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1 Effective action and variational structure
We consider a covariant effective field theory (EFT) extension of General Relativity in
which the gravitational action is supplemented by curvature-dependent operators encoding
leading-order geometric corrections,

S =
∫

d4x
√

−g
[

R

16πG
+ αIq + βI2 + γI∇R

]
, (1)

where the operators Iq, I2, and I∇R denote scalar curvature invariants. Their explicit
covariant form is not required for the background analysis presented here; rather, they are
characterized by the fact that, on a homogeneous and isotropic spacetime, they reduce to
effective contributions proportional to a−6, H2, and Ḣ, respectively.

The action is constructed such that all resulting field equations remain second order
in time derivatives. This requirement guarantees the absence of Ostrogradsky instabilities
and ensures that no additional propagating ghost degrees of freedom are introduced within
the EFT regime [2,3]. The coefficients (α, β, γ) therefore parametrize controlled geometric
corrections rather than new fundamental degrees of freedom.

2 Field equations and FLRW reduction
Variation of the action (1) with respect to the metric yields modified Einstein equations of
the form

Gµν + ∆(α)
µν + ∆(β)

µν + ∆(γ)
µν = 8πG Tµν , (2)

where each correction tensor ∆(i)
µν arises from the corresponding EFT operator and contains

at most second derivatives of the metric.
Specializing to a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) metric,

ds2 = −dt2 + a2(t) dx⃗2, (3)

the background equations reduce to the modified Friedmann equation

(1 − β)H2 − γḢ = 1
3

(
ρ + αa−6

)
, (4)

supplemented by the standard continuity equation for matter. In the high-curvature regime,
the term proportional to αa−6 dominates the dynamics and provides an effective repulsive
contribution that prevents the divergence of curvature invariants. As a result, the classical
cosmological singularity is replaced by a smooth, nonsingular bounce.

3 Geometric memory and temporal correlations

The presence of the γḢ term introduces a form of geometric memory into the cosmological
dynamics. In contrast with standard General Relativity, where the Friedmann equation is
algebraic in H2 and the evolution is local in time, the modified equation (4) dynamically
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couples the expansion rate to its temporal variation. This structure correlates nearby stages
of the cosmological evolution and gives rise to an effective form of dissipation at the level of
the background geometry.

Such behavior is naturally interpreted within nonequilibrium extensions of gravitational
dynamics, where irreversible evolution emerges from coarse-grained geometric degrees of
freedom rather than from microscopic time-reversal breaking [4, 5]. The memory effect
discussed here is therefore purely classical and geometric in origin: it does not rely on
quantum decoherence, stochastic sources, or nonlocal dynamics. Instead, it reflects the
macroscopic imprint of curvature memory encoded in the effective gravitational action.

4 Perturbative stability

4.1 Scalar perturbations
Scalar perturbations around the homogeneous and isotropic background are conveniently
described in terms of the comoving curvature perturbation ζ. Expanding the effective action
to quadratic order in ζ yields the standard form

S(2) =
∫

dt d3x a3
[
Qsζ̇

2 − c2
s

a2 (∇ζ)2
]

, (5)

where Qs denotes the effective kinetic coefficient and c2
s the squared sound speed of scalar

perturbations.
The absence of ghost and gradient instabilities requires

Qs > 0, c2
s > 0, (6)

ensuring that the scalar sector propagates healthy degrees of freedom with well-posed initial
value dynamics.

Within the EFT-consistent parameter domain

β > 0, 3α + β > 0, (7)

these conditions are satisfied throughout the cosmological evolution, including across the
nonsingular bounce. Importantly, the geometric slip parameter γ does not introduce additional
propagating degrees of freedom and therefore does not modify the structure of the quadratic
action for perturbations. Its role is confined to the background dynamics, where it induces
effective curvature memory and damping without affecting the perturbative spectrum directly.

5 Bounded curvature operators
Bounded curvature operators provide a natural mechanism for regulating high-curvature
regimes within an effective field theory description. A representative example is given by
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operators of the schematic form sin(R/Rc), where Rc denotes a characteristic curvature scale
below the EFT cutoff [1]. Such operators admit a controlled low-curvature expansion,

sin
(

R

Rc

)
= R

Rc

− 1
6

(
R

Rc

)3
+ O(R5), (8)

and therefore fit naturally within a local curvature expansion for R ≪ Rc.
When truncated consistently, bounded curvature operators do not introduce higher-order

equations of motion or additional dynamical degrees of freedom. In the present framework,
they should be understood as effective regulators that motivate the inclusion of curvature-
bounded contributions at the level of the background dynamics, such as the αa−6 term. Their
role is to control curvature growth in the high-energy regime while preserving covariance,
second-order field equations, and EFT consistency.

6 Remarks on black-hole geometries
Because the effective action considered in this work is fully covariant and constructed from
curvature invariants, the same geometric corrections responsible for regularizing cosmological
singularities are expected to contribute in other strong-curvature configurations, including
black-hole spacetimes. In particular, higher-curvature and bounded corrections have long
been known to soften or regulate curvature divergences in the deep interior of black holes,
while leaving the exterior geometry essentially unchanged at low curvatures [1, 2].

Within the present framework, curvature-bounded terms and geometric memory effects
may therefore modify the interior structure of black-hole solutions in a manner analogous to
their role in the early-universe cosmological dynamics. Such modifications are expected to
become relevant only in regions where curvature approaches the effective field theory cutoff,
and should not affect classical horizon properties or asymptotic observables in the weak-field
regime.

It is important to emphasize that no explicit static or dynamical black-hole solutions
are constructed in this work. The considerations above are qualitative and intended solely
to indicate the potential scope of the effective description. A detailed analysis of black-
hole geometries, including horizon structure, causal properties, and possible observational
implications, lies beyond the scope of the present study and is left for future work.

7 Gravity, time, and effective asymmetry

7.1 Time symmetry in General Relativity
At the fundamental level, General Relativity is invariant under time reversal. The Einstein
field equations,

Gµν = 8πG Tµν , (9)

are symmetric under the transformation t → −t when accompanied by the corresponding
transformation of the matter fields. As a result, classical gravitational dynamics does not
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single out a preferred temporal direction, and both forward- and backward-time solutions are
equally admissible.

In cosmological settings, the arrow of time is therefore not dictated by the gravitational
equations themselves, but must be introduced through boundary conditions, matter properties,
or coarse-graining assumptions.

7.2 Effective temporal asymmetry from geometric slip
In the present framework, an effective temporal asymmetry emerges at the level of cosmological
solutions due to the geometric slip term proportional to γḢ. The modified Friedmann
equation,

(1 − β)H2 − γḢ = 1
3

(
ρ + αa−6

)
, (10)

dynamically correlates the expansion rate with its time derivative. Unlike the standard
Friedmann equation, which is algebraic in H2, Eq. (10) encodes a memory effect in the
curvature sector.

For γ > 0, rapid variations of H are dynamically suppressed, leading to a smoothing
of the evolution across high-curvature regimes. This mechanism introduces an effective
irreversibility in the background dynamics, despite the fact that the underlying action
remains local, covariant, and time-reversal invariant.

7.3 Emergent time variable and monotonicity
The presence of geometric memory allows for the definition of an intrinsic relational time
variable τ(t) associated with the cosmological evolution. A convenient definition is given
schematically by

dτ

dt
= F(H, Ḣ; γ), (11)

where F is a positive-definite functional when γ > 0. Under these conditions, τ(t) is strictly
monotonic along cosmological solutions, including across the nonsingular bounce.

In the limit γ → 0, the slip term vanishes, F loses its preferred sign, and τ reduces to
a trivial reparametrization of coordinate time. The time-reversal symmetric structure of
General Relativity is then fully recovered.

7.4 Effective nature of the asymmetry and CPT safety
The temporal asymmetry described above is an emergent and effective property of the
coarse-grained gravitational dynamics. It arises from curvature memory effects encoded in
the effective field theory description and does not correspond to a fundamental breaking of
time-reversal invariance at the level of the action.

In particular, no fundamental violation of CPT symmetry is implied. The microscopic
symmetries of the theory remain intact, and the effective arrow of time disappears smoothly
outside the regime where geometric memory effects are relevant. The present framework
therefore provides an example in which gravity can give rise to an effective temporal ordering
without modifying its fundamental symmetry structure.
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8 Scope and limitations
This supplementary document provides technical support for the results presented in the
main article and is not intended as a ultraviolet completion of gravity. The framework should
be regarded as a controlled effective field theory description, valid within a finite regime of
curvature and energy density below the EFT cutoff.

Within this regime, the qualitative features emphasized in the main text—in particular,
the replacement of the initial cosmological singularity by a nonsingular bounce and the
emergence of a monotonic relational time variable—are expected to be robust. By contrast,
quantitative details of the dynamics may be sensitive to higher-order operators that have
been neglected here and could become relevant near the cutoff scale. Such corrections are
not expected to qualitatively alter the central conclusions, but they delimit the domain of
validity and predictive power of the effective description.

9 Geometric slip and curvature memory
A distinctive feature of the effective framework considered in this work is the presence of
a geometric slip term proportional to γḢ in the cosmological equations of motion. This
contribution does not correspond to an additional propagating degree of freedom, but rather
encodes a memory effect in the curvature sector, modifying the way in which spacetime
responds to changes in the expansion rate.

At the level of the homogeneous and isotropic background, the modified Friedmann
equation can be written as

(1 − β)H2 − γḢ = 1
3

(
ρ + αa−6

)
, (12)

where the γḢ term couples the instantaneous expansion rate to its temporal variation. In
standard General Relativity, the Friedmann equation is algebraic in H2, and the evolution is
fully local in time. By contrast, Eq. (12) introduces a dynamical relation between H and Ḣ,
effectively correlating nearby instants of cosmological evolution.

9.1 Interpretation as geometric memory
The slip term may be interpreted as a form of geometric memory: the present curvature
dynamics depends not only on the instantaneous value of the Hubble parameter, but also on
its recent rate of change. This behavior is analogous to dissipative or viscoelastic responses
in effective macroscopic systems, where coarse-grained degrees of freedom retain information
about past evolution.

Importantly, this memory effect is entirely geometric and classical. It arises from the
structure of the effective action and does not rely on stochastic sources, quantum decoherence,
or explicit time nonlocality. The underlying theory remains local and covariant; the apparent
irreversibility emerges only at the level of effective background solutions.
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9.2 Slip and effective dissipation

The presence of the γḢ term introduces an effective damping mechanism in the high-curvature
regime. To illustrate this point, consider rewriting Eq. (12) as

Ḣ = 1 − β

γ
H2 − 1

3γ

(
ρ + αa−6

)
. (13)

For γ > 0, rapid variations of the Hubble parameter are suppressed, leading to a smoother
evolution across the high-curvature phase. This effect is responsible for the ultraviolet
damping observed in the numerical solutions presented in the main text and plays a key role
in stabilizing the cosmological dynamics near the bounce.

The damping induced by the slip term does not violate local causality or alter the
propagation of perturbative modes. Instead, it modifies the background evolution in a way
that reduces sensitivity to initial conditions and suppresses spurious oscillations, consistent
with an effective field theory interpretation.

9.3 Slip and emergent temporal ordering
A further consequence of the geometric slip term is the emergence of a preferred temporal
ordering in cosmological solutions. Because the sign of γ selects a direction of effective
dissipation, the evolution equations admit a natural arrow of time at the level of solutions.
This can be made explicit by defining a relational time variable τ(t) whose rate of change
depends on the slip contribution,

dτ

dt
= F(H, Ḣ; γ), (14)

with F > 0 for γ > 0. In this case, τ(t) is strictly monotonic along the entire cosmological
evolution, including through the bounce.

In the limit γ → 0, the slip term vanishes and the equations recover the time-reversal
symmetric structure of General Relativity. The emergent temporal ordering is therefore an
effective property of the modified dynamics and not a fundamental violation of time-reversal
or CPT symmetry.

9.4 Relation to effective field theory control
From the EFT perspective, the geometric slip term represents a leading-order correction
in a derivative expansion that remains compatible with second-order equations of motion.
Its coefficient γ controls the strength of curvature memory effects and must lie within the
ghost-free and EFT-consistent domain discussed in the main text.

As long as the curvature scale remains below the EFT cutoff, the slip-induced memory
and damping effects are reliably captured by the effective description. Higher-order operators
may modify quantitative aspects of the evolution, but are not expected to qualitatively alter
the role of geometric slip in generating nonsingular dynamics and a monotonic relational
time variable.
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10 Absence of ghost modes
A central consistency requirement of any effective modification of General Relativity is the
absence of ghost-like degrees of freedom, i.e. modes with negative kinetic energy that would
render the theory unstable at the quantum or classical level. In the present framework, this
requirement is satisfied by construction.

The effective action introduced in Eq. (1) is engineered such that all field equations remain
second order in time derivatives. As a consequence, the theory evades the Ostrogradsky
instability that generically afflicts higher-derivative gravitational models [3]. No additional
canonical momenta beyond those present in General Relativity are introduced, and the phase
space of the theory remains finite.

At the level of linear perturbations around a smooth background, the spectrum consists of
the standard massless spin–2 graviton and a single scalar curvature mode associated with the
higher-curvature sector. The absence of ghost instabilities in this scalar sector is ensured by
the positivity of the kinetic coefficient Qs, as discussed in Sec. ??. Explicitly, the conditions

β > 0, 3α + β > 0, (15)

guarantee that all propagating modes carry positive kinetic energy.
Importantly, the geometric slip term proportional to γḢ does not introduce any additional

propagating degrees of freedom. Its contribution is linear in time derivatives at the level of
the background equations and does not modify the canonical structure of the perturbative
action. As a result, the slip term affects the dynamics only through background evolution,
inducing effective memory and damping effects without altering the number or nature of
physical modes.

The theory should therefore be regarded as ghost-free within its domain of validity as
an effective field theory. Possible instabilities associated with higher-order operators are
expected to arise only beyond the EFT cutoff, where the present description ceases to apply
and a more complete microscopic theory would be required.

11 Refences
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