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Extended Materials and Methods 

Study area and period 

All analyses were performed on a North America grid in EPSG:4326 covering -170° to -50° 

longitude and 10° to 85° latitude. Country boundaries for the United States, Canada, and Mexico 

(Natural Earth) defined the analysis mask. To ensure consistency, all spatial data were reprojected 

to WGS84 and standardized to a common grid of ~1 km resolution. The study period covers 1991-

2025 to capture long‐term migratory patterns as well as the recent H5N1 clade 2.3.4.4b expansion. 

Data sources and processing 

We assembled ecological, demographic, and outbreak data from multiple sources (Extended Data 

Table 1). 

Wild bird observations were obtained from eBird50 and the Global Biodiversity Information 

Facility (GBIF)51, livestock densities from the FAO Global Livestock Environmental Assessment 

Model (GLIMS)52, human population from GPWv453, climate predictors from WorldClim v2.154, 

and confirmed outbreaks from FAO EMPRES-i55, WOAH WAHIS56, and CFIA NEOC57. 

Additional predictors included MODIS land cover and vegetation indices58, NASA distance-to-

coast, and WorldClim digital elevation models (DEM)54. 

We filtered waterfowl and other susceptible migratory species, excluding taxa with fewer than 150 

georeferenced records. This yields 126 species for analysis (Extended Data Table S2). To 

minimize multicollinearity among environmental predictors, we screened all 19 bioclimatic 

variables and retained seven with low inter-correlation: mean diurnal temperature range (BIO2), 

temperature seasonality (BIO4), temperature annual range (BIO7), precipitation of driest month 
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(BIO14), precipitation seasonality (BIO15), precipitation of driest quarter (BIO17), and 

precipitation of coldest quarter (BIO19). 

Species distribution modeling 

To generate species distribution models (SDM)59 for each species-month, occurrence data were 

paired with background (pseudo-absence) points sampled from environmentally complete cells. 

Equal number of presences-absences were used, and each point was labeled as 1 (presence) or 0 

(absence). We trained Random Forest, XGBoost, logistic regression implemented in scikit‐learn, 

LightGBM, and pyimpute. Predictors were z-standardized after mean AUC guided model choice. 

Hyperparameters were tuned by five-fold cross-validation, with the mean AUC guiding model 

choice.  

The best algorithm for each species-month combination produced probability surface at 0.5° 

resolution. The resulting monthly species richness maps for waterbird communities across North 

America (Extended Fig. 1) reveal consistent ecological hotspots from January through December. 

High-richness areas recur in the Prairie Pothole Region, the Great Lakes basin, along the Atlantic 

Flyway (including the Delmarva Peninsula), and within key coastal and wetland complexes of the 

Gulf of Mexico and Pacific Flyway. These spatial and temporal patterns reflect the dynamic 

migratory strategies of waterbirds and delineate regions of persistent ecological importance for 

avian diversity that underpin subsequent risk-mapping analyses. 

Predictions were then combined into monthly species richness layers (Extended Data Fig. 3) and 

a Temporal Co-occurrence Index (TCI) as follows  

𝑇𝐶𝐼 =
𝜇

𝜎
× 100 

where μ and σ are the pixel‐wise mean and standard deviation of richness across 12 months. High 

TCI values identify where many species co‐occur frequently through time. 

Entropy-based metrics 

To capture temporal dynamics in wild bird activity and community structure, we extended beyond 

species richness and the TCI by computing several entropy-based diversity measures that describe 

both the magnitude and evenness of species’ seasonal occurrence. These metrics quantify the 

temporal distribution of habitat suitability across the 12 months of the year, where 𝑝𝑚 denotes the 

proportion of annual suitability attributed to month m (where ∑ 𝑝𝑚
12
𝑚=1 = 1 ). These metrics 

quantify how evenly habitat suitability is distributed across months, values close to 1 indicate long, 

even activity seasons, while lower values indicate strong seasonal peaks concentrated in few 

months. 

1. Shannon Entropy60 
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Shannon entropy measures the uncertainty or information content of the monthly suitability 

distribution. 

𝐷1 = 𝑒𝑥𝑝(𝐻) 

This converts entropy into the effective number of equally active months, providing a more 

intuitive diversity scale. For instance, a value of 𝐷1 = 5 indicates that the temporal activity is 

equivalent to having five months contributing equally to the annual suitability. Hill q = 1 

therefore emphasizes common months while remaining sensitive to evenness. 

1. Hill Number of Order 1 (Hill q = 1)61 

The Hill diversity index of order 1 is the exponential of Shannon entropy: 

𝐻𝑞=1 = −∑ 𝑝𝑚 log 𝑝𝑚

12

𝑚=1

 

2. Inverse Simpson Diversity (Hill q = 2)61 

This index emphasizes the dominant months in the temporal distribution and is less influenced 

by rare or weakly active periods: 

𝐷2 =
1

∑ 𝑝𝑚2
12
𝑚=1

 

Higher values indicate broader and more evenly distributed temporal activity, whereas lower 

values reflect dominance by a few peak months. 

Together, these complementary metrics describe different facets of temporal diversity: Shannon 

entropy quantifies evenness on a logarithmic scale, Hill q = 1 translates that information into an 

intuitive count of effective months, and Hill q = 2 highlights the dominance structure of seasonal 

activity. Collectively, they provide a multidimensional view of host community dynamics relevant 

to viral persistence and transmission potential. 

Static predictors: ingestion and scaling 

Poultry, cattle, and human density rasters were log-transformed as log(x+1) and min-max scaled 

to [0,1], after reprojection/resampling. Land cover (EPSG:4326 NA-wide raster) was reduced to 

the six most frequent classes plus an “other” bin. Each class was encoded as a binary dummy layer. 

Presence data and monthly split 

Confirmed HPAI case records were imported from CSV files using a flexible field-detection 

routine that automatically recognized coordinate and date information even when column names 

or formats varied among data sources. Values were validated to ensure they fell within geographic 

bounds (-180 ≤ longitude ≤ 180; -90 ≤ latitude ≤ 90) and transformed to the WGS84 coordinate 

reference system. 
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Date fields were similarly standardized using a multi-format parser that could interpret ISO-8601 

strings (e.g., “2024-03-15”), ordinal dates (“20240315”), or delimited text (“03/15/2024”, “15-

Mar-2024”). When multiple temporal fields were present (e.g., observation_date, report_date), 

the observation date was prioritized. From each valid date, the month (m) was extracted to preserve 

temporal resolution. 

For each month, presence points were filtered to that period; if no confirmed cases were reported, 

all valid detections within the year were retained as a conservative fallback to maintain spatial 

coverage. This flexible detection and harmonization process ensured consistent geotemporal 

alignment of all case records, allowing seamless integration with monthly environmental 

predictors and species suitability layers for model training. 

Pseudo-absence sampling and feature extraction 

For month (m), we extracted predictors at all presence points and sampled an equal number of 

pseudo-absence locations, constrained to cells with complete predictor coverage. The final design 

matrix for month (m) consisted of: Response (factor cases ∈ {absence, presence}), and Predictors 

(poultry, cattle, population; ten species layers for month (m); and land-cover dummies). 

In our occurrence dataset, confirmed HPAI presences and pseudo-absence locations were 

distributed across a study area restricted to ecologically and anthropogenically relevant zones 

(Extended Data Fig. 2). Rather than using the entire continent, we defined the sampling mask by 

combining wild-bird diversity hotspots, areas of high poultry and livestock density, and regions of 

substantial human settlement. To reduce contamination of the background by undetected infection, 

we applied a 15 km exclusion buffer around each confirmed outbreak and generated pseudo-

absences by stratified random sampling within the remaining mask, matching the environmental 

space occupied by presence locations. We used equal numbers of presence and pseudo-absence 

points to balance model calibration and minimize spatial sampling bias in downstream species 

distribution modelling. 

To quantify continental-scale seasonality in HPAI exposure potential, we derived monthly Hill-1 

entropy surfaces that integrate predictions from 126 waterbird species distribution models 

(Extended Data Fig. 3). For each month, these entropy-based risk maps summarize both the 

richness and evenness of waterbird communities, yielding a composite measure of potential viral 

exposure. The resulting sequence of monthly panels reveals pronounced north-south oscillations 

in inferred HPAI risk that track large-scale migratory dynamics along the major North American 

flyways, with risk concentrating in southern wintering and staging areas in boreal winter and 

shifting toward northern breeding regions in summer.  

We quantified the marginal effects of key anthropogenic and ecological predictors on HPAI risk 

using mean partial dependence plots (PDPs) for human density, poultry density, cattle density, and 

the temporal co-occurrence index (TCI) aggregated across all months (Extended Data Fig. 4). For 

each variable, we computed the average change in predicted risk while holding other covariates at 

their empirical distributions, and summarized month-to-month variability as ±1 SD around the 
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mean partial dependence. Across the annual cycle, risk generally increased with higher human 

density and TCI values, whereas poultry and cattle density exhibited nonlinear relationships: 

predicted risk rose from low to intermediate densities and then declined at the highest densities, 

consistent with saturation effects and changing agro-ecological context in heavily intensified 

production zones. 

Spatial cross-validation 

To limit spatial leakage, we constructed spatial folds via k-means clustering on presence 

coordinates. Absences were assigned to the nearest presence cluster (1-NN). When (k=1) (data-

sparse months), a single-model path is used (no CV AUC reported for that month). 

Random forest training and AUC 

For each entropy formulation and month, we trained a probabilistic random forest model 

configured with 1500 trees, a variable selection parameter of 𝑚𝑡𝑟𝑦 = ⌊√𝑝⌋, and permutation-based 

importance. Models were fitted in probability mode to generate continuous risk estimates. 

Predictive performance was evaluated using fold-wise AUC computed on held-out validation data 

via the pROC package, with results aggregated across folds to assess monthly model stability.  

Probability calibration (Platt scaling) 

Random forest probabilities were calibrated independently for each month using a simple Platt 

scaling approach62. Approximately 20% of the training data, stratified by class, were randomly 

selected as a calibration subset. A logistic regression of the form  

𝐿(𝑦) = 𝑎 + 𝑏𝑃𝑟𝑎𝑤 

was then fitted to relate raw random forest probabilities to observed presence-absence outcomes. 

The resulting coefficients were used to transform model outputs according to 

𝑃𝑐𝑎𝑙  = 𝐿−1(𝑎 + 𝑏𝑃𝑟𝑎𝑤), 

producing calibrated probability surfaces that better reflected empirical prevalence. In months 

where spatial cross-validation yielded a single fold (k=1), the calibration model was instead 

trained on a subsample of the full dataset to preserve consistency.  

Species attribution (ablation Δ-probability) 

For each month and focal species, we quantified its spatial contribution to overall HPAI risk by 

computing Δ-probability (Δ-prob) maps. This was achieved by first neutralizing the species-

specific predictor layer, replacing it with its spatial mean to preserve the marginal distribution 

while removing spatial structure, and then re-predicting risk using the same random forest model 

and Platt calibrator. The difference between the calibrated baseline and neutralized predictions, 

𝛥 = 𝑃𝑐𝑎𝑙,  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑃𝑐𝑎𝑙,  𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑, 
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represents the marginal effect of that species on predicted outbreak probability. Positive Δ values 

indicate locations where the species increases risk, while negative values denote areas of reduced 

influence. 

Dominant driver (index and magnitude) 

To identify which species most strongly structured local HPAI risk through time, we mapped the 

dominant waterfowl contributor to Hill-1 based risk for each grid cell and month (Extended Data 

Fig. 5). For each focal species, we generated a “species-neutralized” prediction by replacing its 

modeled probability surface with a regional baseline and computing the resulting Δ-probability 

between the full and neutralized scenarios. Monthly Δ-probability rasters across all focal species 

were then stacked to derive two summary layers: a dominant index, assigning each pixel to the 

species with the maximum positive Δ (set to 0 where all Δ ≤ 0), and a dominant magnitude, 

representing the corresponding maximum Δ intensity (also set to 0 when no positive values 

occurred). These layers respectively indicate which species contributed most to local HPAI risk 

and the strength of that contribution. Seasonal dominance patterns closely track migration, with 

Mallard and Northern Pintail largely governing interior continental risk (particularly across the 

Prairie Pothole Region and central flyways), other dabbling ducks (e.g., Blue-winged Teal, 

Gadwall) emerging in southern and spring staging areas, and geese species increasingly 

dominating northern and coastal staging regions during peak migration and breeding periods. 

To assess overall species influence on predictive performance, we conducted a leave-one-species-

out (LOSO) ΔAUC analysis (Extended Data Fig. 6). For each cross-validation fold, we retrained 

the random forest model while omitting a single focal species predictor and recomputed the test 

AUC. The reduction in AUC relative to the full model provided a quantitative measure of that 

species’ contribution to model skill. This sensitivity analysis revealed that excluding Mallard, 

Canada Goose, Northern Pintail, or Gadwall produced the largest declines in AUC, indicating that 

these species carry disproportionate weight in explaining spatial and temporal patterns of HPAI 

risk. Removing other dabbling ducks led to more moderate reductions, consistent with their 

secondary, context-dependent roles in structuring exposure across the North American landscape. 

To quantify regional species-level contributions to HPAI risk, we aggregated species-specific risk 

contributions within each ecological hotspot and expressed them as proportional shares of total 

modeled risk (Extended Data Fig. 7). For each hotspot polygon, we integrated the species-resolved 

risk surfaces across all grid cells (and relevant months) and normalized by the summed 

contribution of the ten focal species to obtain region-specific composition profiles. These profiles 

are shown as stacked bar plots, where bar height reflects total risk and segment height reflects each 

species’ proportional contribution. The Prairie Pothole Region and Mississippi Alluvial Valley 

exhibit relatively balanced stacks spanning many species, consistent with diffuse, community-

level pressure. In contrast, Delmarva, the GA-SC coastal hotspot, and the Pacific Northwest 

display higher concentration in a subset of species, and the associated sensitivity bars mirror this 
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pattern by assigning disproportionately high marginal influence to the top four species in these 

regions. 

Robustness and data-scarcity safeguards 

To ensure robustness under varying data availability, several safeguards were implemented 

throughout the modeling workflow. Species with incomplete monthly suitability layers were 

automatically excluded, and the pipeline proceeded if at least three focal species remained. Months 

lacking a valid training dataset were skipped and written as NA rasters, with corresponding 

warnings logged. For data-scarce months in which spatial cross-validation produced only a single 

fold (k = 1), a single random forest model was fitted and calibrated. 

Phylogeographic Analysis of HPAI H5N1 Spread 

To quantify cross-species and inter-regional transmission dynamics of HPAI H5N1 (clade 

2.3.4.4b), we analyzed a dataset of 14,263 full-length hemagglutinin (HA) gene sequences 

obtained from GISAID63 (January 2021 - May 2025). Each sequence was annotated with host 

category (wild birds “WB”, domestic birds “DB”, wild mammals "WM”, domestic mammals 

"DM”, humans "H”) and geographic origin at the state or provincial level. 

Sequences were aligned using MAFFT v7.50564 under default parameters, and a maximum-

likelihood phylogeny was inferred with IQ-TREE v2.2.6 65 using the GTR+F+Γ4 substitution 

model and ultrafast bootstrap approximation (1000 replicates) for branch support. A time-scaled 

phylogeny was subsequently reconstructed with TreeTime v0.10.1 66, applying a strict molecular 

clock and a coalescent skyline prior to calibrate branch lengths in calendar years. 

Transmission events were inferred following the discrete trait framework of Leke et al.70, which 

counts state-to-state changes along internal branches as proxy transmission events between defined 

categories (here, host class × geographic unit). Trait-transition matrices were computed from 

annotated internal node reconstructions, and normalized carrier-to-recipient transmission counts 

were summarized for each (host₁ to host₂) pair. Statistical significance of associations among host 

and location traits was assessed using a log-linear likelihood-ratio test (LRT), evaluating whether 

observed transmission frequencies deviated from independence expectations. 

The reconstructed time-scaled phylogeny captured strong host and geographic structure, revealing 

extensive viral exchange among wild and domestic birds across North America. We identified 

>3,000 inferred transmission events, with a highly significant interaction among host categories 

(LRT = 3039.8, df = 544, p < 0.001). 

We quantified cross-host transmission patterns using a discrete-trait phylogenetic reconstruction 

of host state along a time-scaled HA phylogeny (n = 14,263 sequences), treating wild birds (WB), 

domestic birds (DB), wild mammals (WM), domestic mammals (DM), and humans (H) as discrete 

categories. For each internal branch, we inferred state transitions and summarized the resulting 
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counts in a carrier-recipient transmission matrix (Extended Data Fig. 8), where rows represent the 

inferred source host and columns represent the recipient host. Color intensity in the corresponding 

heatmap reflects the relative frequency of transitions from each carrier to each recipient. These 

matrices show that wild birds act as the dominant source of cross-species spread, accounting for 

most inferred transmissions to domestic birds and sporadic seeding events into mammalian hosts. 

In contrast, mammal-to-mammal and human-linked transitions are rare, indicating limited onward 

transmission within mammalian hosts and supporting the view that the epidemic is primarily 

maintained within avian reservoirs. 

We characterized the geographic structure of transmission using state- and province-level discrete 

trait reconstructions from the time-scaled HA phylogeny (n = 14,263 sequences), and summarized 

the top 20 locations acting as viral sources and sinks (Extended Data Fig. 9). For each inferred 

state transition, we recorded the origin and destination region and tallied these counts across the 

tree; “source” counts reflect transitions originating in a given region, whereas “sink” counts reflect 

transitions terminating in that region. Geographically, the reconstructions revealed repeated viral 

exchanges among the Prairie, Great Lakes, and Atlantic regions, consistent with established 

migratory flyway routes. Western and central regions such as Alberta, Minnesota, and British 

Columbia emerged as major exporters, contributing disproportionately to onward dissemination 

toward downstream recipient areas in the Midwest, Great Lakes, and northeastern United States. 

These movements were primarily driven by wild-bird lineages that frequently seeded new 

introductions into domestic poultry populations, where onward spread was limited, and spillover 

into mammals appeared as sporadic, largely terminal events without evidence of sustained 

circulation. Collectively, these patterns underscore the dominant role of wild birds as the principal 

maintenance and dissemination host of H5N1 in North America, with domestic birds acting mainly 

as epidemiological sinks. A significant host interaction effect in the discrete trait model (LRT = 

3039.8, p < 0.001) further highlights the tight ecological coupling between migratory waterfowl 

and poultry systems that underpins the persistence and continental spread of the epidemic. 

Phylogeography and BEAST Configuration 

To investigate the spatial and temporal dynamics of highly pathogenic avian influenza (HPAI) 

H5N1 clade 2.3.4.4b across North America, we analyzed a representative subset of 1,900 

hemagglutinin (HA) gene sequences drawn from a larger dataset of 14,263 sequences collected 

between January 2021 and May 2025 from both wild and domestic hosts. Each sequence contained 

county-level geographic metadata, which was integrated with monthly entropy-based risk maps. 

For each county, the mean risk value was extracted and classified into three discrete ecological 

risk states high, medium, or low providing a spatially explicit framework for phylogeographic 

inference. A time-scaled phylogeny was first inferred using TreeTime, which was then used as the 

fixed starting tree for Bayesian phylogeographic analysis in BEAST v1.10.4 72. 

Phylogeographic inference was performed under an asymmetric continuous-time Markov chain 

(CTMC) model for transitions among the three risk states (High, Medium, Low). Temporal 
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calibration was based on precise sampling dates (year-month-day) under a strict molecular clock, 

with a lognormal prior on the substitution rate (mean = 1 × 10⁻³ subs/site/year, SD = 0.33). 

Nucleotide substitution followed a GTR + Γ4 model with all parameters estimated. 

The Bayesian Skygrid71 coalescent model (20 grid points spanning 2020-2025) was used to 

accommodate flexible changes in effective population size. Bayesian stochastic search variable 

selection (BSSVS) was applied to identify well-supported transitions among risk states, with the 

CTMC rate reference prior set to exponential(mean = 1.0). Uniformization and complete Markov-

jump history logging were enabled to quantify directional transition counts and state occupancy 

through time. 

Each MCMC chain was run for 50 million steps, sampling every 10,000 iterations, with 10% burn-

in. Convergence (ESS > 200) was confirmed in Tracer v1.7.2 72. The maximum clade credibility 

(MCC) tree was summarized in TreeAnnotator  (posterior probability ≥ 0.8) and visualized using 

FigTree and ggtree. 

The resulting MCC tree revealed frequent transitions between medium- and high-risk nodes, 

consistent with sustained viral circulation within ecological hotspots and recurrent introductions 

into lower-risk regions. Temporal scaling placed the tMRCA of North American H5N1 lineages 

in early 2021 (95% HPD: 2020.8-2021.3), corresponding to the onset of the continental HPAI 

wave.  Tips were colored according to the observed risk category, while internal branches and 

nodes were shaded by the most probable reconstructed category (Extended Data Fig. 10). The 

resulting MCC tree revealed frequent transitions between medium- and high-risk nodes, consistent 

with sustained viral circulation within ecological hotspots and recurrent movement along major 

exposure corridors, as well as intermittent introductions from high- into lower-risk regions. 

Temporal scaling placed the tMRCA of North American H5N1 lineages in early 2021 (95% HPD: 

2020.8-2021.3), coinciding with the onset of the continental HPAI wave and the emergence of 

persistent diversification within high-risk areas from mid-2021 onward. 

Continuous diffusion and spatial reconstruction 

To infer geographic diffusion dynamics, we reanalyzed the HA dataset under a continuous 

phylogeographic framework using a relaxed random walk (RRW) model73, treating latitude and 

longitude as continuous traits. The diffusion process was modeled with a Cauchy-distributed RRW 

to accommodate occasional long-distance dispersal events, as recommended for avian influenza 

datasets. Molecular clock and substitution priors were kept identical to those used in the discrete-

trait analyses, and the RRW variance parameter was assigned a gamma prior (shape = 0.5, scale = 

0.5). Independent BEAST runs were combined in LogCombiner after confirming convergence (all 

key parameters with ESS > 200), and marginal likelihood estimation via stepping-stone sampling 

supported an asymmetric CTMC + Skygrid coalescent model over symmetric or constant-size 

alternatives. Continuous diffusion patterns were summarized and visualized in SPREAD3 v0.9.7 
74, yielding time-resolved maps of inferred dispersal routes (Extended Data Fig. 11). 
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Model Validation and Spatial Interpretation 

Spatial reconstructions of Markov jump counts and continuous diffusion paths revealed major viral 

movement corridors along the Pacific, Central, and Atlantic flyways, with recurrent re-entry into 

the Prairie Pothole and Mississippi Valley regions that overlapped high-entropy ecological risk 

zones from the mapping framework. Continuous-trait reconstructions confirmed strong north-

south migration-linked spread and additional east-west exchanges between the Mississippi and 

Atlantic flyways (Extended Data Fig. 11). Collectively, these results indicate that viral movement 

aligns more closely with ecological barriers and high-risk hotspots than with unrestricted open 

corridors: high-risk regions function as persistent reservoirs and diversification hubs, whereas 

transitions into low-risk areas are typically transient. Although Bayes factor support for individual 

directional transitions was moderate, the consistency of the spatial patterns across models and 

analyses points to strong ecological constraints on H5N1 dispersal across North America. 

Data availability 

All genome sequences and associated metadata utilized in the study are available in GISAID. The 

GISAID Acknowledgement Table is provided in Supplementary Data Table 3 and is accessible 

via the persistent DOI (https://doi.org/10.55876/gis8.260114dw). The other data supporting the 

findings of this study are available within the paper and its supplementary information files. 
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Extended Data Table 1. Data sources used in modelling. 

Category Variable(s) Resolution Source(s) 

Wild‐bird 

occurrence 

Species observations 

(1990-2025) 
Point eBird, GBIF 

Livestock density Poultry, cattle (2018) 1 km FAO GLIMS 

Human population GPWv4 (2020) 1 km CIESIN 

Climate 
Temperature & 

precipitation normals 
1 km WorldClim v2.1 

Outbreak locations 
Confirmed HPAI events 

(2015-2025) 
Point 

FAO EMPRES‐i, WOAH 

WAHIS, CFIA NEOC GIS 

Land cover 
MODIS MCD12Q1 

(2019) 

500 m 

(aggregated) 
NASA LP‐DAAC 

Vegetation dynamics 
MODIS NDVI & EVI 

(2001-2024) 

500 m 

(aggregated) 
NASA LP‐DAAC 

 

Extended Data Table 2. Water bird species (Family Anatidae) and Raptors retained for the 

HPAI spread models after data filtering. 

Species 1 Species 2 Species 3 

Accipiter cooperii Aythya valisineria Scolopax minor 

Accipiter striatus Botaurus lentiginosus Charadrius semipalmatus 

Actitis macularius Branta bernicla Charadrius vociferus 

Aechmophorus occidentalis Branta canadensis Chlidonias niger 

Aix sponsa Branta hutchinsii Clangula hyemalis 

Anas acuta Bubulcus ibis Coragyps atratus 

Anas crecca Bucephala albeola Cygnus buccinator 

Anas fulvigula Bucephala clangula Cygnus columbianus 

Anas platyrhynchos Bucephala islandica Cygnus olor 

Anas rubripes Buteo jamaicensis Dendrocygna autumnalis 

Anhinga anhinga Buteo lagopus Egretta caerulea 

Anser albifrons Buteo lineatus Egretta thula 

Anser caerulescens Buteo platypterus Egretta tricolor 

Aquila chrysaetos Buteo swainsoni Elanus leucurus 

Aramus guarauna Cairina moschata Eudocimus albus 
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Ardea alba Calidris alba Fregata magnificens 

Ardea herodias Calidris alpina Fulica americana 

Arenaria interpres Calidris himantopus Gallinago delicata 

Aythya affinis Calidris mauri Gavia immer 

Aythya americana Calidris melanotos Gavia stellata 

Aythya collaris Calidris minutilla Grus canadensis 

Aythya marila Calidris pusilla Haematopus palliatus 

Ictinia mississippiensis Cathartes aura Haliaeetus leucocephalus 

Larus californicus Numenius americanus Hydroprogne caspia 

Larus delawarensis Numenius phaeopus Somateria mollissima 

Larus fuscus Nyctanassa violacea Spatula clypeata 

Larus glaucescens Nycticorax nycticorax Spatula cyanoptera 

Larus glaucoides Oxyura jamaicensis Spatula discors 

Larus heermanni Pandion haliaetus Sterna forsteri 

Larus marinus Pelecanus erythrorhynchos Sterna hirundo 

Larus occidentalis Pelecanus occidentalis Sternula antillarum 

Limnodromus griseus Phaethon aethereus Sula dactylatra 

Limnodromus scolopaceus Platalea ajaja Sula leucogaster 

Limosa fedoa Plegadis chihi Thalasseus maximus 

Lophodytes cucullatus Plegadis falcinellus Tringa flavipes 

Mareca americana Pluvialis squatarola Tringa melanoleuca 

Mareca strepera Podiceps auritus Tringa semipalmata 

Megaceryle alcyon Podiceps grisegena Tringa solitaria 

Melanitta americana Podiceps nigricollis Urile penicillatus 

Melanitta deglandi Podilymbus podiceps - 

Melanitta perspicillata Porzana carolina - 

Mergus merganser Rallus crepitans - 

Mergus serrator Rallus limicola - 

Morus bassanus Recurvirostra americana - 

Mycteria americana Rynchops niger - 

 

 Extended Data Table 2. GISAID Acknowledgment table. 

 

GISAID Identifier  Digital Object Identifier Number of 

individual viruses 

Data Collection range 

 

Number of 

Countries/ territories 

EPI_SET_260114dw https://doi.org/10.55876/gis8.260114dw 14,363 14,363 2021-12-16 to 

2025-03-31 
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