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1. Syntheses

1.1 Synthesis of 2D-Fe203

A piece of iron foil (1 cm?, 0.25 mm thick, 99.99%, Alfa) was ultrasonically cleaned in acetone and ethanol
for 10 min for degreasing, followed by dried under a nitrogen stream. To prepare a-Fe>O3 nanosheets grown
on the iron substrate, the foil was thermally annealed at 430 °C for 2 h in air using a HF-Kejing furnace (Model
KSL-1100X), with a heating rate of 10 °C min™!. This thermal annealing process resulted in the formation of
nano-leaf-like structures across the entire sample surface.

1.2 Synthesis of 1D-Cu20

The copper foil (1 cm?, 0.1 mm thick, 99.99%, Alfa) was ultrasonically cleaned in acetone and ethanol for 10
min for degreasing, followed by dried under a nitrogen stream. The cleaned foil was then electrochemically
anodized in a 3 M KOH solution at a current density of 10 mA cm™ until the potential reached 2 V to form
Cu(OH); nanowires. Subsequently, the as-grown Cu(OH), nanowires were converted into one-dimensional
Cu20 by annealing in an Ar atmosphere at 550 °C for 5 h with a heating rate of 10 °C min™".

1.3 Synthesis of 2D-ZnIn2S4

The precursor solution was prepared by dissolving ZnCl; (0.2045 g, 99.95%, Alfa), InCl3;-4H,0 (0.8795 g,
99.9%, Aladdin), and thiourea (0.4565 g, 99%, Aladdin) in 150 mL of ultrapure water. Subsequently, 20 mL
of the solution and a clean FTO substrate (conductive side down) were loaded into a Teflon-lined autoclave,
which was heated at 160 °C for 6 h. The resulting sample was collected, washed with water and ethanol, and
vacuum-dried at 50 °C for 24 h.

1.4 Synthesis of 2D-C3N4

Bulk 2D-C5N4 was synthesized by directly annealing 10 g of urea (99.9%, Aladdin) in a crucible at 550 °C for
3 h under ambient air.

1.5 Synthesis of 3D-Fe203

Following the preparation of a precursor solution from FeCl3-6H>O (0.15 M, 99%, Aladdin), NaNOs (1 M,
99%, Aladdin), and concentrated HNO3 (150 pL) in 100 mL of ultrapure water, a clean FTO substrate
(conductive side down) was placed in a Teflon-lined autoclave with 20 mL of the solution. The autoclave was

heated at 100 °C for 4 h. The obtained product was washed with ultrapure water/ethanol and dried.
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Subsequently, the FeEOOH sample was then subjected to annealing in argon at 600 °C for 1 h, followed by
ramping to 750 °C at 2 °C min™! and holding for 20 min before natural cooling.

1.6 Synthesis of 3D-TiO2

Following the preparation of a precursor solution from tetrabutyl titanate (1 mL, 99%, Aladdin) and NaNOs
(1 M, 99%, Aladdin) in a mixture of ultrapure water (30 mL) and concentrated HCI (30 mL), a clean FTO
substrate (conductive side down) was subjected to a hydrothermal treatment with 20 mL of the solution at
150 °C for 12 h. The resulting product was washed with deionized water, and subsequently annealed at 450 °C

for 1 h in air.

2. Characterizations

2.1 Structure and morphology

The crystal structure and composition were characterized by X-ray diffraction (XRD, Rigaku RINT-2000, Cu
Ka radiation at 40 kV and 40 mA) and X-ray photoelectron spectroscopy (XPS, ESCALAB

250xi1, Thermo Fisher Scientific). The morphology was examined using field-emission scanning electron
microscopy (FE-SEM, Supra 55, Zeiss, Germany) and spherical aberration-corrected high-resolution scanning
transmission electron microscopy (JEM GRAND ARM 300F, Japan). Electron paramagnetic resonance (EPR)
measurements were recorded at a low temperature of -150 °C using a JES-FA200 spectrometer.

2.2 XAFS Measurements

X-ray absorption fine structure (XAFS) measurements were performed with Si (111) crystal monochromators
at the BL14W Beam line at Shanghai Synchrotron Radiation Facility (SSRF) (Shanghai, China). Before the
analysis at the beamline, samples were placed into aluminum sample holders and sealed using Kapton tape
film. The obtained XAFS data was processed in Athena (version 0.9.26) for background, pre-edge line and
post-edge line calibrations. Then Fourier transformed fitting was carried out in Artemis (version 0.9.26). The
° weighting, k-range of 3~11.5 A™! and R range of 1-4 A were used for the fitting of UHL-SACs/Fe,Os. For
Wavelet Transform analysis, the y(k) exported from Athena was imported into the Hama Fortran code. The
parameters were listed as follow: R range, 0-4 A. k range, 0-16 A"l. k weight, 2. and Morlet function with

k=10, 0=1 was used as the mother wavelet to provide the overall distribution.
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2.3 Electrochemical performance measurements

The electrochemical OER and HER performances of the as-prepared Wpm/C3N4 and Wwm/C3N4 samples were
evaluated in a standard three-electrode system using a 0.5 M H2SOs electrolyte. The measurements were
conducted with a CHI 760E electrochemical workstation, and all recorded potentials were converted to the

reversible hydrogen electrode (RHE) scale.

2.4 Density functional theory calculations

All density functional theory (DFT) calculations were performed using the Vienna Ab-initio Simulation
Package (VASP).! The electron-ion interactions were described by the projector-augmented wave (PAW)
potentials, which accurately describe the core-valence electron interactions.” The exchange-correlation energy
was calculated within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof
(PBE) functional, which is widely adopted for solid-state calculations due to its reliable performance in
describing the electronic structure and structural properties of many materials.®> To account for the strong
correlation effects of d electrons, the DFT+U correction was employed. The effective U value for the Fe
elements was set to 4 eV, which was chosen based on previous literatures or calibration calculations.*
Additionally, the DFT+D3 correction was incorporated to consider the long-range van der Waals (vdW)
interactions, which is crucial for systems involving weak intermolecular or interfacial interactions.’ For the
calculation of density of states (DOS), hybrid density functional theory (HSE06) calculations were performed

to improve the accuracy of electronic structure predictions.® The cutoff energy for the plane-wave basis set

was set to 500 eV, which was tested to ensure the total energy convergence. For the k-point sampling in the

first Brillouin zone, a Monkhorst-Pack grid of 3x3 x1 was used for optimization, and the convergence of total

energy with respect to k-point density was verified.’

The adsorption energy of the system is defined by:

Eform = Etotal = Esub — Ebulkn (1)
where Eioral 1s the total energy of SAC on Fe2Os (001), Esup 1s the energy of Fe2O3 (001), Epuk is the energy of
metals in bulk, and n is the number of metal atoms in the bulk.

The cohesive energy of the system is defined by:

Econ = (Evpuik — n*Eatom)/n (2)
where Evuik 1s the energy of bulk metal and Eaom 1s the energy of single metal in this system. The lower the
cohesive energy, the easier it is for atoms to agglomerate.

The binding energy of the system is defined by:



Ebind = E'total — Esubstrate — ESAc 3)
where Esubstrate 1S the energy of the substrate, and Eioa is the total energy of the system.

The Gibbs free energy of the system is defined by:

AG = AH— TAS “4)
where AH is enthalpy, T is the temperature, and AS is the entropy of the system. Negative AG means that the

reaction occurs spontaneously.



f Fe20s. a-¢c, SEM

images o

Supplementary Fig. 1 SEM, HAADF-STEM and EDS elemental mappings

elemental mappings

0

images of Fe2Os. d, e, high resolution HAADF-STEM images of Fe;Os. f, FFT pattern

of Fe;0:s.



Fe,O4

Intensity (a.u.)

Fe,O,; JCPDS:33-0664
Fe JCPDS:06-0696

30 40 50 60 70
20 (degree)

Supplementary Fig. 2 X-ray diffraction (XRD) pattern. XRD pattern of Fe;0s.
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Supplementary Fig. 3 a,b, The HAADF-STEM images (a) and the size of Ir (b) on Fe2O3 with various Ir
loadings (0.1-20 wt%).
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Supplementary Fig. 4 Illustration of the synthesis approach. Schematic illustration for the synthesis of

UHL-SACs/FexOs.



Supplementary Fig. S SEM, HAADF-STEM and EDS elemental mappings images of UHL-Ir/Fe:0:s. a-
¢, SEM images of UHL-Ir/Fe>Os. d, e, high resolution HAADF-STEM images of UHL-I1/Fe;0:s. f, elemental
mappings of UHL-Ir/Fe;0s.
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Supplementary Fig. 6 X-ray photoelectron spectroscopy (XPS) characterization. Ir 4f XPS spectra for
UHL-Ir/Fe;0s.
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Supplementary Fig. 7 Atom structural characterization of UHL-Ir/Fe20s. a, Ir L3-edge XANES spectra
of UHL-Ir/Fe2Os, Ir foil and IrO». b-e, Ir K-edge EXAFS data and fit for UHL-Ir/Fe>Os in R-space and f, g, k-

space. h, WT-EXAFS plot of UHL-Ir/Fe;0s.
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Supplementary Fig. 8 HAADF-STEM and EDS elemental mappings images of UHL-Ir/Fe:03 without
plasma pretreatment. a,b, HAADF-STEM images of UHL-Ir/FeoO3 without plasma pretreatment. c-f,

elemental mappings of UHL-Ir/Fe;O3 without plasma pretreatment.
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Supplementary Fig. 9 Electron paramagnetic resonance (EPR) spectroscopy. EPR spectra of Fe;O3 before

and after plasma pretreatment.
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Supplementary Fig. 10 HAADF-STEM images. HAADF-STEM image of Ir precursor loaded onto Fe2O3

after plasma pretreatment, following conventional sluggish annealing.
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Supplementary Fig. 11 Structural modes. a-k, Structural modes of pristine Fe.Os surfaces loaded with 1-

10 dispersed Ir atoms.
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Supplementary Fig. 12 Structural modes. a-k, Structural modes of plasma-treated Fe,O3 surfaces loaded

with 1-10 dispersed Ir atoms.
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Supplementary Fig. 13 Structural characterization of Yem/Fe:03. a, XRD patterns of Ypm/Fe20s. b,

HAADF-STEM image of Ypm/Fe20s. ¢, Y 3d XPS spectra of Ypm/Fe20Os. d, Normalized Y K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Y K-

edge EXAFS signals. f-h, Y K-edge EXAFS data and fit for UHL-Ypm/Fe2O3 in R-space and i, j, k-space. k,l,

WT-EXAFS plots of UHL-Ypm/Fe203 and Y foil.
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Supplementary Fig. 14 Structural characterization of Zrem/Fe203. a, XRD patterns of Zrpm/Fe20s. b,

HAADF-STEM image of Zrpm/Fe203. ¢, Zr 3d XPS spectra of Zrpm/Fe2Os. d, Normalized Zr K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Zr K-

edge EXAFS signals. f-h, Zr K-edge EXAFS data and fit for UHL-Zrpm/Fe2Os3 in R-space and i, j, k-space.

k,1, WT-EXAFS plots of UHL-Zrpm/Fe2O3 and Zr foil.
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Supplementary Fig. 15 Structural characterization of Nbepm/Fe203. a, XRD patterns of Nbpm/Fe20s. b,

HAADF-STEM image of Nbpm/Fe20s. ¢, Nb 3d XPS spectra of Nbpm/Fe20s. d, Normalized Nb K-edge X-

ray absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Nb

K-edge EXAFS signals. f-h, Nb K-edge EXAFS data and fit for UHL-Nbpm/Fe20s in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Nbpm/Fe2O3 and Nb foil.
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Supplementary Fig. 16 Structural characterization of Morm/Fe203. a, XRD patterns of Mopm/Fe2Os. b,

HAADF-STEM image of Mopm/Fe20s. ¢, Mo 3d XPS spectra of Mopm/Fe203. d, Normalized Mo K-edge X-

ray absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Mo

K-edge EXAFS signals. f-h, Mo K-edge EXAFS data and fit for UHL-Mopwm/Fe2O3 in R-space and i, j, k-

space. k,l, WT-EXAFS plots of UHL-Mopm/Fe2O3 and Mo foil.
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Supplementary Fig. 17 Structural characterization of Rurm/Fe203. a, XRD patterns of Rupm/Fe20s. b,

HAADF-STEM image of Rupm/Fe20s. ¢, Ru 3p XPS spectra of Rupm/Fe203. d, Normalized Ru K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Ru K-

edge EXAFS signals. f-h, Ru K-edge EXAFS data and fit for UHL-Rupwm/Fe2O3 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Rupwm/Fe2O3 and Ru foil.
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Supplementary Fig. 18 Structural characterization of Rhem/Fe203. a, XRD patterns of Rhpm/Fe20s. b,

HAADF-STEM image of Rhpm/Fe20s. ¢, Rh 3d XPS spectra of Rhpm/Fe2O3. d, Normalized Rh K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Rh K-

edge EXAFS signals. f-h, Rh K-edge EXAFS data and fit for UHL-Rhpm/Fe2O3 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Rhpm/Fe2O3 and Rh foil.
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Supplementary Fig. 19 Structural characterization of Pdem/Fe203. a, XRD patterns of Pdpm/Fe20s. b,

HAADF-STEM image of Pdpm/Fe2Os. ¢, Pd 3d XPS spectra of Pdpm/Fe203. d, Normalized Pd K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Pd K-

edge EXAFS signals. f-h, Pd K-edge EXAFS data and fit for UHL-Pdpm/Fe203 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Pdpm/Fe2O3 and Pd foil.
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Supplementary Fig. 20 Structural characterization of Agem/Fe203. a, XRD patterns of Agpm/Fe20s. b,
HAADF-STEM image of Agpm/Fe20s. ¢, Ag 3d XPS spectra of Agpm/Fe20s. d, Normalized Ag K-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Ag K-
edge EXAFS signals. f-h, Ag K-edge EXAFS data and fit for UHL-Agpm/Fe2O3 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Agpm/Fe2Os and Ag foil.
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Supplementary Fig. 21 Structural characterization of Cdem/Fe203. a, XRD patterns of Cdpm/Fe20s. b,

HAADF-STEM image of Cdpm/Fe20s. ¢, Cd 3d XPS spectra of Cdpm/Fe203. d, Normalized Cd K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Cd K-

edge EXAFS signals. f-h, Cd K-edge EXAFS data and fit for UHL-Cdpm/Fe203 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Cdpm/Fe203 and Cd foil.
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Supplementary Fig. 22 Structural characterization of Inem/Fe203. a, XRD patterns of Inpm/Fe2Os. b,

HAADF-STEM image of Inpm/Fe20s. ¢, In 3d XPS spectra of Inpm/Fe20s. d, Normalized In K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental In K-

edge EXAFS signals. f-h, In K-edge EXAFS data and fit for UHL-Inpm/Fe2O3 in R-space and i, j, k-space. k,l,

WT-EXAFS plots of UHL-Inpm/Fe203 and In foil.
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Supplementary Fig. 23 Structural characterization of Snpm/Fe203. a, XRD patterns of Snpm/Fe20s. b,
HAADF-STEM image of Snpm/Fe20s. ¢, Sn 3d XPS spectra of Snpm/Fe20s. d, Normalized Sn K-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Sn K-
edge EXAFS signals. f-h, Sn K-edge EXAFS data and fit for UHL-Snpm/Fe2O3 in R-space and i, j, k-space.
k,l, WT-EXAFS plots of UHL-Snpm/Fe2O3 and Sn foil.
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Supplementary Fig. 24 Structural characterization of Sbrm/Fe203. a, XRD patterns of Sbpm/Fe2Os. b,

HAADF-STEM image of Sbpm/Fe20s. ¢, Sb 3d XPS spectra of Sbpm/Fe20s. d, Normalized Sd K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Sd K-

edge EXAFS signals. f-h, Sd K-edge EXAFS data and fit for UHL-Sdpm/Fe203 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Sdpm/Fe203 and Sd foil.
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Supplementary Fig. 25 Structural characterization of Bapm/Fe203. a, XRD patterns of Bapm/Fe20s. b,
HAADF-STEM image of Bapm/Fe20s. ¢, Ba 3d XPS spectra of Bapm/Fe2Os. d, Normalized Ba L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Ba L-
edge EXAFS signals. f-h, Ba L-edge EXAFS data and fit for UHL-Bapm/Fe203 in R-space and i, j, k-space.
k.1, WT-EXAFS plots of UHL-Bapm/Fe2O3 and Ba foil.
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Supplementary Fig. 26 Structural characterization of Lapm/Fe203. a, XRD patterns of Lapm/Fe20s. b,

HAADF-STEM image of Lapm/Fe20s. ¢, La 3d XPS spectra of Lapm/Fe2Os. d, Normalized La L-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental La L-

edge EXAFS signals. f-h, La L-edge EXAFS data and fit for UHL-Lapm/Fe2O3 in R-space and i, j, k-space.

k., WT-EXAFS plots of UHL-Lapm/Fe>O3 and La foil.
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Supplementary Fig. 27 Structural characterization of Cepm/Fe203. a, XRD patterns of Cepm/Fe20s. b,
HAADF-STEM image of Cepm/Fe20s. ¢, Ce 3d XPS spectra of Cepm/Fe20s. d, Normalized Ce L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Ce L-
edge EXAFS signals. f-h, Ce L-edge EXAFS data and fit for UHL-Cepm/Fe203 in R-space and i, j, k-space.
k.1, WT-EXAFS plots of UHL-Cepm/Fe2O3 and Ce foil.
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Supplementary Fig. 28 Structural characterization of Prev/Fe203. a, XRD patterns of Prpm/Fe2Os. b,

HAADF-STEM image of Prpm/Fe20Os. ¢, Pr 4f XPS spectra of Prpm/Fe2Os. d, Normalized Pr K-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Pr L-

edge EXAFS signals. f-h, Pr L-edge EXAFS data and fit for UHL-Prpm/Fe2O3 in R-space and i, j, k-space. k,l,

WT-EXAFS plots of UHL-Prpm/Fe203 and Pr foil.
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Supplementary Fig. 29 Structural characterization of Ndem/Fe203. a, XRD patterns of Ndpm/Fe20s. b,

HAADF-STEM image of Ndpm/Fe203. ¢, Nd 3d XPS spectra of Ndpm/Fe2Os. d, Normalized Nd L-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Nd L-

edge EXAFS signals. f-h, Nd L-edge EXAFS data and fit for UHL-Ndpm/Fe2O3 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Ndpm/Fe2O3 and Nd foil.
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Supplementary Fig. 30 Structural characterization of Smpm/Fe203. a, XRD patterns of Smpm/Fe20s. b,

HAADF-STEM image of Smpm/Fe203. ¢, Sm 3d XPS spectra of Smpm/Fe2O3. d, Normalized Sm L-edge X-

ray absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Sm

L-edge EXAFS signals. f-h, Sm L-edge EXAFS data and fit for UHL-Smpm/Fe203 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Smpwm/Fe>03 and Sm foil.

35



Q

Gdpy/Fe,0,

S

Intensity (a.u.)

Fe,0, JCPDS:33-0664
Fe JCPDS:06-

(200)

0696

30 0 50 60 70
26 (degree)
ﬂ 3 — UHL-Gd/Fe,0,
S Gd foil
) — Gd,0;,
2 21
‘®
c
2
£
- 1
[}
N
©
1S
5 0= . :
z 7250 7300 7350 7400
Energy (eV)
8
9 °Tcd L-edge UHL-Gdpy/Fe,0,
—fit

S
L

FT(K(K)) (A*
& o

R (A)

Gd L-edge

Ko (k) (A®)
o

-10

Gd foil
fit

N

T T

4
k (A7)

— UHL-Gdp/Fe,0,
Gd foil
— Gd,0,

R(A)

|Gd L-edge

Gd foil
fit

10 15

5
k (A1)

C [Gd4d &d* iGL Gd* [Gd°
E
\(u./ 4d5/2
2 4dy
= oo /A
C
Q9
£
153 150 147 144 141 138
Binding energy(eV)
f Gd L- i
6 edge Gd foil
fit
X
=44
~3
=
x
= 21
L
0+ . .
0 2 R( A) 4 6
I 2075 L-edge UHL-Gdpy/Fe,0,
— it
104

©

10 15

5
k (A

Supplementary Fig. 31 Structural characterization of Gdem/Fe203. a, XRD patterns of Gdpm/Fe20s. b,

HAADF-STEM image of Gdpm/Fe203. ¢, Gd 3d XPS spectra of Gdpm/Fe2O3. d, Normalized Gd L-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Gd L-

edge EXAFS signals. f-h, Gd L-edge EXAFS data and fit for UHL-Gdpm/Fe203 in R-space and i, j, k-space.

k,l, WT-EXAFS plots of UHL-Gdpm/Fe2O3 and Gd foil.
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Supplementary Fig. 32 Structural characterization of Thrm/Fe203. a, XRD patterns of Tbpm/Fe20s. b,
HAADF-STEM image of Tbpm/Fe203. ¢, Tb 3d XPS spectra of Tbpm/Fe20s. d, Normalized Tb L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Tb L-
edge EXAFS signals. f-g, Tb L-edge EXAFS data and fit for UHL-Tbpm/Fe2O3 in R-space and h, k-space. i,
WT-EXAFS plots of UHL-Tbpm/Fe203 and Tb foil.
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Supplementary Fig. 33 Structural characterization of Dypm/Fe203. a, XRD patterns of Dypm/Fe20s. b,
HAADF-STEM image of Dypm/Fe20s. ¢, Dy 3d XPS spectra of Dypm/Fe2O3. d, Normalized Dy L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Dy L-
edge EXAFS signals. f-g, Dy L-edge EXAFS data and fit for UHL-Dypwm/Fe2O3 in R-space and h, A-space. i,

WT-EXAFS plots of UHL-Dypwm/Fe2O3 and Dy foil.
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Supplementary Fig. 34 Structural characterization of Errm/Fe203. a, XRD patterns of Erpm/Fe2Os. b,

HAADF-STEM image of Erpm/Fe20s. ¢, Er 4f XPS spectra of Erpm/Fe20s. d, Normalized Er L-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Er L-

edge EXAFS signals. f, Er L-edge EXAFS data and fit for UHL-Erpm/Fe2O3 in R-space and g, k-space. h, WT-

EXAFS plot of UHL-Erpm/Fe0s3.
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Supplementary Fig. 35 Structural characterization of Tmem/Fe203. a, XRD patterns of Tmpm/Fe20s. b,
HAADF-STEM image of Tmpm/Fe2O3. ¢, Tm 4d XPS spectra of Tmpm/Fe2Os. d, Normalized Tm L-edge X-
ray absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Tm
L-edge EXAFS signals. f, Tm L-edge EXAFS data and fit for UHL-Tmpm/Fe2O3 in R-space and g, k-space. h,

WT-EXAFS plot of UHL-Tmpwm/Fe20s.
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Supplementary Fig. 36 Structural characterization of Ybrm/Fe203. a, XRD patterns of Ybpm/Fe20s. b,

HAADF-STEM image of Ybpm/Fe20s. ¢, Yb 4d XPS spectra of Ybpm/Fe20s. d, Normalized Yb L-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Yb L-

edge EXAFS signals. f,g, Yb L-edge EXAFS data and fit for UHL-Ybpm/Fe2O3 in R-space and h, k-space. k,l,

WT-EXAFS plots of UHL-Ybpwm/Fe2O3 and Yb foil.
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Supplementary Fig. 37 Structural characterization of Lurm/Fe203. a, XRD patterns of Lupm/Fe20s. b,

HAADF-STEM image of Lupm/Fe20s. ¢, Lu 4f XPS spectra of Lupm/Fe2Os. d, Normalized Lu L-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Lu L-

edge EXAFS signals. f,g, Lu L-edge EXAFS data and fit for UHL-Lupm/Fe2O3 in R-space and h, k-space. K,

WT-EXAFS plot of UHL-Lupm/Fe20s.
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Supplementary Fig. 38 Structural characterization of Hfem/Fe203. a, XRD patterns of Hfpm/Fe20s. b,
HAADF-STEM image of Hfpm/Fe20s. ¢, Hf 4f XPS spectra of Hfpm/Fe20s. d, Normalized Hf L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Hf L-
edge EXAFS signals. f,g, Hf L-edge EXAFS data and fit for UHL-Hfpm/Fe2Os3 in R-space and h, k-space. K,
WT-EXAFS plots of UHL-Hfpm/Fe2Os.
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Supplementary Fig. 39 Structural characterization of Wem/Fe203. a, XRD patterns of Wpm/Fe2Os. b,

HAADF-STEM image of Wpm/FexOs. ¢, W 4F XPS spectra of Wpm/Fe2Os. d, Normalized W L-edge X-ray

absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental W L-

edge EXAFS signals. f-h, W L-edge EXAFS data and fit for UHL-Wpm/Fe2O3 in R-space and i, j, k-space. k,l,

WT-EXAFS plots of UHL-Wpm/Fe2O3 and W foil.
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Supplementary Fig. 40 Structural characterization of Ospm/Fe203. a, XRD patterns of Ospm/Fe20s. b,
HAADF-STEM image of Ospm/Fe20s. ¢, Os 4f XPS spectra of Ospm/Fe203. d, Normalized Os L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Os L-

edge EXAFS signals. f, Os L-edge EXAFS data and fit for UHL-Ospm/Fe2O3 in R-space and g, k-space. h,
WT-EXAFS plots of UHL-Ospm/Fe20s.
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Supplementary Fig. 41 Structural characterization of Irpm/Fe203. a, XRD patterns of Irpm/Fe20s. b,
HAADF-STEM image of Irpm/Fe20s. ¢, Ir 4f XPS spectra of Irpm/Fe2Os.

46



a e, o0, C [ptar iptr  periiPO P
’:":\ ’3\ i sz H Aoz i
p ®© 1 " :
> > i
= D : " \
c c ] " :
Q Q 1 N '
€ | Fe,0, JCPDS:33-0664 < : " i
Fe JCPDS:06-0696 i ii i
| ol ' R S
30 26 d50 60 70 ' 80 78 76 74 72 70
(degree) Binding energy (eV)
fi — UHL-PY/Fe,0, e — UHL-Pty/Fe,0, f 16 [Pt L-cage Pt foil
5 1.6 Pt foil ,\15‘ Pt foil fit
s 5 <
212 s 121 <12
5" S s
3.4 = <8
= L 6] K3
}_
®
IS
%9500 11600 11700 11800 % 2 4 6 % 2 4 6
z
Energy (eV) R(A) R(A)
g 57m1 h i i9
-edge UHL-Pty),/Fe,04 154PtL-edge Pt foil Pt L-edge UHL-Ptg,/Fe,0,
41 — fit fit 64 — it
~ il
<2 G 34
S <
:E 0 < 0+
=2 <3
L
-4 61
5 2 4 6 6
R (A)
j 204 Pt L-edge :tt foil UHL-Ptp/Fe,04 : ): :::
é\ 10‘ L23 La1s
Z :
g O‘ 0.98 L 332
= 0.7 {249
(& - 1.66
-1 0 i 0.49
_20 T T T T T = 0.00 - 0.00
0 2 4 6 8 10 12 -5 0 5 10 15 -5 0 5_1 10 15
k(A7) k (A k (A

Supplementary Fig. 42 Structural characterization of Ptrm/Fe203. a, XRD patterns of Ptpm/Fe20s. b,
HAADF-STEM image of Ptpm/FexOs. ¢, Pt 4f XPS spectra of Ptpm/Fe20s. d, Normalized Pt L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Pt L-
edge EXAFS signals. f-h, Pt L-edge EXAFS data and fit for UHL-Ptpm/Fe20O3 in R-space and i, j, k-space. k,l,
WT-EXAFS plots of UHL-Ptpm/Fe20O3 and Pt foil.
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Supplementary Fig. 43 Structural characterization of Aupm/Fe203. a, XRD patterns of Aupm/Fe20s. b,
HAADF-STEM image of Aupm/Fe2Os. ¢, Au 4f XPS spectra of Aupm/Fe2Os. d, Normalized Au L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Au L-

edge EXAFS signals. f-h, Au L-edge EXAFS data and fit for UHL-Aupm/Fe203 in R-space and i, j, k-space.
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Supplementary Fig. 44 Structural characterization of Pbem/Fe203. a, XRD patterns of Pbpm/Fe20s. b,
HAADF-STEM image of Pbpm/Fe20s. ¢, Pb 4f XPS spectra of Pbpm/Fe20s. d, Normalized Pb L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Pb L-
edge EXAFS signals. f-h, Pb L-edge EXAFS data and fit for UHL-Pbpm/Fe203 in R-space and i, j, k-space.
k,l, WT-EXAFS plots of UHL-Pbpm/Fe2O3 and Pb foil.
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Supplementary Fig. 45 Structural characterization of Birm/Fe203. a, XRD patterns of Bipm/Fe20s. b,
HAADF-STEM image of Bipm/Fe20s. ¢, Bi 4f XPS spectra of Bipm/Fe2Os. d, Normalized Bi L-edge X-ray
absorption near-edge structure (XANES) spectra. e, Fourier-transformed R-space of the experimental Bi L-
edge EXAFS signals. f-h, Bi L-edge EXAFS data and fit for UHL-Bipm/Fe2Os3 in R-space and i, j, k-space. k,l,

WT-EXAFS plots of UHL-Bipm/Fe>O3 and Bi foil.
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Supplementary Fig. 47 Photoelectrochemical performance measurement of Fe:0s3. a, J-J and chopped
curves of Fe;0s. b, Onset potential of Ypm/Fe20s. ¢, Applied bias photon-to current efficiency of Ypm/Fe20s.
d, Transient photocurrent of Fe;Os;. All measurements were performed in 1 M KOH under AM 1.5G

illumination (100 mW cm™).
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Supplementary Fig. 48 Photoelectrochemical performance measurement of YrmFe203. a, J-V curves of
Y-loaded Fe>O3 annealed directly by microwave at various power (800 W, 1000 W, and 1200 W) without
plasma pretreatment, b, J-V curves of Y single atoms anchored on Fe;O3 via microwave annealing after plasma
pretreatment at various powers (45, 60, and 75 W), ¢, Chopped J-V curve of Ypm/Fe20s. d, Onset potential of
Yrm/Fe20s. e, Applied bias photon-to current efficiency of Ypm/Fe20s. f, g, IMPS responses of Ypm/Fe20O3 and
Yw/Fe O3 applied at 1 Vrue. h, I, Transient photocurrent density of Ypm/FeoO3 and Ym/FexOs. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig. 49 Photoelectrochemical performance measurement of Zrem/Fe203. A, J-V curves
of Zr-loaded Fe>Os; annealed directly by microwave at various power (800 W, 1000 W, and 1200 W) without
plasma pretreatment. b, J-V curves of Zr single atoms anchored on Fe;Os3 via microwave annealing after
plasma pretreatment at various powers (45, 60, and 75 W). ¢, Chopped J-V curve of Zrpm/Fe20Os. d, Onset
potential of Zrpm/Fe20s. e, Applied bias photon-to current efficiency of Zrpm/Fe20s. f, g, IMPS responses of
Zrpm/Fe203 and Zrm/FexOs applied at 1 Vwrue. h, I, Transient photocurrent density of Zrpm/Fe>Osz and
Zrwm/Fe20;. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW c¢m™).
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Supplementary Fig.50 Photoelectrochemical performance measurement of Nbpm/Fe203. a, J-V curves of

Nb-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Nb single atoms anchored on Fe;O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Nbpm/Fe2O3. d, Onset

potential of Nbpm/Fe20s3. e, Applied bias photon-to current efficiency of Nbpm/Fe20s. f, g, IMPS responses of

Nbpm/Fe203 and Nbm/Fe2Os applied at 1 Vrue. h, i, Transient photocurrent density of Nbpm/Fe2O3 and

Nbwm/Fe20s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW c¢m™).
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Supplementary Fig.51 Photoelectrochemical performance measurement of Morm/Fe20s. a, J-V curves
of Mo-loaded Fe>O3 annealed directly by microwave at various power (400 W, 600 W, and 1000 W) without
plasma pretreatment. b, J-V curves of Mo single atoms anchored on Fe>O3 via microwave annealing after
plasma pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Mopm/Fe20s. d, Onset
potential of Mopm/Fe2Os. e Applied bias photon-to current efficiency of Mopm/Fe2Os. f, g, IMPS responses of
Mopm/Fe203 and Mowm/Fe>O3 applied at 1 Vrug. h, i, Transient photocurrent density of Mopm/Fe>O3 and

Mowm/Fe;0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.52 Photoelectrochemical performance measurement of Ruprm/Fe203. a, J-V curves of

Ru-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Ru single atoms anchored on Fe>O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Rupm/Fe20s. d, Onset

potential of Rupm/Fe203. e Applied bias photon-to current efficiency of Rupm/Fe20s. f, g, IMPS responses of

Rupm/Fe2O3 and Rum/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Rupm/Fe2O3 and

Rum/Fe;0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.53 Photoelectrochemical performance measurement of Rhpm/Fe20s. a, J-V curves of

Rh-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Rh single atoms anchored on Fe>O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Rhpm/Fe20s. d, Onset

potential of Rhpm/Fe203. e Applied bias photon-to current efficiency of Rhpm/Fe20s. f, g, IMPS responses of

Rhpm/Fe2O3 and Rhm/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Rhpm/FeoO3 and

Mowm/Fe;0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.54 Photoelectrochemical performance measurement of Pdem/Fe203. a, J-V curves of

Pd-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Pd single atoms anchored on Fe>Os via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Pdpm/Fe203. d, Onset

potential of Pdpm/Fe20s. e, Applied bias photon-to current efficiency of Pdpm/Fe20s. f, g, IMPS responses of

Pdpm/Fe2O3 and Pdw/FeoOs applied at 1 Vrue. h, i, Transient photocurrent density of Pdpm/Fe2Oz and

Mowm/Fe;0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.55 Photoelectrochemical performance measurement of Agem/Fe203. a, J-V curves of

Ag-loaded Fe;O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Ag single atoms anchored on Fe>O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Agpm/Fe20s. d, Onset

potential of Agpm/Fe20s. e, Applied bias photon-to current efficiency of Agpm/Fe20:s. £, g, IMPS responses of

Agpm/FeoO3 and Agm/Fe O3 applied at 1 Vwrue. h, i, Transient photocurrent density of Agpm/Fe O3 and

Agwm/Fe>0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.56 Photoelectrochemical performance measurement of Cdem/Fe203. a, J-V curves of
Cd-loaded Fe>O3 annealed directly by microwave at various power (400 W, 600 W, and 800 W) without plasma
pretreatment. b, J-V curves of Cd single atoms anchored on Fe>O3 via microwave annealing after plasma
pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Cdpm/Fe203. d, Onset potential
of Cdpm/Fe203. e, Applied bias photon-to current efficiency of Cdpm/Fe0s. f, g, IMPS responses of
Cdpm/Fe203 and Cdwm/Fe20O3 applied at 1 Vrue. h, i, Transient photocurrent density of Cdpm/Fe2O3; and
Cdwm/Fe20;. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW c¢cm™).
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Supplementary Fig.57 Photoelectrochemical performance measurement of Inem/Fe20a. a, J-V curves of
In-loaded Fe,Os; annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without
plasma pretreatment. b, J-V curves of In single atoms anchored on Fe>O3 via microwave annealing after
plasma pretreatment at various powers (45, 60, and 75 W). ¢, Chopped J-V curve of Inpm/Fe2O3. d, Onset
potential of Inpm/Fe203. e, Applied bias photon-to current efficiency of Inpm/Fe2Os. f, g, IMPS responses of
Inpm/Fe203 and Inm/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Inpm/Fe2O3 and Inv/FexOs.

All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.58 Photoelectrochemical performance measurement of Snpm/Fe203. a, J-V curves of

Sn-loaded Fe;O3 annealed directly by microwave at various power (400 W, 600 W, and 800 W) without plasma

pretreatment. b, J-V curves of Sn single atoms anchored on Fe>O; via microwave annealing after plasma

pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Snpm/Fe2O3. d, Onset potential

of Snpm/Fe20s. e, Applied bias photon-to current efficiency of Snpm/Fe20:s. £, g, IMPS responses of Snpm/Fe03

and Snw/Fe2Os applied at 1 Vrue. h, i, Transient photocurrent density of Snpm/Fe2O3 and Snm/FexOs. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.59 Photoelectrochemical performance measurement of Sbpm/Fe203. a, J-V curves of

Sb-loaded Fe,O; annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Sb single atoms anchored on Fe>Os via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Sbpm/Fe203. d, Onset

potential of Sbpm/Fe20s. e, Applied bias photon-to current efficiency of Snpm/Fe20s. f, g, IMPS responses of

Sbpm/Fe203 and Sbm/FeO3 applied at 1 Vwrue. h, i, Transient photocurrent density of Sbpm/Fe2Os and

Sbwm/Fe203. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.60 Photoelectrochemical performance measurement of Bapm/Fe203. a, J-V curves of
Ba-loaded Fe>O3 annealed directly by microwave at various power (800 W, 1000 W, and 1200 W) without
plasma pretreatment. b, J-V curves of Ba single atoms anchored on Fe>O3 via microwave annealing after
plasma pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Bapm/Fe20s. d, Onset
potential of Bapm/Fe20s. e, Applied bias photon-to current efficiency of Bapm/Fe2O:s. f, g, IMPS responses of
Bapm/Fe O3 and Bawm/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Bapm/Fe2Os3 and

Bawm/Fe,0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.61 Photoelectrochemical performance measurement of Larm/Fe203. a, J-V curves of

La-loaded Fe,Os; annealed directly by microwave at various power (800 W, 1000 W, and 1200 W) without

plasma pretreatment. b, J-V curves of La single atoms anchored on Fe>O; via microwave annealing after

plasma pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Lapm/Fe2Os. d, Onset

potential of Lapm/Fe2Os. e, Applied bias photon-to current efficiency of Lapm/Fe20s. f, g, IMPS responses of

Lapm/Fe2O3 and Lawm/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Lapm/Fe;O3; and

Lam/Fe20;. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW c¢m™).
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Supplementary Fig.62 Photoelectrochemical performance measurement of Cepm/Fe203. a, J-V curves of

Ce-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Ce single atoms anchored on Fe>O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Cepm/Fe2Os. d, Onset

potential of Cepm/Fe20s3. e, Applied bias photon-to current efficiency of Cepm/Fe20:s. f, g, IMPS responses of

Cepm/Fe203 and Cem/FexO3 applied at 1 Vrue. h, i, Transient photocurrent density of Cepm/Fe2Os3 and

Cem/Fe,0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.63 Photoelectrochemical performance measurement of Prrm/Fe203. a, J-V curves of

Pr-loaded Fe,O; annealed directly by microwave at various power (800 W, 1000 W, and 1200 W) without

plasma pretreatment. b, J-J curves of Pr single atoms anchored on Fe;O3 via microwave annealing after

plasma pretreatment at various powers (45, 60, and 75 W). ¢, Chopped J-V curve of Prpm/Fe203. d, Onset

potential of Prpm/Fe2Os. e, Applied bias photon-to current efficiency of Prem/Fe20s. f, g, IMPS responses of

Prpm/Fe2O3 and Prv/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Prpm/Fe2O3 and Prv/Fe2Os.

All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.64 Photoelectrochemical performance measurement of Ndpem/Fe203. a, J-V curves of

Nd-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Nd single atoms anchored on Fe;O3 via microwave annealing after

plasma pretreatment at various powers (45, 60, and 75 W). ¢, Chopped J-V curve of Ndpm/Fe203. d, Onset

potential of Ndpm/Fe20s3. e, Applied bias photon-to current efficiency of Ndpm/Fe20s. f, g, IMPS responses of

Ndpm/Fe203 and Ndwm/Fe2Os applied at 1 Vrue. h, i, Transient photocurrent density of Ndpm/Fe2O3 and

Ndwm/Fe;0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW c¢m™).
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Supplementary Fig.65 Photoelectrochemical performance measurement of Smem/Fe203. a, J-V curves of

Sm-loaded Fe;O3 annealed directly by microwave at various power (400 W, 600 W, and 800 W) without

plasma pretreatment. b, J-J curves of Sm single atoms anchored on Fe;O3; via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Smpm/Fe20s. d, Onset

potential of Smpm/Fe20s. e, Applied bias photon-to current efficiency of Smpm/Fe20s. f, g, IMPS responses of

Smpm/Fe2O3 and Smm/FeOs applied at 1 Vrue. h, i, Transient photocurrent density of Smpwm/FeoO3 and

Smwm/Fe,0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.66 Photoelectrochemical performance measurement of Gdem/Fe203. a, J-V curves of

Gd-loaded Fe>O3 annealed directly by microwave at various power (800 W, 1000 W, and 1200 W) without

plasma pretreatment. b, J-V curves of Gd single atoms anchored on Fe;O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Gdpm/Fe203. d, Onset

potential of Gdpm/Fe2Os. e Applied bias photon-to current efficiency of Gdpm/Fe20s. f, g, IMPS responses of

Gdpm/Fe203 and Gdwm/Fe2Os3 applied at 1 Vrue. h, i, Transient photocurrent density of Gdpm/Fe;O3; and

Gdwm/Fe,0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.67 Photoelectrochemical performance measurement of Them/Fe203. a, J-V curves of
Td-loaded Fe>Os annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without
plasma pretreatment. b, J-V curves of Td single atoms anchored on Fe2Os via microwave annealing after
plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Tdpm/Fe2Os. d, Onset
potential of Tdpm/Fe20s3. e, Applied bias photon-to current efficiency of Tdpm/Fe20:s. £, g, IMPS responses of
Tdpm/Fe203 and Tdwm/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Tdpm/Fe2Os3 and
Tdm/Fe20s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).

72



(o]

D

N

Current density (mA cm?)
N

o

— 500 W
600 W
{——700 W

Dy\/Fe,04

s
D-a_rls -

06 08 10 12 14 16 1.8

Potential (V vs. RHE)

d~05

o
~

o
w

o
-

Current density (mA cm
o
N

0

Dypw/Fe,0;

" 0.65 Ve

.0 ; . .
0.55 0.60 0.65 0.70 0.75 0.80 0.85

Potential (V vs. RHE)

g 20
o 101

e Dy,/Fe,O4

§

-10-

Im(Jphoto)/p

-20
-301

0

10 20 30 40
Re(J poto)/ WA cm™?

~8
bq‘g —15W Dypy/Fe,0,
o
<
E
2
‘©
C
()
©
<
g
5
O ol— - - . : ' _Dark|
06 08 10 12 14 16 1.8
Potential (V vs. RHE)
e, 1S Dypu/Fe,0,
5
< 1.2
E
> 0.9-
@
© 0.6
©
@ 0.3 1 Vane 0.17
= I = T
© 0.0 . . ; .
0.6 0.8 1.0 1.2
Potential (V vs. RHE)
<6 Dyp/Fe,0
! Yem/ €203
5 5]
<
E 4]
2
® 31
C
S 2]
c 56.77%
o 14
=
©o0 . )
0 10 20 30

Time (s)

(2]
_2)
(o]

Current density (mA cm

2

cm
()]

Current density (mA

Dypw/Fe,05
s ; | A11RIEL 'Dark
0.6 08 10 12 14 16 1.8
Potential (V vs. RHE)
® Dypy/Fe,0,
B
0 10 20 30 40
Re(Jphoto)/ MA Cm?
Dy,/Fe,0,
54.61%
0 10 20 30
Time (s)

Supplementary Fig.68 Photoelectrochemical performance measurement of Dypm/Fe20s3. a, J-V curves of

Dy-loaded Fe;Os annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Dy single atoms anchored on Fe;O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Dypm/Fe20s. d, Onset

potential of Dypm/Fe2Os. e, Applied bias photon-to current efficiency of Dypm/Fe2Os. f, g, IMPS responses of

Dypm/Fe2O3 and Dym/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Dypm/Fe2O3 and

Dywm/Fe20;. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.69 Photoelectrochemical performance measurement of Erpm/Fe203. a, J-V curves of

Er-loaded Fe,Os; annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Er single atoms anchored on Fe;O3; via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Erpm/Fe2Os. d, Onset

potential of Erpm/Fe20s. e, Applied bias photon-to current efficiency of Erpm/Fe20s. f, g, IMPS responses of

Erpm/Fe203 and Erm/Fe2O3 applied at 1 Vrag. h, i, Transient photocurrent density of Erpm/Fe2O3 and Erm/Fe2Os.

All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.70 Photoelectrochemical performance measurement of Tmewm/Fe203. a, J-V curves

of Tm-loaded Fe,O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-J curves of Tm single atoms anchored on Fe>O3; via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Tmpm/Fe20s3. d, Onset

potential of Tmpm/Fe203. e, Applied bias photon-to current efficiency of Tmpwm/Fe2O:s. f, g, IMPS responses of

Tmpm/Fe203 and Tmm/FexO3 applied at 1 Vwrue. h, i, Transient photocurrent density of Tmpm/Fe2O3 and

Tmwm/Fe20s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig.71 Photoelectrochemical performance measurement of Ybrm/Fe20s3. a, J-V curves of

Y-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without plasma

pretreatment. b, J-V curves of Y single atoms anchored on Fe:O3 via microwave annealing after plasma

pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Ypm/Fe20s. d, Onset potential of

Yrm/Fe20s. e, Applied bias photon-to current efficiency of Yem/Fe20:s. f, g, IMPS responses of Yerm/Fe2O3 and

Yw/Fe2 O3 applied at 1 Vrue. h, i, Transient photocurrent density of Ypm/Fe2Oz and Ywm/FexOs. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.72 Photoelectrochemical performance measurement of Lurm/Fe203. a, J-V curves of
Lu-loaded Fe;Os annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without
plasma pretreatment. b, J-V curves of Lu single atoms anchored on Fe>O3 via microwave annealing after
plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Lupm/Fe20s. d, Onset
potential of Lupm/Fe2Os. e Applied bias photon-to current efficiency of Lupm/Fe20:s. £, g, IMPS responses of
Lupm/Fe203 and Lum/FexOs applied at 1 Vrue. h, i, Transient photocurrent density of Lupm/Fe2O3 and

Lum/Fe;0s. All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.73 Photoelectrochemical performance measurement of Hfpm/Fe203. a, J-V curves of

Hf-loaded Fe;O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Hf single atoms anchored on Fe>O; via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Hfpm/Fe2Os. d, Onset

potential of Hfpm/Fe2Os. e, Applied bias photon-to current efficiency of Hfpm/Fe20:s. f, g, IMPS responses of

Hfpm/Fe2O5 and Hfw/Fe,Os applied at 1 Vrue. h, i, Transient photocurrent density of Hfpwm/Fe2O3 and Hfw/Fe,Os. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.74 Photoelectrochemical performance measurement of Wem/Fe203. a, J-J curves of

W-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-J curves of W single atoms anchored on Fe;O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Wpm/Fe20Os. d, Onset

potential of Wpm/Fe2Os. e, Applied bias photon-to current efficiency of Wewm/Fe20s. £, g, IMPS responses of

Wrm/Fe;,03 and Wu/Fe,Os applied at 1 Vrue. h, i, Transient photocurrent density of Wpm/Fe,Os and Wu/Fe 0s. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.75 Photoelectrochemical performance measurement of Ospm/Fe203. a, J-V curves of

Os-loaded Fe;O3 annealed directly by microwave at various power (800 W, 1000 W, and 1200 W) without

plasma pretreatment. b, J-V curves of Os single atoms anchored on Fe>O3 via microwave annealing after

plasma pretreatment at various powers (15, 30, and 45 W). ¢, Chopped J-V curve of Ospm/Fe2Os. d, Onset

potential of Ospm/Fe20s. e, Applied bias photon-to current efficiency of Ospm/Fe20s. f, g, IMPS responses of

Ospm/Fe 05 and Osw/Fe 0; applied at 1 Vrue. h, i, Transient photocurrent density of Ospm/Fe,O3 and Osw/Fe 0. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.76 Photoelectrochemical performance measurement of Irpm/Fe203. a, J-V curves of
Ir-loaded Fe;O3 annealed directly by microwave at various power (400 W, 600 W, and 800 W) without plasma
pretreatment. b, J-V curves of Ir single atoms anchored on Fe;Os; via microwave annealing after plasma
pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Irpm/Fe20s. d, Onset potential of
Irpm/Fe20s. e, Applied bias photon-to current efficiency of Irpm/Fe20s. f, g, IMPS responses of Irpm/Fe,O3 and
Irm/Fe,Os applied at 1 Vrae. h, i, Transient photocurrent density of Irpm/Fe,O3 and Irv/Fe,Os. All measurements were

performed in 1 M KOH under AM 1.5G illumination (100 mW cm?).
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Supplementary Fig.77 Photoelectrochemical performance measurement of Ptem/Fe203. a, J-V curves of

Pt-loaded Fe,O; annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Pt single atoms anchored on Fe.O3 via microwave annealing after

plasma pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Ptpm/Fe2Os. d, Onset

potential of Ptpm/Fe20s. e, Applied bias photon-to current efficiency of Ptpm/FexOs. f, g, IMPS responses of

Ptpm/Fe203 and Ptm/Fe O3 applied at 1 Veue. h, i, Transient photocurrent density of Ptpm/Fe2Os and Ptu/Fe,Os. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.78 Photoelectrochemical performance measurement of Aupm/Fe20s3. a, J-V curves of

Au-loaded Fe;O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Au single atoms anchored on Fe>O3 via microwave annealing after

plasma pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Aupm/Fe20s. d, Onset

potential of Aupm/Fe2Os. e, Applied bias photon-to current efficiency of Aupm/Fe20s. f, g, IMPS responses of

Aupn/Fe;03 and Aum/Fe,Os applied at 1 Vrue. h, i, Transient photocurrent density of Aupm/Fe2Os and Aum/Fe,0;. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.79 Photoelectrochemical performance measurement of Pbem/Fe203. a, J-V curves of

Pb-loaded Fe>O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without

plasma pretreatment. b, J-V curves of Au single atoms anchored on Fe>O3 via microwave annealing after

plasma pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Pbpm/Fe203. d, Onset

potential of Pbpm/Fe2Os. e, Applied bias photon-to current efficiency of Pbpm/Fe20s. f, g, IMPS responses of

Pbrm/Fe20O3 and Pbw/Fe,Os applied at 1 Vrue. h, i, Transient photocurrent density of Pbpm/Fe2O3 and Pbu/Fe,0;. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.80 Photoelectrochemical performance measurement of Nbpm/Fe203. a, J-V curves of
Bi-loaded Fe;O3 annealed directly by microwave at various power (600 W, 800 W, and 1000 W) without
plasma pretreatment. b, J-V curves of Bi single atoms anchored on Fe;Os; via microwave annealing after
plasma pretreatment at various powers (30, 45, and 60 W). ¢, Chopped J-V curve of Bipm/Fe2Os. d, Onset
potential of Bipm/Fe203. e, Applied bias photon-to current efficiency of Bipm/Fe2Os. £, g, IMPS responses of
Bipm/Fe,O5 and Biw/Fe,Os applied at 1 Vrue. h, i, Transient photocurrent density of Bipm/Fe,O3 and Biw/Fe,0;. All

measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW cm).
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Supplementary Fig.81 The photoelectrochemical performance of 33 photoelectrodes without plasma

pretreatment. OER activities of Fe;O3 loaded with 33 metallic elements without plasma pretreatment.
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Supplementary Fig.82 Photocurrent density ratio. Photoelectrochemical current density comparison

between plasma-microwave and microwave-only methods.
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Supplementary Fig. 83 SEM, HAADF-STEM and EDS elemental mappings of Wem/Fe20s. a-¢, SEM

images of Wpm/Fe20s. d, e, High resolution HAADF-STEM images of Wpm/Fe20s. f-i, elemental mappings

of Wpm/Fex0s.
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Supplementary Fig. 84 SEM, HAADF-STEM and EDS elemental mappings of Wwm/Fe203. a-¢c, SEM

images of Wwm/Fe20s. d, e, High resolution HAADF-STEM images of Ww/Fe2Os. f, elemental mappings of
Ww/Fe 0s.
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Supplementary Fig. 85 Charge transfer and recombination rate ratios. The charge transfer and

recombination rate ratios of plasma-treated and untreated Fe>O3 loaded with 33 various metals.
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Supplementary Fig. 86 X-ray diffraction (XRD) patterns. a-f, XRD patterns of 1D-Cux0O, Wpm/1D-Cu20
(a), 2D-ZnIn2S4, Wpm/2D-2D-Znln,S4 (b), 2D-C3N4, Wpm/2D-C3N4 (¢), 2D-Fe203, Wem/2D-FeoO3 (d), 3D-

Fe>03, Wpm/3D-Fex0s (e), 3D-TiO2 and Wem/3D-TiO: ().
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Supplementary Fig. 87 SEM observation. SEM images of 1D-Cu,0 (a), 2D-ZnIn,S4 (b), 2D-C3N4 (¢), 3D-
Fe>03 (d), and 3D-TiO: (e).
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Supplementary Fig. 88 X-ray photoelectron spectroscopy (XPS) characterization of Wpm/nanowire-

Cuz0. a, Cu 2p, b, Cu LMM, ¢, O Is, and d, W 4f XPS spectra for Wpnm/1D-Cu20.
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Supplementary Fig. 89 X-ray photoelectron spectroscopy (XPS) characterization of Wpm/2D-ZnlIn2S4.
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Supplementary Fig. 90 X-ray photoelectron spectroscopy (XPS) characterization of Wpm/2D-C3N4. a, N

1s b, C Is, and ¢, W 4f XPS spectra for Wpm/2D-C3Na.
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Supplementary Fig. 92 X-ray photoelectron spectroscopy (XPS) characterization of Wpm/3D-TiOz. a, Ti

2p, b, O Is, and ¢, W 4/ XPS spectra for Wpm/3D-TiO».
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Supplementary Fig. 93 HAADF-STEM and EDS elemental mappings of W/1D-Cu20. a-c, HAADF-
STEM images and d, EDS elemental mappings of W/1D-Cu:O.
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Supplementary Fig. 94 HAADF-STEM and EDS elemental mappings of W/2D-Fe:203. a,b, HAADF-
STEM images and ¢, EDS elemental mappings of W/2D-Fe;Os.
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Supplementary Fig. 95 HAADF-STEM and EDS elemental mappings of W/2D-ZnIn2S4. a,b, HAADF-
STEM images and ¢, EDS elemental mappings of W/2D-ZnIn>S4.
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Supplementary Fig. 96 HAADF-STEM and EDS elemental mappings of W/2D-C3N4. a,b, HAADF-
STEM images and ¢, EDS elemental mappings of W/2D-C3Na.
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Supplementary Fig. 97 HAADF-STEM and EDS elemental mappings of W/3D-Fe:0s. a,b, HAADF-
STEM images and ¢, EDS elemental mappings of W/3D-Fe;Os.
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Supplementary Fig. 98 HAADF-STEM and EDS elemental mappings of W/3D-TiO2. a,b, HAADF-
STEM images and ¢, EDS elemental mappings of W/3D-TiOs.
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Supplementary Fig. 99 Industrial-scale production capacity. Schematic representation of kilogram-scale

ultra-high single-atom-loaded Fe;Os.
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Supplementary Fig. 100 Photoelectrochemical performances of Wvm/3D-Fe203 and Wem/3D-Fe203. a, J-

V curves of Ww/nanorods-Fe>O3 annealed directly by microwave at various power (800 W, 1000 W, and 1200

W) without plasma pretreatment. b, Chopped J-V curve of Ww/nanorods Fe>Os. ¢, J-V curves of W single

atoms anchored on nanorods-Fe;O3 via microwave annealing after plasma pretreatment at various powers (30,

45, and 60 W). d, Chopped J-V curve of Wmp/nanorods Fe>Os. All measurements were performed in 1 M KOH

under AM 1.5G illumination (100 mW c¢m™).
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Supplementary Fig. 101 Photoelectrochemical performances of Wwm/TiO2 and Wem/TiO2. a, J-V curves
of Wwm/nanorods-TiO2 annealed directly by microwave at various power (1000 W, 1200 W, and 1400 W)
without plasma pretreatment. b, Chopped J-V curve of Ww/nanorods-TiOz. ¢, J-V curves of W single atoms
anchored on nanorods-TiO; via microwave annealing after plasma pretreatment at various powers (45, 60, and
75 W). d, Chopped J-V curve of Wwmp/nanorods TiOa. All measurements were performed in 1 M KOH under AM

1.5G illumination (100 mW c¢m™).
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Supplementary Fig. 102 Photoelectrochemical performances of Wyv/Cu20 and Wem/Cu20. a, Chopped
J-V curve of nanowire-Cu,0. b, Chopped J-V curves of Wn/nanowire-Cu2O annealed directly by microwave
at various power (400 W, 600 W, and 800 W) without plasma pretreatment. ¢, J-V curves of W single atoms
anchored on nanowire Cu;O via microwave annealing after plasma pretreatment at various powers (15, 30,

and 45 W). All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW c¢m™).
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Supplementary Fig. 103 Photoelectrochemical performances of Wwm/Znln:Ss and Wewm/ZnlIn2Ss. a,

Chopped J-V curve of ZnInyS4. b, Chopped J-V curves of Wwm/Znln2S4 annealed directly by microwave at

various power (200 W, 400 W, and 600 W) without plasma pretreatment. ¢, J-V curves of W single atoms

anchored on Znln;S4 via microwave annealing after plasma pretreatment at various powers (15, 30, and 45

W). All measurements were performed in 1 M KOH under AM 1.5G illumination (100 mW c¢m?).
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Supplementary Fig. 104 Electrochemical HER and OER performances of Wpm/C3N4. a, HER

performance of C3Ny at -0.4 Vrue. b, HER J-V curves of C3N4 annealed directly by microwave at various

power (400, 500, 600, and 700 W) without plasma pretreatment. ¢, HER J-V curves of W single atoms

anchored on C3N4 via microwave annealing after plasma pretreatment at various powers (15, 30, 45, and 60

W). d, OER performance of C3N4 at -0.4 Vrue. e, OER J-V curves of C3N4 annealed directly by microwave

at various power (400, 500, 600, and 700 W) without plasma pretreatment. f, OER J-V curves of W single

atoms anchored on C3N4 via microwave annealing after plasma pretreatment at various powers (15, 30, 45,

and 60 W). All measurements were performed in 0.5 M H,SOs.
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Supplementary Fig. 105 Elemental ratios of the 5-Mpm/Fe20s. Surface elemental weight ratios of the 5-

Mpwm/Fe203 determined by X-ray photoelectron spectroscopy.
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Supplementary Fig. 106 Atom structural characterization of 5-Mpm/Fe203. a, W L3-edge XANES spectra
of 5-Mpm/Fe203, W foil and WOs. b-e, W L3-edge EXAFS data and fit for 5-Mpwm/Fe2O3 and W foil in R-space
and f, g, k-space. h, WT-EXAFS plot of W foil.
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Supplementary Fig. 107 Atom structural characterization of 5-Mpwm/Fe203. a, Mo Ls3-edge XANES

spectra of 5-Mpm/Fe203, Mo foil and MoOs. b-e, Mo L3-edge EXAFS data and fit for 5-Mpwm/Fe2O3 and Mo
foil in R-space and f, g, k-space. h, WT-EXAFS plot of Mo foil.
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Supplementary Fig. 108 Atom structural characterization of 5-Mpwm/Fe203. a, Au K-edge XANES spectra

of 5-Mpm/Fe203, Au foil and Auz0s. b-e, Au K-edge EXAFS data and fit for 5-Mpm/Fe203 and Au foil in R-

space and f, g, k-space. h, WT-EXAFS plot of Au foil.
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Supplementary Fig. 109 Atom structural characterization of 5-Mpwm/Fe203. a, Rh K-edge XANES spectra

of 5-Mpm/Fe>03, Rh foil and Rh,Os. b-e, Rh K-edge EXAFS data and fit for 5-Mpm/Fe2O3 and Rh foil in R-

space and f, g, k-space. h, WT-EXAFS plot of Rh foil.
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Supplementary Fig. 110 Atom structural characterization of 5-Mpm/Fe20s. a, Ir L3-edge XANES spectra

of 5-Mpwm/Fe203, Ir foil and Rh2Os. b-e, Ir L3-edge EXAFS data and fit for 5-Mpwm/Fe2O3 and Ir foil in R-space

and f, g, k-space. h, WT-EXAFS plot of Ir foil.
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Supplementary Fig. 111 Photoelectrochemical OER performances of 5-Mwm/Fe20s. a, J-V curves of Fe2O;

loaded with five metals (W, Rh, Mo, Ir, and Au) annealed directly by microwave at various power (500 W,

600 W, and 700 W) without plasma pretreatment. b, Chopped J-V curve of 5-Mm/Fe2Os. ¢, Onset potential of

5-Mwm/Fe20s. d, Applied bias photon-to current efficiency of 5-Mwm/Fe2O3. All measurements were performed in

1 M KOH under AM 1.5G illumination (100 mW c¢m™).
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Supplementary Fig. 112 Photoelectrochemical OER performance of 5-Mpm/Fe203. a, J-V curves of Fe;O3
loaded with five metals (W, Rh, Mo, Ir, and Au) via microwave annealing after plasma pretreatment at various
powers (15, 30, and 45 W). b, Chopped J-V curve of 5-Mpm/Fe20s. ¢, Onset potential of 5-Mpm/Fe20s. d,
Applied bias photon-to current efficiency of 5-Mpm/Fe203. All measurements were performed in 1 M KOH

under AM 1.5G illumination (100 mW cm™).
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Supplementary Fig. 113 XPS elemental map after stability. XPS spectra of Ir 4f, Au 4f, Rh 3d, W 4f, and

Mo 3d for 5-Mpm/Fe205 after stability testing.
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Supplementary Fig. 114 EDS elemental map after stability. EDS elemental mappings of 5-Mpwm/Fe203 after

stability testing.
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Supplementary Fig. 115 Differential charge density. a,b, Differential charge density of 5-Mm/Fe;O3 (a) and

5-Mpm/Fe203 (b)
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Supplementary Fig. 116 Structure of the key steps and intermediates in OER. (a-¢) OER proceeding on
the surfaces of 5-Mwm/Fe203 and (f-) 5-Mpm/Fe203. Here, Fe, O, Mo, Au, Ir, W, Rh and H atoms are represented
by orange, pink, grey, purple, red, beige and green, respectively. To distinguish adsorbed oxygen, it is shown

in brown.

121



()
P 5-M,,/Fe,O
(%)} M 2™~3
12
S
a J
0 -
1 v
0 mm== =
_6 | ' ' ' ' ' ' 5'-MPM/F6'203
-4 -3 -2 -1 0 1 2 3 4

Energy (eV)

Supplementary Fig. 117 Electronic structures of 5-Mwm/Fe203 and 5-Mpm/Fe203. Projected density of
states of 5-Mm/Fe203 and 5-Mpm/Fe20s.

122



Supplementary Table 1 Comparison between this work and representative reported UHL-SACs.

Catalysts Metal-atom loadings Reference
5-Mpm/Fe203 27.69 wt% (7.75 at.%)
This work.
Wrm/Fe2Os3 21.02 wt% (4.13 at.%)
Pt SAC 11.4 wt% Nat. Mater. 21, 681-688 (2022).
Ni-N-C 15.3 wt% (3.61 at.%)
Nat. Chem. 13, 887-894 (2021).
Ir-N-C 41.6 wt% (3.8 at.%)
Pt1/NC <25 wt% Nat. Nanotechnol. 17, 174-181 (2022).
Cu-N-C 0.6 wt% Nat. Nanotechnol. 17, 403-407 (2022).
Rh SACs/PCN 23 wt% Nat. Nanotechnol. 17, 174-181 (2022).
Pt/CA-CNF ~0.24 wt% Nat. Nanotechnol. 14, 851-857 (2019).
SA-Rh/CN 0.92 wt%
SA-Pd/CN 0.76 wt% Nat. Nanotechnol. 15,390-397 (2020).
SA-Pt/CN 0.57 wt%
A-Ni-NSG 2.8 wt% (0.47 at.%) Nat. Energy 3, 140-147 (2018).
Cu-SAs/N-G 1.3 wt% Nat. Catal. 1, 781-786 (2018).
UHD Ni-N-C SACs 23.3 wt%
UHD Cu-N-C SACs 26.9 wt% Nat. Synth. 3, 1427-1438 (2024).
UHD Pt-N-C SACs 33.4 wt%
Ni SACs 20.8 wt% Nat. Synth. 2, 129-139 (2023).
2000-Pt-N-CNT 7.0 wt% Nat. Commun. 13, 685 (2022).
Cu-NC SAC 10.5 wt% Nat. Commun. 10, 1278 (2019).
Ir/meso_S-C ~10 wt% (~0.77 at.%) Sci. Adv. 5, eaax6322 (2019).

Red denotes single-atom-loaded metal oxides, while blue represents the C/N substrate.
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Supplementary Table 2 Surface elemental weight ratios of the UHL-Ir/Fe203 determined by X-ray

photoelectron spectroscopy.

Ir (at.%) Fe (at.%) O (at.%)
UHL-Ir/Fe;03 4.12 36.17 59.71

Ir (Wt%) Fe (wt%) O (Wt%)
UHL-Ir/Fe;03 21.02 wt% 53.62 25.36
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Supplementary Table 3 Structural parameters extracted from Ir-L3 edge y(R) space spectra fitting of
UHL-Ir/Fe203.

So? shell CN* R(A) o2 (107 A?) AEo R factor
Ir foil 0.95 Ir-Ir 12 2.71£0.01 3.5+1.7 9.60+3.88 0.0073
Ir-O 6.2 1.92+0.01 2.3+1.7

UHL-Ir/FeO;  0.95 -3.35+2.40 0.0087

Ir-O-Fe 5.2 3.33+0.01 11.0+0.1

CN: coordination numbers. R: bond distance. 6?: Debye-Waller factors. AEy: the inner potential correction. R factor: goodness
of fit.
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Supplementary Table 4. Metal precursor salts used in the synthesis of UHL-SACs/Fe20s.

Elements Atomic numbers Metal precursors Solubleness in water
Y 39 YCl3-6H20 freely soluble
Zr 40 ZrCly very soluble
Nb 41 NbCls decomposes

Mo 42 (NH4)sM07024-4H>0 soluble
Ru 44 RuCl; very soluble
Rh 45 RhCl3-xH20 very soluble
Pd 46 PdClL, soluble
Ag 47 AgNOs very soluble
Cd 48 Cd(Ac)2:2H0 very soluble
In 49 In(Ac)s soluble
Sn 50 SnCly very soluble
Sb 51 Sb(Ac)3 Moderately soluble
Ba 56 Ba(Ac): freely soluble
La 57 La(Ac);-xH>O soluble
Ce 58 (NH4)6Ce(S04)s5-4H20 soluble
Pr 59 Pr(Ac);xH>0O soluble
Nd 60 Nd(Ac);xHO soluble
Sm 62 Sm(Ac)3xH>O soluble
Gd 64 Gd(Ac);-4H,O soluble
Tb 65 Tb(Ac)3-6H20 soluble
Dy 66 Dy(Ac)3-4H20 soluble
Er 68 Er(Ac);-4H>O soluble
Tm 69 Tm(Ac);-H20 soluble
Yb 70 Yb(Ac)3-4H20 soluble
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Supplementary Table 5 Structural parameters extracted from y(R) spatial spectrum fitting of 33 kinds

of UHL-SACs/Fe203 prepared by the plasma-microwave method.

Se? shell CN* R(A) 6% (107 A?) AE, R factor
Y foil 0.95 Y-Y 12.00 3.60+0.01 14.843.6 5.03+2.51 0.0131
UHL-Ypm/Fe2 O3 0.95 Y-O 5.97 2.38+0.01 5.3+1.3 -0.16+0.01 0.0085
Zr-7Zr 8.00 3.19+0.01 7.6+£0.3
Zr foil 0.90 -8.13+0.42 0.0049
Zr-Zr 6.00 3.61+0.01 14.6+0.1
UHL-Zrpm/Fe,0O3 0.90 Zr-O 5.61 2.17+0.01 7.1£1.0 -0.23+0.01 0.0079
Nb-Nb 8.00 2.85+0.01 6.5+0.3
Nb foil 0.90 4.32+1.03 0.0137
Nb-Nb 6.00 3.28+0.01 6.8+0.6
UHL-Nbpm/Fe; 03 0.90 Nb-O 5.34 1.99+0.01 13.1+1.5 2.65+£0.89 0.0188
Mo-Mo 8.00 2.72+0.01 2.8+0.2
Mo foil 0.80 -6.42+0.74 0.0038
Mo-Mo 6.00 3.13+0.01 2.2+0.3
UHL-Mopm/Fe, 05 0.80 Mo-O 5.12 1.75+0.01 12.7+0.5 -8.93+0.93 0.0024
Ru-Ru 6.00 2.68+0.01 1.7+0.1
Ru foil 0.84 -3.17+0.85 0.0080
Ru-Ru 6.00 2.67+0.01 9.0+2.1
UHL-Rupm/FexOs  0.84 Mo-O 4.82 2.07+0.01 5.1£1.2 5.42+1.24 0.0126
Rh foil 0.82 Rh-Rh 12.00 2.68+0.01 3.6:0.2 -6.03+0.62 0.0087
UHL-Rhpm/Fe,Os  0.82 Rh-O 4.57 2.03+0.01 4.1+0.3 -3.63+0.30 0.0011
Pd foil 0.84 Pd-Pd 12.00 2.74+0.01 5.6£0.1 3.85+0.29 0.0030
UHL-Pdpm/Fe, O3 0.84 Pd-O 4.20 1.96+0.01 5.5+0.8 -8.54+0.94 0.0145
Ag foil 0.78 Ag-Ag 12.00 2.86+0.01 9.0+0.1 2.52+0.24 0.0028
UHL-Agpm/Fe O3 0.78 Ag-O 3.10 1.924+0.01 13.7£2.0 9.98+0.01 0.0181
Cd-Cd 6.00 2.95+0.01 14.7+0.5
Cd foil 0.80 -2.66+0.01 0.0014
Cd-Cd 3.00 3.28+0.01 13.6£1.0
UHL-Cdpm/Fe2Os  0.80 Cd-O 4.1 2.25+0.01 3.540.6 -1.03+0.01 0.0052
In-In 4.00 3.24+0.01 7.4+0.7
In foil 0.84 -9.31+0.01 0.0030
In-In 3.00 3.46+0.01 8.340.1
UHL-Inpm/Fe 03 0.84 In-O 391 2.17+0.01 10.8+0.2 8.83+0.08 0.0001
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Sn foil 0.82 Sn-Sn 4.00 3.00+0.01 8.1+0.8 1.89+0.01 0.0028
UHL-Snpm/Fe2O3  0.82 Sn-O 3.80 2.10+0.01 6.9+0.9 9.16£1.23 0.0021
Sb-Sb 3.00 2.90+0.01 4.440.3
Sb foil 0.78 7.02+0.54 0.0192
Sb-Sb 3.00 3.34+0.01 10.6£2.3
UHL-Sbpm/Fe203  0.78 Sb-O 3.72 1.98+0.01 2.0+0.8 9.84+0.01 0.0054
UHL-Bapm/Fe;Os  0.85 Ba-O 7.98 2.87+0.01 4.4+0.9 -8.58+0.43 0.0054
La-O 6.60 2.37+0.01 0.4+0.1
UHL-Lapm/Fe:O3  0.90 9.92+0.01 0.0046
La-O 1.30 2.59+0.01 14.3%0.1
UHL-Cepm/Fe2O3  0.72 Ce-O 7.52 2.56+0.01 14.8+0.1 4.53+0.37 0.0064
UHL-Prpm/Fe203  0.80 Pr-O 7.33 2.53+0.01 14.0<1.0 2.86+0.29 0.0037
UHL-Ndpm/Fe2O3  0.80 Nd-O 7.20 2.51+0.01 10.8+0.9 4.32+0.24 0.0035
UHL-Smpm/Fe2O3  0.78 Sm-O 7.06 2.42+0.01 4.3+1.4 3.01+0.70 0.0100
Gd foil 0.98 Gd-Gd 6.00 2.95+0.01 9.0+0.1 -9.81+0.01 0.0128
UHL-Gdpm/Fe:03  0.98 Gd-O 6.84 2.47+0.01 0.2+0.1 -9.81+0.01 0.0184
UHL-Tbpm/Fe20;  0.90 Tb-O 6.79 2.28+0.01 14.3+4.2 -9.83+0.01 0.0011
UHL-Dypw/Fe2O3  0.85 Dy-O 6.75 2.27+0.01 9.3+0.8 -8.08+0.68 0.0021
UHL-Erpm/Fe;O3  0.78 Er-O 6.71 2.25+0.01 0.8+0.1 -6.85+1.24 0.0105
UHL-Tmpm/FeoO3  0.78 Tm-O 6.43 2.24+0.01 5.940.1 -8.20+0.46 0.0010
UHL-Ybpm/Fe:0O3  0.98 Yb-O 6.21 2.48+0.01 4.1+0.7 9.87+0.01 0.0074
UHL-Lupm/Fe2O3  0.80 Lu-O 6.02 2.26+0.01 8.9+0.9 4.61+0.51 0.0046
UHL-Hfpm/Fe2O3  0.81 Hf-O 5.82 2.05+0.01 2.8£1.0 0.78+0.01 0.0038
W-W 8.00 2.73£0.01 3.6+£0.3
W foil 0.83 5.09+1.62 0.0082
W-W 6.00 3.14+0.01 3.8+0.7
UHL-Wpm/FeoOs  0.83 W-0 5.61 2.23+0.01 12.1+0.7 -9.73+0.01 0.0003
UHL-Ospm/Fe2O3  0.84 Os-0O 5.26 1.96+0.01 14.8+0.1 -6.24+0.01 0.0091
Ir foil 0.95 Ir-Ir 12 2.71+0.01 3.5+1.7 9.60+3.88 0.0073
Ir-O 6.2 1.92+0.01 2.3+1.7
UHL-Ir/Fe,O3  0.95 -3.35+2.40 0.0087
Ir-O-Fe 5.2 3.33+0.01 11.0+0.1
Pt foil 0.97 Pt-Pt 12.00 2.76+0.01 5.4+0.3 4.73+0.58 0.0040
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UHL-Ptpm/Fe2O3  0.97 Pt-O 4.10 2.02+0.01 9.3+1.7 9.32+0.94 0.0164

Au foil 0.80 Au-Au 12.00 2.86=0.01 7.6+0.2 4.06+0.39 0.0052

UHL-Aupm/Fe;O3  0.80 Au-O 3.92 1.98+0.01 3.310.6 9.92+0.01 0.0077

Pb foil 0.81 Pb-Pb 2.00 3.41+0.01 12.4£2.0 -2.75+1.61 0.0029

UHL-Pbpm/Fe;03  0.81 Pb-O 3.73 2.19+0.01 6.5+0.9 -1.73+0.74 0.0150
Bi-Bi 3.00 3.08+0.01 8.2+0.6

Bi foil 0.95 -0.04+0.01 0.0147
Bi-Bi 2.00 3.69+0.01 12.3+£3.5

UHL-Bipm/Fe2O3;  0.95 Bi-O 3.61 2.14+0.01 12.5+0.4 -8.71+0.58 0.0049

CN: coordination numbers; R: bond distance; o°: Debye-Waller factors; AEo: the inner potential correction. R
factor: goodness of fit.

130



Supplementary Table 6 PEC performance comparisons between this work and typical Fe:O3-based

photoanodes.
J (mA cm?) Onset potential
Photoanode ABPE (%) Reference
@1.23 Vrue (VRHE)
5-Mpm/Fe,O 5.70 1.2 0.54
P2 This work
Wem/Fe O3 5.04 1.05 0.66
Nat. Commun. 14, 2640
SAs Pt:Fe;03-Oy 3.65 0.68 0.63
(2023).
Nat. Commun. 12, 4309
Ge:Fe O3 3.5 - 0.70
(2021).
. Nat. Commun.
NiFe(OH)x/Ta:Fe,Oz@Fe203 3.22 0.55 0.55
11, 4622 (2020).
R~ Nat. Commun.
Co-Pi/Ti:Fe;O3 3.50 --- 0.86
10, 4832 (2019).
) Nat. Commun.
NiFeO/Dual-regrowth Fe;O3 1.30 - 0.45
6, 7447 (2015).
L J. Am. Chem. Soc.
Co-Pi/Si:Fe;03 2.70 --- 0.82
128, 15714 (2006).
] Adv. Mater.
Co-Pi/NPs Ag/Fe;0O3 4.68 0.55 0.70
28, 6405 (2016).
) Angew. Chem. Int. Ed.
Co-Pi/Zr:Fe;O3 2.20 0.23 0.65
56, 4150 (2017).
Angew. Chem. Int. Ed.
FeOOH/Fe;03 1.21 --- 0.65
55, 10854 (2016).
- - Angew. Chem. Int. Ed.
Ti-Si0Ox/CoPi1/Ti:Fe>O3 3.19 --- 0.80
55,9922 (2016).
] ) Energy Environ. Sci.
FeNiOOH/Fe,TiOs/Fe;O3 2.20 - 0.95
10, 2124 (2017).
) Energy Environ. Sci.
Co-Pi/P:Fe;03 3.10 - 0.75
8, 1231 (2015).
. . Adv. Energy Mater.
FeOOH/Sn0O;-S104/Ti:Fe>O3 1.54 --- 0.64
6, 1501840 (2016).
) Adv. Funct. Mater.
Fe>TiOs/Fe,Os/Pt 1.00 --- 0.80
27,1703527 (2017).
. . Adv. Funct. Mater.
Co-Pi/C0304/Ti:Fe203 2.70 0.43 0.64
29, 1801902 (2019).
Adv. Funct. Mater.
Co-Mn/Fe;03 2.09 0.25 0.60
29, 1904622 (2019).
Adv Funct Mater.
FeOOH/Fe,03 0.85 --- 0.80
25,2686 (2015).
. . Nano Lett.
Cobail oxide/Sn:Fe>O3 2.20 --- 0.80
17,2490 (2017).
. ) ACS Nano.
Co-Pi/Fe;O3@Fe,TiOs 2.60 --- 0.90

9, 5348 (2015).
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Supplementary Table 7 PEC performance comparisons between this work and other metal oxide-based

photoanodes.
J (mA cm?) Onset potential
Photoanode ABPE (%) Reference
@1.23 Vrue (VRHE)
S-Mpm/Fezo3 5.70 1.2 0.54
This work
Wen/Fe 03 5.04 1.05 0.66
Nat. Catal. 8, 229-238
Vw-WO3/Co-Pi 4.8 1.2
(2025).
J. Am. Chem. Soc. 142,
WOs-(PDDA-Aux), 0.6 0.9
21899-21912 (2020).
Angew. Chem. Int. Ed. 57,
Y:ZnO NR 0.4 ---
9749-9753 (2018).
Angew. Chem. Int. Ed.
Fe,TiO5-TiO2 0.325 0.017 Engl. 59, 8128-8132
(2020).
Angew. Chem. Int. Ed. 60,
CuO/WO3 32 -—- 0.6
17601(2021).
WOj3 with dual W and O )3 Angew. Chem. Int. Ed. 55,
vacancy ' 11819-11823 (2016)
Angew. Chem. Int. Ed. 60,
WOj3 nanobar 2
9357-9361 (2021).
Energy Environ. Sci.,5,
Ag@Ag3(PO4)1-+/ZnO 3.1 --- ---
8917-8922 (2012).
Adv. Funct. Mater. 32,
m-WO; with oxygen vacancy 2.4 -
2204106 (2022).
Adv. Energy Mater. 10,
In,S3-P/WO3 1.61 0.29
1903951 (2020).
Adv. Energy Mater. 6,
WOj3 porous nanosheet 1.25 -
1600437 (2016).
Adv. Energy Mater. 8,
CoMnO/BBNO/WO3 3.56 ---
1701655 (2018)
Adv. Energy Mater., 6,
Co-Pi/GaN:ZnO 1.19 -
1600864 (2016).
) Adv. Energy Mater. 8§,
Ni(OH),/ZIF-8/ZnO/NF 1.95 ---
1800101 (2018).
Nano Lett. 15, 4692-4698
N-TiO» 1.9 ---

(2015).
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Supplementary Table 8 Surface elemental weight ratios of the various electrodes determined by X-ray

photoelectron spectroscopy.

W (at.%) Cu (at.%) O (at.%)
Wem/1D-Cu20 4.02 59.99 35.99

W (wt%) Cu (wt %) O (wt %)
Wem/1D-Cu20 14.42 74.36 11.23

W (at.%) Zn (at.%) In (at.%) S (at.%)

Wpm/2D-Znln,S4 3.79 12.74 24.49 58.98
W (wt%) Zn (Wt%) In (Wt%) S (wWt%)
Wpm/2D-Znln,S4 11.18 13.36 45.13 30.34

W (at.%) C (at.%) N (at.%)
Wpm/2D-C3Ny 3.88 41.19 54.93

W (wt%) C (wt%) N (wWt%)
Wpm/2D-C3Ny 36.07 25.01 38.92

W (at.%) Fe (at.%) O (at.%)
Wem/2D-Fe203 4.13 34.35 61.52

W (wt%) Fe (wt%) O (Wt%)
Wem/2D-Fe203 20.73 52.39 26.88

W (at.%) Fe (at.%) O (at.%)
Wpm/3D-Fe203 431 36.28 59.41

W (wt%) Fe (wt%) O (wt%)
Wprm/3D-Fe203 21.02 53.76 25.22

W (at.%) Ti (at.%) O (at.%)
Wem/3D-TiO2 3.84 30.05 66.11

W (wt%) Ti (wt%) O (Wt%)
Wpm/3D-TiO2 22.05 44.92 33.03
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Supplementary Table 9 Surface elemental weight ratios of the 5-Mpwm/Fe203 electrode determined by X-

ray photoelectron spectroscopy.

Mo (at.%) Rh(at%) W (at.%) Ir(at%) Au(at%) Fe(at%) O (at.%)

5-Mpm/Fe203 1.75 1.67 1.51 1.44 1.38 37.04 55.21

Mo (wt%)  Rh (wt%) W (wt%) Ir(wt%) Auwt%) Fe (wt%) O (wt%)

5-Mpm/Fe203 4.08 4.17 6.74 6.72 6.60 50.74 21.57
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Supplementary Table 10 Structural parameters extracted from Au-K edge, W-L; edge, Mo-L; edge, Rh-
K edge and Ir-L3 edge y(R) space spectra fitting of 5-Mpm/Fe203.

Se? shell CN* R(A) o2 (1072 A?) AE, R factor
Au foil 0.75 Au-Au 12 2.86+0.01 7.3£0.1 4.54+0.49 0.0039
Au-O 4.1 1.94+0.01 5.1+£1.1
5-Mpm/Fe203  0.75 1.25+0.73 0.0036
Au-O-Fe 2.2 3.61+0.01 13.0£6.4
Ir foil 0.90 Ir-Ir 12 2.71+0.01 3.5+0.2 9.43£1.07 0.0074
Ir-O 4.1 1.90+0.01 1.6+1.1
Sample-Ir 0.90 -3.15+0.57 0.0039
Ir-O-Fe 2.0 3.45+0.01 13.744.5
Mo-Mo 8 2.71+0.01 2.6+0.2
Mo foil 0.75 -8.41+0.78 0.0022
Mo-Mo 6 3.12+0.01 1.4£0.3
Mo-O 3.6 1.72+0.01 9.4+1.4
Sample-Mo 0.75 9.50+1.56 0.0074
Mo-O-Fe 1.3 2.79+0.01 14.243.5
Rh foil 0.92 Rh-Rh 12 2.69+0.01 5.0+£0.3 6.93+1.43 0.0170
Rh-O 3.6 2.08+0.01 5.2£1.6
Sample-Rh 0.92 7.08+0.89 0.0145
Rh-O-Fe 1.8 3.50+0.01 14.3+0.1
W-W 8 2.73+0.01 3.8+0.3
W foil 0.80 4.46+0.70 0.0042
W-W 6 3.13+0.01 3.8+0.6
W-0 4.3 1.72+0.01 2.5+1.2
Sample-W 0.80 -3.91+1.11 0.0069
W-O-Fe 2.1 3.34+0.01 15.0+4.8

CN: coordination numbers. R: bond distance. 6%: Debye-Waller factors. AE: the inner potential correction. R factor: goodness
of fit.
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Supplementary Table 11 The PEC performance of this work is compared with that of C-N-based

photoanodes currently reported.

Photoanode J @1.23 VRuE Stability Reference
5-Mpm/Fe203 5.70 mA cm 500 h This work
ACS Appl. Nano Mater. 8,
PEDOT/C3N,4 14.7 pA cm? 150's
985-996 (2025).
Int. J. Hydrog. Energy 48,
Pt-NCN-CC ~0.21 pA cm? 24 h s &
29942-29951 (2023).
ChemCatChem 11, 729
g-C3N4+420-g-C3Ny 0.16 mA cm™ 400 s
(2019).
Sol. RRL 3, 1800298
Ve and Py co-doped g-C3N, 1.2 pA cm 50s
(2019).
Appl. Surf. Sci. 440, 153-
Sn0,/g-C3N4 42 uA cm 80's
161 (2018).
Nano-Micro Lett. 10, 37
TNTASs/g-C3Ny4 0.86 mA cm? 10 h
(2018).
Chem. Eur. J. 23, 419
Cpvp/g-C3N4-60 12.6 ypAcm? at 1.2V 4000 s
(2017).
Int. J. Hydrog. Energy 40,
Pt/Zn0/g-C3N4 30 pA cm™ at 1.12 Vrug 3400 s
9080-9087 (2015).
Adv. Mater. 25, 6291-6297
MoS»/NRGO/CNNS 27.76 pA cm™ at 0.8 V 1400 s

(2013).
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Supplementary Table 12 Bader charge quantification results for 5-Mw/Fe203 and 5-Mpwm/Fe20s3.

5-Mwm/Fe203 5-Mpm/Fe203

Ir 9.22 eV 7.48 eV

Ir 9.18 eV 7.54 eV
Y 13.33 eV 12.33 eV
W 13.88 eV 12.57 eV
Mo 13.28 eV 12.46 eV
Mo 13.64 eV 12.30 eV
Au 11.47 eV 10.08 eV
Au 11.51 eV 10.62 eV
Rh 14.76 eV 14.69 eV

Rh 14.73 eV 14.60 eV
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