry breaking

strengths γ = 0.9 and 0.3. Numerical simulation results are shown as data points, while dashed lines indicate the corresponding
linear fits to the data.

E. Log-linear scaling plot for singly spin-flipped ferromagnetic state

The data from Fig. 3(a) are replotted on a log-linear scale. As shown in Fig. S5, the single spin-flipped ferromagnetic
state exhibits a linear trend only at γ = 0.3, while the data for γ = 0.9 shows that the trend is much slower than an
exponential scaling.

F. The time evolution of charge probability distribution for singly spin-flipped ferromagnetic state at γ = 0.9

Fig. S6 displays the time evolution of the charge probability distribution PQ for a single spin-flipped F state in an
L = 16 chain at γ = 0.9, with the flipped spin located at 8th site. We observe that the charge distribution PQ(t) in
the Q = 14 also exhibits strong localization, closely resembling the behavior previously seen in the Q = 10 sector for
the L = 12 from the main text. Specifically, the charge probability distribution of Q = 14 in L = 16 fluctuates around
0.7, indicating that the system remains predominantly confined within this charge sector. This behavior persists for
extended durations up to t > 60000, confirming the HSI phenomenon is consistent across the system sizes we have
studied.
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FIG. S5. Log-linear plots of N versus system size for ferromagnetic state with a single spin flip at different symmetry-breaking
strengths γ of HU1. The black solid is the linear fit.

FIG. S6. Time evolution of the charge distribution PQ(t) for a single spin-flipped F state under the Hamiltonian HU1 with
L = 16 at γ = 0.9. Sectors with negligible population (Q = 6, 2,−2,−6,−10,−14) have been omitted for clarity.

II. More numerical results for disordered U(1)-breaking Hamiltonian

We now analyze the thermalization properties of F and AF states under a disordered Hamiltonian with weakly
broken U(1)-symmetry and periodic boundary conditions:

H =−
∑L

j=1

[
σx
j σ

x
j+1 + γσy

j σ
y
j+1 + µσz

jσ
z
j+1

]
(S1)

−
∑L

j=1 hjσ
z
j .

where σα
j (α = x, y, z) are Pauli matrices acting on site j, with µ = 0.8 sets the nearest-neighbor coupling strengths.

Disorder is introduced via random fields hj along the z-axis, sampled uniformly from [−W,W ] with W = 3.2. The
parameter γ controls the U(1) symmetry-breaking strength. Notably, for γ = 1, µ = 0, this Hamiltonian reduces
to the one-dimensional Anderson model [1], which exhibits a well-known localization transition. To ensure that the
system resides in the quantum chaotic regime, we compute the level spacing ratio r [2] within the half-filling sector,
which requires the presence of the U(1) symmetry. Therefore, this calculation is performed at γ = 1, not at 0.9
where U(1) symmetry is explicitly broken. Also, symmetry breaking is expected to drive the system toward more
thermalized behavior. The n-th level spacing ratio is defined as:

rn =
min(∆n,∆n+1)

max(∆n,∆n+1)
(S2)
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where ∆n = En+1 − En and En is the n-th eigenenergy in ascending order. The level spacing ratio r is obtained by
averaging rn over different energy levels n and across an ensemble of disorder configurations. Our calculation shows
r ≈ 0.51 at µ = 0.8 and γ = 1, which aligns with the theoretical value for the quantum chaotic regime, thereby
confirming that the model is in the thermal phase for the studied parameters. All physical quantities are obtained by
averaging over multiple disorder realizations.

A. Thermalization properties for the ferromagnetic state at different γ

Fig. S7(a) demonstrates that for γ = 0.9, the F state exhibits clear non-thermal behavior, as characterized by the
nearly system-size-independent of N . The time evolution of the charge probability distribution in Fig. S7(b) further
confirms the non-thermal nature, showing approximately 60% of the population remains confined to the Q=14 sector
of dimension 1, with an additional 20% in the Q=10 sector. Upon increasing the symmetry-breaking strength 1−γ to
0.7, the F state begins to thermalize, as supported by the exponential growth of N with L and a significantly broader
charge distribution shown in Fig. S7(c).

B. Thermalization properties for the antiferromagnetic state at different γ

In contrast to the F state, AF initial state shows thermalization under weak symmetry breaking, as confirmed by
the exponential growth of N with L in Fig. S8(a). This growth becomes more pronounced with stronger symmetry
breaking. Despite thermalization, Fig. S8(b) confirms the charge distribution remains dominated by the Q = 0 and
Q = ±4 sectors, a consequence of their large Hilbert space dimensions. As the symmetry breaking becomes more
pronounced, Fig. S8(c) displays a systematic charge redistribution of spectral weight toward the Q = ±4 and Q = ±8
sectors.

FIG. S7. Panel (a) displays the scaling of N with system size for F initial state at varying γ. Panels (b) and (c) show the time
evolution of charge distributions PQ(t) initialized in F states for L = 14 at γ = 0.9 and γ = 0.3. Sectors Q = 12, 8,−8,−12
and Q = 12,−12 are omitted in panels (b) and (c) due to negligible weight. By symmetry, the PQ = −4 and PQ = −8 (not
shown) distribution are equal to PQ = 4 and PQ = 8 respectively. All results are averaged over 400 independent realizations.

III. More numerical results for disordered Z2-breaking Hamiltonian

A. Log-linear scaling plot for ferromagnetic and antiferromagnetic states

Here, we replot the data from Fig. 4(a) and (b) on a log-linear scale. For both the ferromagnetic and antiferromagnetic
initial states, Fig. S9(a) and (b) exhibit a linear trend for each value of γ, indicating exponential scaling with system
size.
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FIG. S8. Panel (a) displays the scaling of N with system size for AF initial state at varying γ. Panels (b) and (c) show the
time evolution of charge distributions PQ(t) initialized in AF states for L = 14 at γ = 0.9 and γ = 0.3, respectively. Sectors
Q = −2,−6,−10,−14 and Q = −10,−14 are omitted in panels (b) and (c) due to negligible weight. By symmetry, the PQ=−4

and PQ=−8 (not shown) distributions are equal to PQ=4 and PQ=8 respectively. All results are averaged over 400 independent
realizations.

FIG. S9. Log-linear plots of N versus system size for (a) F and (b) AF initial states at different symmetry-breaking strengths
γ of HZ2. The black solid and dashed lines are the corresponding linear fits.

IV. HSI beyond the weak symmetry-breaking limit

Having demonstrated non-ergodic dynamics for a ferromagnetic state with one flipped spin in a near-symmetric
case (γ = 0.9), we now show that a small symmetry-breaking parameter in the Hamiltonian is not a prerequisite for
HSI. We employ the Hamiltonian with γ = 0.6 in this section and demonstrate that HSI can still emerge with initial
state engineering. We initialize the circuit in a ferromagnetic state with a single spin flipped and define the target
eigenstate subspace as the 15 eigenstates with the highest overlap to this initial state. As shown in Fig. S10, even
for this moderate symmetry-breaking strength, the variational circuit successfully localizes the trained state within
this target subspace, achieving an overlap around 0.8. This confirms that HSI can be generally realized with an
initial state prepared by the shallow variational circuit, without requiring a small parameter or perturbation for the
Hamiltonian.

V. Analytical derivation of the bounds on the expectation value ⟨Ô⟩

Suppose an initial wavefunction |ϕ0⟩ with significant overlap with an eigenstate in a small non-thermal Hilbert
subspace, along with a small leakage to state outside this subspace that can thermalize. We aim to determine the
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FIG. S10. Overlap probability P as a function of training steps for a variational quantum circuit. The circuit comprises
4-composite layers, with each composite layer structured identically to that depicted in Fig. ??. This 12-qubit circuit operates
on a ferromagnetic initial state containing a single spin flip.

bounds for the expectation value of an observable Ô. The initial state can be expressed as:

|ψ0⟩ =
√
1−∆2|ϕ⟩+∆|ϕ⊥⟩ (S3)

where |ϕ⟩ is the normalized state in the non-thermal subspace, |ϕ⊥⟩ is the normalized state outside that space, which
ultimately thermalize. ∆2 quantifies the leakage probability. And we omit the irrelevant relative phase. The time
evolution of |ψ0⟩ is given by:

|ψ(t)⟩ =
√
1−∆2|ϕ(t)⟩+∆|ϕ⊥(t)⟩ (S4)

with |ϕ(t)⟩ and |ϕ⊥(t)⟩ still inside and outside the Hilbert subspace, respectively.
Next, we calculate the expectation value of an observable Ô with respect to the state |ψ(t)⟩ as:

⟨Ô⟩ = (1−∆2)Onon−th(t) + ∆2Oth +∆
√

1−∆2
[
⟨ϕ(t)|Ô|ϕ⊥(t)⟩+ ⟨ϕ⊥(t)|Ô|ϕ(t)⟩

]
(S5)

whereOnon−th(t) = ⟨ϕ(t)|Ô|ϕ(t)⟩ is the expectation value of Ô in the non-thermal subspace andOth = ⟨ϕ⊥(t)|Ô|ϕ⊥(t)⟩
is the thermal expectation value at late times according to ETH. To bound the cross terms, we apply the Cauchy-
Schwarz inequality, which states that for any state |ϕ(t)⟩, |ϕ⊥(t)⟩, and an operator Ô, we have:

|⟨ϕ(t)|Ô|ϕ⊥(t)⟩| ≤ ||Ô|| · ||ϕ(t)|| · ||ϕ⊥(t)|| (S6)

Here, || · || denotes the operator and vector norms. Since |ϕ(t)⟩ and |ϕ⊥(t)⟩ are normalized (||ϕ(t)|| = ||ϕ⊥(t)|| = 1),
and Ô is bounded with eigenvalues λk satisfying |λk| ≤ 1 (e.g., Pauli string operators), the operator norm ||Ô|| is
bounded by the largest eigenvalue:

||Ô|| ≤ 1 (S7)

Thus, Eq. (S6) simplifies to:

|⟨ϕ(t)|Ô|ϕ⊥(t)⟩| ≤ 1 (S8)

Similarly, |⟨ϕ⊥(t)|Ô|ϕ(t)⟩| ≤ 1. By omiting higher orders of ∆ for small leakage, we have

Onon−th − 2∆ ≤ ⟨Ô⟩ ≤ Onon−th + 2∆, (S9)

namely, non-thermal behavior can be determined via local observable measurements as long as ∆ is below some
threshold.

In fact, we can derive a significantly tighter bound by leveraging the ETH. Let us expand |ϕ(t)⟩ and |ϕ⊥(t)⟩ in the
energy eigenbasis:

|ϕ(t)⟩ =
∑
n

dne
−iEnt|En⟩, |ϕ⊥(t)⟩ =

∑
α

cαe
−iEαt|Eα⟩ (S10)
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where |En⟩ are non-thermalizing eigenstates, |Eα⟩ are thermalizing eigenstates, and dn, cα are their respective
coefficients. The cross term then becomes:

⟨ϕ(t)|Ô|ϕ⊥(t)⟩ =
∑
n,α

d∗ncαe
i(En−Eα)t⟨En|Ô|Eα⟩ (S11)

The phase factors ei(En−Eα)t oscillate rapidly at late times, causing dephasing and suppression of the sum. By the
ETH, the magnitude of off-diagonal matrix elements ⟨En|Ô|Eα⟩ can be expressed as:

|⟨En|Ô|Eα⟩| ∼ e−S(Ē)/2f(Ē, ω) (S12)

Here Ē = En+Eα

2 represents the average energy, and ω = En−Eα is the energy difference. The term S(Ē) corresponds
to the thermodynamic entropy evaluated at energy Ē, which is proportional to the system size L while f(Ē, ω) is a
smooth function of Ē and ω. Consequently, Eq. (S8) is

|⟨ϕ(t)|Ô|ϕ⊥(t)⟩| ≤ δ (S13)

where δ is an exponentially small parameter with respect to the system size due to strong dephasing and exponential
small terms from off-diagonal prediction of ETH. Consequently,

(1−∆2)Onon−th +∆2Oth − 2δ∆
√

1−∆2 ≤ ⟨Ô⟩ ≤ (1−∆2)Onon−th +∆2Oth + 2δ∆
√
1−∆2 (S14)

As δ is much smaller than ∆ for a large system, we omit δ∆ term while keep the quadratic ∆ term instead. We thus
have:

⟨Ô⟩ −Oth ∼ (1−∆2)(Onon−th −Oth) (S15)

This relation demonstrates that if Oth deviates from Onon−th, we can unambiguously distinguish between thermal
and non-thermal behaviors through the observable expectation value.
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