
Supplementary Information for
“Population-dependent agent performance in
non-transitive games: a multi-agent
rock–paper–scissors benchmark”
Ou Deng1,*, Jianting Xu1, Shoji Nishimura2, Atsushi Ogihara2, and Qun Jin2,*

1Graduate School of Human Sciences, Waseda University. Tokorozawa, Saitama 359-1192, Japan
2Faculty of Human Sciences, Waseda University. Tokorozawa, Saitama 359-1192, Japan
*dengou@toki.waseda.jp; jin@waseda.jp

ABSTRACT

This Supplementary Information accompanies the main manuscript on multi-agent Rock–Paper–Scissors tournaments, providing
additional details on the agent portfolio and hyper-parameters, hyper-parameter selection and resource matching (with a focus
on Transformer baselines), and robustness checks and auxiliary analyses referenced in the main text.
Section S1 provides detailed agent implementation specifications including architectures, hyperparameters, and training
procedures. Section S2 defines the Core-19 validation opponent set used for hyperparameter selection (referenced in Methods
and Figure 2 of the main text). Section S3 reports validation tournament results and a targeted Transformer hyperparameter
sweep addressing tuning concerns (Tables S3–S4; Figure S1). Section S4 documents transformer configuration selection and
traceability for the final benchmark. Section S5 describes additional robustness checks on update budgets, context lengths,
and reward scaling. Section S6 provides extended analyses for the 54-agent benchmark: stability across seeds (Figure S2),
cumulative score trajectories by method (Figure S3), and the complete agent ranking (Table S6). Section S7 presents analysis
of non-transitive meta-game structure: pairwise payoff analysis, cycle enumeration, and α-Rank stationary distributions.
Section S8 presents additional Lipschitz bound diagnostics for the RNN–LSTM matchup (Figure S5, complementing Figure 3
of the main text). Section S9 reports trained-versus-untrained ablations (Table S9; Figure S6). Section S10 presents results on
a stronger nine-agent roster excluding highly exploitable baselines (Table S10). Section S11 analyzes sliding-window length
sensitivity for the Lipschitz diagnostic (Figure S7; Table S11). Section S12 provides computational cost benchmarking for
representative agents (Table S12).

Guide to the Supplementary Information
To facilitate reader-friendly navigation, the following guide maps each Supplementary section/subsection, figure, and table to
the part of the main manuscript that it supports or is cited from.

Supplementary item Contents Main-manuscript linkage
Section S1 Agent implementation details. Provides detailed specifications for all

18 agent archetypes including network architectures, hyper-parameters,
training procedures, and feature engineering. Extends the summary in
Methods: Agent portfolio.

Methods: Agent portfolio.

Subsection S1.1 Deep learning agents (GPU-accelerated). Details architectures and
hyperparameters for RNN, LSTM, Transformer, and A3C families. In-
cludes Table S1 summarizing update strategies.

Methods: Agent portfolio; Hyperparame-
ter selection and resource matching.

Table S1 Summary of deep learning agent architectures and online update strate-
gies (RNN, LSTM, Transformer, A3C).

Methods: Hyperparameter selection and
resource matching.

Subsection S1.2 Classical machine learning (CPU-based). Specifications for SVM, RF,
and XGB agents including feature engineering and refit schedules.

Methods: Agent portfolio.

Subsection S1.3 Probabilistic and custom strategies. Documents B_v1/v2 (Dirichlet
frequency tracking), M_v1/v2 (Markov), and MSA (multi-scale aggre-
gator).

Methods: Agent portfolio.

1



Supplementary item Contents Main-manuscript linkage
Subsection S1.4 Rule-based baselines. Describes R (random), CG (counter-guesser),

and WL (win–lose heuristics) agents.
Methods: Agent portfolio.

Subsection S1.5 Implementation notes. Software dependencies, hardware specifications,
and code organization.

Methods: Agent portfolio.

Subsection S1.6 Statistical methodology. Documents the seed-paired Wilcoxon signed-
rank test with Holm correction used for pairwise method comparisons.
Justifies why paired tests are appropriate given within-seed dependen-
cies.

Methods: Statistical analysis.

Section S2 Validation opponent set (Core-19). Defines the held-out 19-agent
roster used exclusively for hyperparameter tuning; this roster is not used
for final benchmark ranking. Ensures that neural configurations are
selected independently of the 54-agent evaluation pool.

Results: Validation tournament (Core-
19) and transformer tuning; Methods:
Hyperparameter selection and resource
matching.

Table S2 Core-19 roster listing all 19 agent IDs and their family categories (Base-
line, Probabilistic, Classical ML, Deep predictor, RL).

Cited in Results Validation tournament
(Core-19) and Figure 2 caption (“Supple-
mentary Table S2”).

Section S3 Validation results and Transformer sweep. Reports Core-19 tourna-
ment scores and a targeted Transformer hyperparameter sweep. Ad-
dresses reviewer concern that Transformer baselines may be under-tuned
by showing that even the best-tuned configuration remains negative.

Results: Validation tournament (Core-19)
and transformer tuning; Discussion: Why
do recurrent architectures win?

Table S3 Full Core-19 validation scores aggregated by method (18 methods, 10
seeds), with mean, std, and 95% CI.

Cited in Results Validation tournament
(Core-19) (“full statistics in Supplemen-
tary Table S3”).

Table S4 Transformer hyperparameter sweep summary: 8 configurations varying
context length, width, depth, dropout, and learning rate.

Cited in Results Validation tournament
(Core-19) (“Supplementary Table S4”)
and Discussion (Transformer under-tuning
concern).

Figure S1 Visualization of Transformer sweep results with 95% CI across seeds;
confirms all configurations remain negative.

Cited in Results Validation tournament
(Core-19) (“Supplementary Fig. S1”).

Section S4 Transformer configuration traceability. Documents exact hyperparam-
eters used for Tr_v1 and Tr_v2 in the final benchmark, mapping them to
sweep configurations to ensure reproducibility and address “under-tuned”
concerns.

Results: Validation tournament; Methods:
Hyperparameter selection.

Section S5 Additional robustness checks. Documents sensitivity analyses for
update-budget, context-length, and reward-scaling choices. Confirms
that qualitative conclusions (recurrent advantage, transformer perfor-
mance under our budget) are robust to reasonable protocol variations.

Supports Methods Hyperparameter se-
lection and resource matching and Re-
sults/Discussion claims about robustness.

Section S6 Full 54-agent tournament: additional analyses. Provides extended
diagnostics for the main benchmark: seed-level stability, temporal score
evolution, and the complete 54-agent ranking.

Results: Robustness across seeds and tem-
poral profiles; complements Figure 1 and
Tables 1–2.

Subsection S6.1 Stability across random seeds. Plots mean score vs. coefficient of
variation (CV) to identify agents that combine strong performance with
low variance.

Cited in Results Robustness across seeds
and temporal profiles.

Figure S2 Stability scatter plot (mean vs. CV). High-performing agents cluster at
large positive mean with moderate CV.

Cited in Results (“Supplementary Fig. S2
reports a stability scatter plot”).

Subsection S6.2 Cumulative score trajectories. Shows how method-level scores accu-
mulate over the tournament schedule, confirming persistent (not tran-
sient) advantages.

Cited in Results Robustness across seeds
and temporal profiles.

Figure S3 Cumulative score evolution over 1.43M game rounds, aggregated by
method family.

Cited in Results (“Supplementary Fig. S3
shows cumulative score trajectories”).

Subsection S6.3 Full agent ranking. Provides the complete 54-agent ranking (extending
Table 1 which shows only Top-5) for transparency and reproducibility.

Extends Table 1 (Top-5 agents) and sup-
ports Results Overall ranking in the 54-
agent tournament.

2/20



Supplementary item Contents Main-manuscript linkage
Table S6 Full ranking of all 54 agents by mean score, with std and 95% CI across

10 seeds.
Extends Table 1; enables independent veri-
fication of all agent-level results.

Section S7 Non-transitive meta-game structure. Provides direct evidence of
cyclic dominance: pairwise payoff heatmaps, enumeration of 3-cycles,
and α-Rank evolutionary analysis. Strengthens the paper’s thematic
focus on non-transitivity.

Results: Non-transitive structure; Re-
lated work: Evaluation in non-transitive
environments.

Table S7 Top 10 of 177 detected 3-cycles from the Core-19 payoff matrix demon-
strating non-transitive dominance relations.

Cited in Results Non-transitive structure.

Figure S4 α-Rank stationary distribution over Core-19 agents showing evolution-
ary stable mass allocation.

Cited in Results Non-transitive structure.

Table S8 Rank correlations across evaluation pools (Core-54, Core-19, Top-R,
Pack4).

Cited in Results Validation tournament.

Section S8 Additional regret-certificate diagnostics. Extends the main-text regret-
certificate analysis (Figure 3 and Table 3) to a predictor-vs.-predictor
regime (pretrained RNN→LSTM). Shows that the certificate can become
slack when regret is near zero, leading to weaker error–regret correlation.

Results: Regret certificate diagnostics and
tightness analysis (Table 3, Figure 3).

Figure S5 Lipschitz scatter for RNN_v2→LSTM_v2 (pretrained). All points sat-
isfy ∆t ≤ 2∥pt − p̂t∥1; weak correlation reflects near-zero regret floor.

Complements the pretrained
RNN→LSTM row in Table 3.

Section S9 Trained vs. untrained controls. Ablation separating initializa-
tion/pretraining effects from architectural capacity. Trained recurrent
and A3C agents outperform untrained counterparts; Transformer re-
mains negative regardless, supporting that its weaker performance under
our budget is not due to poor initialization.

Results: Pretraining and opponent-pool
strength.

Table S9 Mixed 8-agent population (trained + untrained variants of A3C, RNN,
LSTM, Transformer) with mean and 95% CI.

Cited in Results Pretraining and opponent-
pool strength (“Supplementary Table S9”).

Figure S6 CI plot for the trained/untrained mixed population; visualizes the pre-
training benefit for recurrent families and absence thereof for Trans-
former.

Cited in Results Pretraining and opponent-
pool strength (“Supplementary Fig. S6”).

Section S10 Stronger opponent pool (Top-R roster). Removes highly exploitable
baselines (RF, XGB) to test whether recurrent advantage persists in a
tougher environment. RNN_v2 remains top-ranked, confirming robust-
ness to opponent-pool strength.

Results: Pretraining and opponent-pool
strength.

Table S10 Nine-agent Top-R tournament results (mean and 95% CI, 10 seeds). Cited in Results Pretraining and
opponent-pool strength (“Supplementary
Table S10”).

Section S11 Sliding-window length sensitivity for regret-certificate diagnostics.
Tests robustness of the certificate diagnostics to the window length
K used to estimate the empirical opponent distribution pt . While the
certificate inequality holds for all K ∈ {5,10,20,50} by construction,
correlation and tightness statistics vary; qualitative conclusions remain
stable.

Methods: definition of pt ; Results: Re-
gret certificate diagnostics and tightness
analysis.

Figure S7 Spearman correlation between ∥pt − p̂t∥1 and regret ∆t as a function of
K.

Cited in Methods (“Supplementary
Fig. S7”).

Table S11 Summary Lipschitz diagnostics (mean error, mean regret, slope, viola-
tion rate) across K ∈ {5,10,20,50} for four representative matchups.

Cited in Methods (“Supplementary Ta-
ble S11”).

Section S12 Computational cost benchmarking. Reports end-to-end wall-clock
runtime (ms/decision) and parameter counts for representative agents.
Ensures budget comparability across families and addresses reviewer
requests for cost transparency.

Methods: Hyper-parameter selection and
resource matching.

Table S12 Parameter counts and ms/decision (CPU) for six representative agents
spanning non-neural baselines, actor–critic, Transformer, RNN, and
LSTM.

Cited in Methods (“Supplementary Ta-
ble S12”).

3/20



S1 Agent implementation details
This section provides detailed specifications for all agent archetypes implemented in our benchmark. Each archetype is
instantiated with multiple variants (typically three) using different initializations and hyper-parameters, and evaluated across
ten random seeds.

S1.1 Deep learning agents (GPU-accelerated)
All deep learning agents are implemented in PyTorch 1.12+ and support GPU acceleration (tested on NVIDIA RTX A6000).
Table S1 summarizes the key architectural parameters and online update strategies for each family.

Table S1. Summary of deep learning agent architectures and online update strategies. The “Update strategy” column
describes the default behaviour; agents supporting set_batch_size() can be configured via command-line arguments.

Agent Architecture Key hyperparameters Online update strategy
RNN_v2 GRU predictor, 1 layer, 64 hidden lr=10−3, ctx=16, grad_clip=1.0 Configurable†: default per-step
LSTM_v1 LSTM, 1 layer, 64 hidden lr=10−3, ctx=24, dropout=0.1 Per-step + replay (freq=15)
LSTM_v2 LSTM, 2 layers, 80 hidden lr=1.5×10−3, ctx=24, dropout=0.05 Per-step + replay (freq=15)
Tr_v1 Transformer, 1 layer, d=64 lr=10−3, ctx=32, heads=4 Mini-batch: batch=64, freq=64
Tr_v2 Transformer, 2 layers, d=64 lr=10−3, ctx=32, dropout=0.05 Mini-batch: batch=64, freq=64
A3C_v1 Shared MLP (2×64), A-C lr=10−3 (RMSprop), ent=0.01 Per-step (buffered, batch=64)
A3C_v2 Separate actor/critic, target net lr=2×10−3 (Adam), τ=0.02 Per-step (immediate)
† RNN_v2 exposes set_batch_size(), but batch size is used only in optional mini-batch mode (online_mode=False); the default behavior

in this work is per-step online updates.

Detailed specifications:

• RNN_v2: GRU-based recurrent predictor with tanh activation, one hidden layer (64 units), trained with Adam optimizer
(learning rate 10−3), gradient clipping (max norm 1.0), and context length 16. Update strategy: Default online mode
performs a parameter update after each round (one gradient step per new observation). The implementation also supports
an optional mini-batch mode (online_mode=False) in which updates occur every update_freq rounds using
the most recent batch_size samples; unless stated otherwise, we use the default per-step mode. The network predicts
the opponent’s next action distribution from encoded history features.

• LSTM_v1: Single-layer LSTM with 64 hidden units, dropout (rate 0.1), and layer normalization. Trained with Adam
(learning rate 10−3). Update strategy: Per-step updates with periodic experience replay. A small replay buffer (size 20)
is maintained, and replay occurs every 15 steps.

• LSTM_v2: Deeper LSTM with 80 hidden units and two stacked layers, dropout (rate 0.05), learning rate 1.5×10−3 with
slow decay (γ = 0.99995). Update strategy: Same as LSTM_v1 (per-step + replay every 15 steps). Uses hidden-state
persistence across rounds within a matchup.

• Tr_v1: Basic transformer encoder with a single self-attention layer, model dimension d = 64, 4 attention heads, context
length 32, and learned positional encodings. Trained with Adam (learning rate 10−3). Update strategy: Mini-batch
updates (batch_size=64, update_freq=64).

• Tr_v2: Deeper transformer with 2 layers, multi-head attention (4 heads), model dimension d = 64, residual connections,
and dropout (rate 0.05). Learning rate 10−3. Update strategy: Mini-batch updates (batch_size=64, update_freq=64). The
Transformer sweep (Table S4) varied context length (16–64), depth (2–4 layers), width (d=64–128), dropout (0–0.10),
and learning rate (10−3 to 5×10−4).

• A3C_v1: Actor–critic architecture with a shared MLP backbone (two hidden layers, 64 units each) and separate policy
and value heads. Trained with RMSprop, entropy regularization coefficient 0.01. Update strategy: Per-step updates with
a small experience buffer; gradient updates occur when buffer fills (effective batch size 64).

• A3C_v2: Advanced actor–critic variant with separate actor and critic networks (no weight sharing), target network
stabilization (Polyak averaging with τ = 0.02), entropy regularization (coefficient 0.01), and Adam optimizer with
learning rate 2×10−3. Update strategy: Immediate per-step updates after each round (no buffering).

4/20



Note on update strategies. The different update strategies reflect the distinct inductive biases and stability requirements of
each architecture under short-horizon online play. Recurrent predictors (RNN/LSTM) operate in per-round update mode (with
LSTM variants additionally using a small replay buffer), which can provide fast adaptation to local non-stationarities. Trans-
former predictors use buffered mini-batch updates (controlled by an internal update_freq and a configurable batch_size)
to reduce gradient variance under sparse online data. Actor–critic agents similarly rely on online updates with optional buffering.
Because these update rhythms are not directly comparable in terms of “number of gradient steps”, we report end-to-end
ms/decision as a unified resource metric (Table S12) rather than forcing a single shared schedule.

S1.2 Classical machine learning (CPU-based)
• SVM: Support vector machine with RBF kernel (γ = 0.1, C = 1.0), trained on engineered features summarizing recent

action histories (last 20 actions encoded as frequency vectors and transition counts). Refit every 50 rounds.

• RF: Random forest classifier with 100 trees, maximum depth 10, minimum samples per leaf 5. Uses the same feature
engineering as SVM. Refit every 50 rounds with a sliding window of the last 200 observations.

• XGB: Gradient-boosted decision trees (XGBoost) with 50 estimators, maximum depth 6, learning rate 0.1, and L2
regularization (λ = 1.0). Same feature pipeline and refit schedule as RF.

S1.3 Probabilistic and custom strategies
• B_v1: Frequency-tracking baseline using Dirichlet–multinomial inference. Maintains a Dirichlet posterior over opponent

action frequencies with concentration parameter α0 = 1.0 (uniform prior) and best-responds to the posterior mean.

• B_v2: Adaptive frequency tracker that detects non-stationarity via a change-point heuristic (comparing recent window
statistics to historical statistics) and resets its concentration parameters when a shift is detected.

• M_v1: First-order Markov agent that estimates transition probabilities P(bt |bt−1) from observed opponent actions and
best-responds to the predicted distribution.

• M_v2: Higher-order Markov agent that considers transitions P(bt |bt−1,bt−2) with a back-off scheme: falls back to
first-order or zeroth-order estimates when higher-order counts are insufficient (threshold: 5 observations).

• MSA: Multi-scale aggregator that maintains frequency statistics over multiple time windows (last 10, 50, 200 rounds)
and combines predictions using exponentially weighted averaging, giving more weight to recent windows.

S1.4 Rule-based baselines
• R: Uniform random agent that selects each action (Rock, Paper, Scissors) with probability 1/3, independent of history.

Serves as a neutral baseline.

• CG (Counter-Guesser): Predicts that the opponent will play the action that beats the agent’s most recent action, then
plays the counter to that prediction. Exploits naive “beat the last move” opponents.

• WL (Win–Lose heuristics): Hand-crafted rules based on the last game outcome. WL_v1: win-stay/lose-shift (repeat
action after win, switch after loss). WL_v2: win-shift/lose-stay. WL_v3: deterministic cycling through R→P→S
regardless of outcome.

S1.5 Implementation notes
All implementations are contained in the AI_RPS directory of the code repository. Neural agents use PyTorch 1.12+ and
were developed/tested with NVIDIA GPU support (RTX A6000), while classical ML agents use scikit-learn 1.0+ and
XGBoost 1.6+. All agents implement the common interface expected by the tournament runner (RPS_main.py), in
particular punches(round_idx) for action selection and play(my_action, opp_action) for online updates (with
batch_play for batch-capable models). Code has been cross-checked for consistency between documented intent and
implementation.

S1.6 Statistical methodology
This subsection documents the statistical procedures used to compare method performance across the tournament.

5/20



Rationale for seed-paired analysis. Our tournament generates scores under ten independent random seeds, but within each
seed the scores of different methods are statistically dependent: all agents face the same sequence of opponents (determined by
the tournament schedule) and respond to common random events (e.g., exploration noise, initial conditions). Using unpaired
tests such as Mann–Whitney U would treat all 30 observations per method (3 variants × 10 seeds) as independent, violating the
assumption and inflating Type-I error rates when within-seed correlations are positive.

To account for this dependency structure, we adopt a seed-paired design. For each method pair (A,B), we compute the
mean score of method A within each seed (averaging over its 3 variants) and likewise for B, yielding ten paired observations
(xA

1 ,x
B
1 ), . . . ,(x

A
10,x

B
10). We then apply the Wilcoxon signed-rank test to the paired differences di = xA

i − xB
i , which tests whether

the median of the signed-rank distribution differs from zero. This approach is robust to non-normality and accounts for
seed-level confounds.

Multiple comparison correction. With 18 method families, there are
(18

2

)
= 153 pairwise comparisons. We apply the

Holm–Bonferroni step-down procedure to control the family-wise error rate at α = 0.05. Results are reported in the analysis
output file nonparam_wilcoxon_holm.csv, which includes raw p-values, adjusted p-values, and significance flags for
each method pair.

Implementation note. The statistical analysis is implemented in utility/analyze_2.py, function
nonparam_wilcoxon_holm(). The function pivots the score data so that each row corresponds to a seed and each column
to a method, then applies the Wilcoxon signed-rank test (via scipy.stats.wilcoxon with zero_method=“pratt”)
to each method pair.

6/20



S2 Validation opponent set (Core-19)
To reduce the risk of tuning on the final benchmark, we select neural hyper-parameters on a held-out validation tournament
consisting of a compact but diverse opponent set (“Core-19”). The set contains representative instances from each major family
(rule-based, probabilistic, classical ML, deep sequence models and RL) and is used only for configuration selection. This
separation is designed to help ensure that the 54-agent benchmark results are not biased by hyper-parameter choices optimized
on the same population.

Table S2. Core-19 validation opponent set (Agent_seats/val_core19.csv). This roster is reserved for
hyper-parameter selection and sensitivity checks.

Seat Agent ID Agent family type
1 01_R Baseline
2 02_CG Baseline
3 03_WL Baseline
4 04_B_v1 Probabilistic
5 05_B_v2 Probabilistic
6 06_M_v1 Probabilistic
7 07_M_v2 Probabilistic
8 08_MSA_v2 Probabilistic
9 09_SVM Classical machine learning

10 10_RF Classical machine learning
11 11_XGB Classical machine learning
12 12_RNN_v2 Deep neural network
13 13_RNN_v2 Deep neural network
14 14_LSTM_v1 Deep neural network
15 15_LSTM_v2 Deep neural network
16 16_Tr_v1 Deep neural network
17 17_Tr_v2 Deep neural network
18 18_A3C_v1 Reinforcement learning
19 19_A3C_v2 Reinforcement learning

7/20



S3 Validation results and transformer sweep
The Core-19 validation tournament (Table S3) is used for tuning and sensitivity checks, and is not used for selecting the final
54-agent benchmark ranking. Because ranking in non-transitive settings can depend strongly on the opponent population, these
validation results are reported separately from the main benchmark. This population dependence is a characteristic feature of
non-transitive games and motivates our emphasis on population-level evaluation throughout the paper.

To directly address potential concerns that Transformer baselines are under-tuned, we also run a targeted Transformer
hyper-parameter sweep on a validation sweep roster that includes multiple Transformer configurations. Table S4 and Figure S1
summarize the sweep: across all tested configurations, Transformer variants remain negative, and the best configuration (TrA)
still has negative mean score. This provides evidence that the observed Transformer performance pattern is not solely an artifact
of a single poor hyper-parameter choice.

Table S3. Core-19 validation results aggregated by method (10 seeds). Scores are total win–loss points over the full validation
tournament; 95% confidence intervals are computed across seeds.

Method n Mean Std CI2.5% CI97.5%
A3C_v2 10 3985.4 676.9 3565.8 4405.0
RNN_v2 20 932.8 478.8 722.9 1142.7
M_v1 10 354.4 178.4 243.8 465.0
LSTM_v1 10 338.7 180.5 226.8 450.6
M_v2 10 229.9 180.4 118.1 341.7
A3C_v1 10 38.0 199.8 -85.8 161.8
R 10 9.1 135.1 -74.6 92.8
CG 10 -20.3 68.5 -62.8 22.2
LSTM_v2 10 -117.6 240.9 -266.9 31.7
RF 10 -163.4 676.9 -582.9 256.1
WL 10 -309.6 276.8 -481.2 -138.0
MSA_v2 10 -321.6 120.5 -396.3 -246.9
B_v2 10 -341.3 105.8 -406.9 -275.7
B_v1 10 -352.1 83.3 -403.7 -300.5
SVM 10 -463.7 387.9 -704.1 -223.3
Tr_v1 10 -1083.6 288.2 -1262.2 -905.0
Tr_v2 10 -1797.1 451.1 -2076.7 -1517.5
XGB 10 -1850.8 1051.7 -2502.7 -1198.9

Table S4. Transformer hyperparameter sweep on the validation sweep roster (10 seeds). Each configuration varies context
length (ctx), model width (d), depth (layers), dropout, and learning rate (lr). Scores are total win–loss points; 95% confidence
intervals are computed across seeds.

Config ctx d L dropout lr Mean CI2.5% CI97.5%
TrA 16 64 2 0.05 1e-03 -882.1 -1123.1 -641.1
TrF 64 64 2 0.05 1e-03 -1597.5 -1913.0 -1282.0
TrE 32 64 2 0.00 1e-03 -1784.9 -1967.2 -1602.6
TrB 32 64 3 0.05 1e-03 -1933.8 -2215.6 -1652.0
TrC 32 96 3 0.10 5e-04 -1957.6 -2199.8 -1715.4
TrG 32 128 3 0.05 5e-04 -2019.9 -2275.0 -1764.8
TrD 64 96 4 0.10 5e-04 -2280.9 -2677.1 -1884.7
TrH 64 128 4 0.05 5e-04 -2671.5 -2912.7 -2430.3

Extended sweep (planned). To further reduce the risk that transformer performance is limited by an overly narrow tuning
space, we also provide a ready-to-extend configuration template that can be expanded to longer contexts (e.g., 100–200) and
wider/deeper models (e.g., d ≥ 128, L ≥ 4) under the same training budget. Results from such extended sweeps can be inserted
into Table S4 if additional runs are performed.

8/20



Figure S1. Transformer sweep results on the validation sweep roster (10 seeds). Points show mean score with 95% confidence
intervals. Even the best configuration remains negative under our online update budget and short-context design, supporting that
the observed Transformer performance pattern is not explained by a single hyperparameter choice within the explored budget.

9/20



S4 Transformer configuration traceability
To support reproducibility and address potential concerns about under-tuning, this section documents the exact Transformer
configurations used in the final Core-54 benchmark and their relationship to the hyper-parameter sweep.

S4.1 Final benchmark configurations
The Tr_v1 and Tr_v2 agents used in the 54-agent tournament employ the following hyper-parameters:

Table S5. Transformer configurations used in the final Core-54 benchmark. These are the codebase defaults and were frozen
before final evaluation.

Agent ctx d Layers Heads Dropout lr
Tr_v1 32 64 1 4 0.00 10−3

Tr_v2 32 64 2 4 0.05 10−3

S4.2 Mapping to sweep configurations
The sweep (Table S4) explored variations around these defaults:

• Tr_v1 (L=1) was not directly included in the sweep, which focused on L≥2 configurations.

• Tr_v2 closely matches TrE (ctx=32, d=64, L=2, dropout=0.00, lr=10−3), which achieved mean −1784.9.

• The best sweep configuration TrA (ctx=16, d=64, L=2, dropout=0.05) achieved mean −882.1, suggesting that shorter
contexts may be preferable under our 500-round online update protocol.

S4.3 Implications for fairness
We emphasize that:

1. The benchmark configurations (Tr_v1, Tr_v2) were not selected post-hoc from the sweep; they are codebase defaults
frozen before the final tournament.

2. The sweep indicates that within the explored space, no configuration achieves positive scores on Core-19, and the best
(TrA) remains negative.

3. The finding that shorter contexts (TrA: ctx=16) outperform longer contexts may reflect an inductive-bias mismatch rather
than under-tuning alone: Transformers may struggle with sample efficiency in our 500-round online setting regardless of
context length.

Future work with longer interaction horizons (e.g., 5000+ rounds) or larger pretraining corpora may benefit from configurations
with longer contexts and more layers; our results characterize performance specifically under the current protocol.

10/20



S5 Additional robustness checks
This section documents sensitivity analyses that support the robustness of our qualitative conclusions to reasonable variations in
experimental protocol. These checks are important because multi-agent learning outcomes can be sensitive to implementation
details, and we want to help ensure that our findings about recurrent architectures and transformer performance patterns are not
artifacts of specific choices.

Update-budget sensitivity. We vary the online update frequency (batch size and update interval) for the neural predictors
while holding the tournament protocol fixed, to examine whether conclusions are driven by an idiosyncratic training schedule.

Context-length sensitivity. We vary the history window length used by each agent (when applicable) and report score curves
and variance across seeds.

Reward scaling. The stage payoff is fixed to {−1,0,1} in all main experiments. Any affine transformation of the payoff
(e.g., shifting to remove negative values) preserves best-response structure but rescales cumulative scores and the constants
in Lipschitz-type bounds. Because our neural predictors are trained by predicting opponent actions (supervised) rather than
directly optimizing reward magnitude, affine transformations do not change their decisions; we therefore treat payoff rescaling
as a reporting convention rather than a distinct experimental condition. For RL-style agents whose gradients scale with reward
magnitude, we report a small sensitivity study.

11/20



S6 Full 54-agent tournament: additional analyses
This section provides additional analyses for the main 54-agent, 500-round, 10-seed tournament reported in the main manuscript.
These supplementary diagnostics extend the main results by examining stability across random seeds, temporal dynamics of
score accumulation, and providing the complete agent-level ranking for full transparency.

S6.1 Stability across random seeds
Beyond average performance, stability across random seeds is an important criterion for evaluating learning algorithms in
non-stationary environments. Figure S2 plots each agent’s mean score against its coefficient of variation (CV), computed over
seeds. High-scoring agents tend to maintain large positive mean scores with moderate relative variability, while agents with
near-zero mean exhibit inflated CV due to small denominators.

Figure S2. Stability analysis across seeds: mean score versus coefficient of variation (CV). Points far to the right correspond
to agents with consistently high scores; large CV values often occur for agents with mean scores near zero.

S6.2 Cumulative score trajectories over the tournament schedule
To understand whether performance advantages are persistent throughout the tournament or concentrated in specific matchups,
we examine cumulative score trajectories. Figure S3 shows cumulative score trajectories (aggregated by method) as the
tournament progresses through the ordered matchups. This visualization helps interpret whether a method’s advantage is
persistent or concentrated in a subset of matchups.

S6.3 Full agent ranking
For complete transparency and reproducibility, we provide the full ranking of all 54 agents. Table 1 in the main text reports only
the Top-5 agents; the complete ranking below enables independent verification of all agent-level results and supports detailed
inspection of where specific agents fall in the distribution.

Note: The complete 54-row table is available in the supplementary data files (outputs/full_ranking.csv).

12/20



Figure S3. Cumulative score trajectories over 1,431,000 evaluated game rounds per seed (54 agents × 53 opponents × 500
rounds), aggregated by method. Top-ranked methods maintain a consistent advantage throughout the tournament schedule.

Table S6. Full ranking of all 54 agents by mean score across ten seeds. Scores are cumulative sums of the normalized payoff
(+1/0/−1) over all opponents and both directions in the double round-robin tournament.

Rank Agent Mean Std 95% CI
1 01_RNN_v2 10618.1 2669.9 [8963.3, 12272.9]
2 02_RNN_v2 7071.0 1189.8 [6333.6, 7808.4]
3 03_RNN_v2 6177.3 1514.5 [5238.6, 7116.0]
4 06_LSTM_v1 5217.5 599.2 [4846.1, 5588.9]
5 04_LSTM_v1 5213.0 794.2 [4720.7, 5705.3]
6 05_LSTM_v1 5129.3 783.2 [4643.9, 5614.7]
7 13_A3C_v2 3995.9 908.8 [3432.6, 4559.2]
8 14_A3C_v2 3863.6 806.8 [3363.5, 4363.7]
9 15_A3C_v2 3653.0 1125.1 [2955.6, 4350.4]

10 11_A3C_v1 3459.4 792.0 [2968.5, 3950.3]
...

50 50_RF -12003.3 4136.0 [-14566.8, -9439.8]
51 51_RF -12162.4 5889.1 [-15812.5, -8512.3]
52 52_XGB -17660.6 5084.5 [-20812.0, -14509.2]
53 53_XGB -19504.8 5033.7 [-22624.7, -16384.9]
54 54_XGB -19981.8 5160.3 [-23180.2, -16783.4]

13/20



S7 Non-transitive meta-game structure
This section provides analysis supporting the presence of non-transitive structure in our tournament, complementing the
population-dependent ranking analysis in the main text. We analyze the pairwise payoff matrix, enumerate cyclic dominance
relations, and compute α-Rank evolutionary dynamics.

S7.1 Pairwise payoff analysis
For the Core-19 validation roster, we construct a method-aggregated pairwise payoff matrix G. Core-19 contains 19 seat
instances but only 18 distinct method families (two seats correspond to RNN_v2); to obtain a square meta-game over distinct
methods, we aggregate seat-level outcomes by method name. Each entry G(i, j) is the mean cumulative directed score of
method i against method j (row player i, column player j), averaged over seeds (and averaged over duplicated seats when
applicable).

In an ideal symmetric zero-sum setting the expected meta-game matrix is skew-symmetric, but in our finite-sample tourna-
ments with online learning dynamics and direction-specific matchups, the empirical matrix need not be exactly antisymmetric.
We therefore treat G as a directed meta-game and do not enforce antisymmetry. The resulting Core-19 matrix has Frobenius
norm 1194.33 and rank 18 (full rank for 18 methods), indicating substantial interaction structure beyond a single transitive
ordering. We use G(i, j)> 0 as the directed dominance relation when enumerating three-cycles.

S7.2 Enumeration of three-cycles
A three-cycle A ≻ B ≻C ≻ A exists when G(A,B) > 0, G(B,C) > 0, and G(C,A) > 0. We enumerate all such cycles in the
Core-19 payoff matrix. Table S7 lists the detected cycles, sorted by the minimum edge strength (the smallest G value in the
cycle).

Table S7. Selected three-cycles detected in the Core-19 pairwise payoff matrix. Each row shows a cycle A ≻ B ≻C ≻ A with
the minimum edge strength (weakest link) and average edge strength. A total of 177 three-cycles were detected; the table
shows the top cycles by minimum edge strength. Cycles with stronger edges provide more robust evidence of non-transitivity.

Agent A Agent B Agent C Min edge Avg edge
B_v1 B_v2 M_v1 37.30 54.23
B_v2 M_v1 M_v2 25.50 46.00
B_v1 B_v2 RF 24.50 34.63
B_v1 XGB SVM 24.20 54.57
LSTM_v1 RF SVM 18.20 65.87
LSTM_v1 XGB SVM 18.20 90.33
B_v2 M_v1 RF 17.10 58.10
A3C_v1 RF SVM 16.90 56.43
A3C_v1 XGB SVM 16.90 70.63
B_v1 B_v2 SVM 15.90 25.80
...

...
...

...
...

The full list of detected cycles can be regenerated using utility/analyze_metagame.py,
which writes detected_3_cycles.csv.

Interpretation. The presence of multiple three-cycles suggests that pairwise dominance relations do not form a directed
acyclic graph (DAG), and hence no total ordering of agents is consistent with all pairwise outcomes. This is a defining
characteristic of non-transitive competition and supports the paper’s focus on population-dependent evaluation.

S7.3 α-Rank evolutionary analysis
α-Rank provides an evolutionary game-theoretic ranking by modeling a Markov chain over strategy profiles where transition
probabilities depend on payoff differences and a selection intensity parameter α . Unlike Elo or TrueSkill, α-Rank does not
assume transitivity and can assign non-trivial mass to multiple strategies in the stationary distribution.

We compute the α-Rank stationary distribution for the Core-19 payoff matrix with α = 0.1 (moderate selection pressure).
Figure S4 shows the resulting mass allocation across agents.

Key observations:

• The stationary distribution is not concentrated on a single agent, suggesting that no strategy dominates all others under
evolutionary dynamics.

14/20



Figure S4. α-Rank stationary distribution over Core-19 agents (α = 0.1). The uniform Random baseline (R) receives the
highest mass (11.2%), followed by A3C_v2 (9.9%) and CG (8.2%). The dashed red line indicates uniform mass (5.6% per
agent). This counterintuitive result—where R outranks sophisticated learners—reflects the evolutionary logic of α-Rank: in a
non-transitive setting, strategies that avoid catastrophic losses may survive better under perturbed best-response dynamics.

• The uniform Random baseline (R) receives the highest mass (11.2%), a counterintuitive result explained by the evolution-
ary logic of α-Rank: in a non-transitive meta-game with many cycles, strategies that avoid strong losses may survive
better under perturbed best-response dynamics.

• A3C_v2 receives the second-highest mass (9.9%), followed by CG (8.2%) and M_v1 (7.0%), consistent with their
robustness in pairwise matchups.

• Transformer variants receive near-uniform or below-uniform mass (Tr_v1: 2.4%, Tr_v2: 2.0%), suggesting they are
evolutionarily less stable under the α-Rank dynamics.

S7.4 Rank correlation across evaluation pools
Table S8 quantifies how method rankings change across different opponent pools, providing a measure of population dependence.

Table S8. Rank correlations between evaluation pools. Spearman ρ and Kendall τ are computed on the intersection of
methods present in both pools.

Pool A Pool B # common Spearman ρ Kendall τ

Core-54 Core-19 18 0.651 0.503
Core-54 Top-R 8 0.52 0.29
Core-54 Pack4 4 0.80 0.67
Core-19 Top-R 8 0.738 0.571

15/20



S8 Additional Lipschitz analyses
This section extends the Lipschitz bound diagnostics presented in the main text (Figure 3 and Table 3) to an additional regime:
a predictor-vs.-predictor matchup where both agents are pre-trained. While the theoretical bound ∆t ≤ 2∥pt − p̂t∥1 continues
to hold, the empirical correlation between prediction error and regret is weaker in this setting because many rounds already
achieve near-zero regret. This illustrates that the worst-case bound can become loose once an opponent is effectively “solved.”

Figure S5. Lipschitz analysis for the directed matchup RNN_v2→LSTM_v2 when both agents are loaded from the core-20
training run (10 seeds, rounds 51–500, K = 20). The theoretical envelope 2∥pt − p̂t∥1 continues to hold for regret defined via
best responses, but the empirical correlation is weak because many rounds have near-zero regret despite varying prediction
error.

16/20



S9 Trained vs. untrained controls
A common concern in learning-in-games benchmarks is whether architectural performance gaps are artifacts of initialization
or pretraining rather than differences in online learning capacity. Here “pre-trained” refers to checkpoints produced by a
separate 20-agent training tournament (“core-20”, seat file Agent_seats/test_1_20agents.csv) run under the same
500-round interaction protocol; neural agents update online during this run and we save their final parameters at the end of each
seed run, which are then loaded as initial states in subsequent controlled comparisons.

To isolate training effects, we compare these pre-trained checkpoints against untrained counterparts (fresh initialization) in
both head-to-head and mixed-population settings. The results indicate that trained recurrent and A3C variants achieve notably
higher scores than their untrained versions in the mixed population, while Transformer remains negative in both trained and
untrained conditions—consistent with the interpretation that the Transformer’s weaker performance under our budget is not
solely due to poor initialization.

Table S9. Mixed population containing trained and untrained variants of four architectures (A3C, RNN, LSTM, Transformer).
Scores are aggregated over a 500-round round-robin tournament and summarized across 10 seeds (mean and 95% CI).

agent mean 95% CI
A3C_v2 1875.9 [839.4, 2912.4]
RNN_v2 1571.3 [1208.8, 1933.8]
A3C_v2un 1472.2 [1065.5, 1878.9]
RNN_v2un 371.8 [230.5, 513.1]
LSTM_v2 249.0 [35.2, 462.8]
LSTM_v2un -468.5 [-710.9, -226.1]
Tr_v2un -2517.2 [-2710.9, -2323.5]
Tr_v2 -2554.5 [-2752.2, -2356.8]

Figure S6. Mean score with 95% confidence intervals for the mixed trained/untrained eight-agent population (Table S9).
Trained recurrent and A3C agents outperform their untrained counterparts, whereas Transformer remains strongly negative
regardless of training.

17/20



S10 Stronger opponent pool (Top-R roster)
To probe sensitivity to opponent-pool strength, we rerun a reduced tournament restricted to a stronger nine-agent roster that
excludes highly exploitable baselines (RF, XGB). This tests whether the recurrent advantage persists in a tougher environment
where “easy wins” against weak opponents are removed. The ranking remains largely consistent: RNN_v2 is still the top-ranked
agent, suggesting that the recurrent advantage is not solely due to exploitation of weak baselines.

Table S10. Results for a stronger nine-agent roster that excludes highly exploitable baselines. Scores are summarized across
10 seeds (mean and 95% CI).

agent mean 95% CI
RNN_v2 825.4 [325.5, 1325.3]
RNN_v1 613.0 [98.8, 1127.2]
A3C_v2 146.2 [-820.7, 1113.1]
LSTM_v1 76.6 [-129.1, 282.3]
CG -39.5 [-103.8, 24.8]
M_v1 -60.1 [-93.5, -26.7]
M_v2 -109.9 [-165.2, -54.6]
LSTM_v2 -673.1 [-808.9, -537.3]
A3C_v1 -778.6 [-1068.7, -488.5]

18/20



S11 Sliding-window length sensitivity for Lipschitz analysis
The Lipschitz analysis in the main text uses a sliding window of length K = 20 to estimate the empirical opponent distribution
pt . This section examines the sensitivity of the diagnostic to the choice of K. The theoretical bound ∆t ≤ 2∥pt − p̂t∥1 holds
for all tested values (K ∈ {5,10,20,50}), though the empirical correlation between prediction error and regret varies with
K. Smaller windows are noisier but more responsive to recent changes; larger windows are smoother but may lag behind
distribution shifts.

Figure S7. Sensitivity of the Lipschitz diagnostic to the sliding-window length K used to estimate the empirical opponent
distribution pt . Each curve reports Spearman correlation between ∥pt − p̂t∥1 and instantaneous regret ∆t (computed against the
best response to p̂t ).

Table S11. Summary Lipschitz diagnostics across window lengths K ∈ {5,10,20,50}. “Slope” is the coefficient of a linear
regression ∆t = a∥pt − p̂t∥1 +b fit on non-zero pairs. “Viol.%” is the fraction of samples violating ∆t ≤ 2∥pt − p̂t∥1 (0%
indicates full satisfaction up to numerical tolerance).

Matchup K µ(∥p− p̂∥1) µ(∆) Spearman ρ Slope a Viol.%
A3C_v2→R 5 0.590 0.388 0.730 0.859 0.00
A3C_v2→R 10 0.452 0.262 0.526 0.600 0.00
A3C_v2→R 20 0.369 0.175 0.529 0.419 0.00
A3C_v2→R 50 0.312 0.100 0.433 0.240 0.00
A3C_v2→RNN_v2 5 0.785 0.636 0.848 1.112 0.00
A3C_v2→RNN_v2 10 0.675 0.524 0.810 1.091 0.00
A3C_v2→RNN_v2 20 0.579 0.416 0.784 1.061 0.00
A3C_v2→RNN_v2 50 0.488 0.294 0.725 0.895 0.00
RNN_v2→A3C_v2 5 0.517 0.232 0.736 0.760 0.00
RNN_v2→A3C_v2 10 0.444 0.177 0.511 0.632 0.00
RNN_v2→A3C_v2 20 0.425 0.148 0.549 0.535 0.00
RNN_v2→A3C_v2 50 0.463 0.121 0.417 0.330 0.00
RNN_v2→LSTM_v2 5 0.488 0.132 0.590 0.638 0.00
RNN_v2→LSTM_v2 10 0.665 0.151 0.061 0.135 0.00
RNN_v2→LSTM_v2 20 0.935 0.200 0.232 0.117 0.00
RNN_v2→LSTM_v2 50 0.961 0.102 0.046 0.003 0.00

19/20



S12 Computational cost benchmarking
To address potential concerns about computational cost comparisons and ensure budget comparability across agent families, we
report an end-to-end wall-clock benchmark for representative agents. We run a minimal two-agent match (method vs. the random
baseline R) for 500 rounds, repeated over the same ten random seeds used throughout the paper (1,2,3,5,8,13,21,34,55,89).
We measure the total elapsed time T and report

ms/decision = 1000× T
2× rounds×nseeds

, (1)

where the factor 2 counts decisions from both players. The benchmark includes forward inference and any online updates per-
formed by the agent in our implementation; it is therefore an end-to-end cost indicator for our framework (not a microbenchmark
of model inference only). The script used to generate Table S12 is provided as utility/benchmark_runtime_end2end.py
in the code release.

Table S12. End-to-end wall-clock runtime for representative agents (CPU). Each entry reports milliseconds per decision
computed from the total elapsed time of a 2-agent match against the random baseline R for 500 rounds, aggregated across the
10 seeds used in the paper. Parameter counts refer to trainable torch parameters of the agent’s neural network component (0
for non-neural baselines).

Method # params ms/decision (CPU) Notes
B_v1 (freq-tracking) — 0.101 Frequency-tracking baseline (Dirichlet posterior).
M_v1 — 0.095 Simple Markov baseline.
A3C_v2 25 604 1.302 Actor–critic; includes online updates.
Tr_v2 564 291 2.018 Transformer predictor; includes online updates.
RNN_v2 13 443 2.256 GRU-based predictor; includes online updates.
LSTM_v2 79 283 5.478 LSTM predictor; includes online updates.

20/20


	Agent implementation details
	Deep learning agents (GPU-accelerated)
	Classical machine learning (CPU-based)
	Probabilistic and custom strategies
	Rule-based baselines
	Implementation notes
	Statistical methodology

	Validation opponent set (Core-19)
	Validation results and transformer sweep
	Transformer configuration traceability
	Final benchmark configurations
	Mapping to sweep configurations
	Implications for fairness

	Additional robustness checks
	Full 54-agent tournament: additional analyses
	Stability across random seeds
	Cumulative score trajectories over the tournament schedule
	Full agent ranking

	Non-transitive meta-game structure
	Pairwise payoff analysis
	Enumeration of three-cycles
	-Rank evolutionary analysis
	Rank correlation across evaluation pools

	Additional Lipschitz analyses
	Trained vs. untrained controls
	Stronger opponent pool (Top-R roster)
	Sliding-window length sensitivity for Lipschitz analysis
	Computational cost benchmarking

