

Supplementary Information

2 Remodeling of Conformational Dynamics Enhances Catalytic Activities of M1 Zinc- 3 metallopeptidases from Lanthipeptide Biosynthesis

4 Chang Zhao,^{1,3} Wangjian Sheng,^{2,3} Ying Wang,² Jie Zheng,² Xiangqian Xie,² Yong Liang,² Wanqing Wei,^{2*} Rui Bao^{1*} and Huan
5 Wang^{2*}

⁶ ¹Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative
⁷ Innovation Center, Chengdu, China

⁸ ²State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu
⁹ Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
¹⁰ 210093, China

³These authors contributed equally: Chang Zhao, Wangjian Sheng

12 *e-mail: wanghuan@nju.edu.cn; baorui@scu.edu.cn; wanqwei@163.com

13 **List of supplementary figures and tables:**

- 14 • Supplementary Table 1 | Primers used in this study
- 15 • Supplementary Table 2 | Data collection and refinement statistics of EryP
- 16 • Supplementary Figure 1 | Genetic information of the *ery* BGC and the *eryP* gene
- 17 • Supplementary Figure 2 | SDS-PAGE analysis of enzymes investigated in this study
- 18 • Supplementary Figure 3 | Catalytic efficiency of EryP toward Ala-*p*NA, Pro-*p*NA and Leu-*p*NA
- 19 • Supplementary Figure 4 | Structural comparison between EryA_{cyc} and AplA_{cyc}
- 20 • Supplementary Figure 5 | EryP cleaves AplA_{cyc} peptide as an endopeptidase at multiple sites
- 21 • Supplementary Figure 6 | EryP contains a zinc binding motif that is highly conserved in M1 Zn-dependent metallopeptidases
- 22 • Supplementary Figure 7 | Both endopeptidase and aminopeptidase activities of EryP_{E307Q} and EryP_{Y392F} were abolished
- 23 • Supplementary Figure 8 | The docking model of a dipeptide Leu-Glu into the active site of EryP in the *closed* state
- 24 • Supplementary Figure 9 | The Ca binding residues in the *intermediate* and *open* states of EryP
- 25 • Supplementary Figure 10 | Dimensional descriptors were selected to describe the motion of domain-IV relative to domain-I and II
- 26 • Supplementary Figure 11 | The binding affinity of EryP with EryA_{LP} was not altered by the addition of 1.0 mM CaCl₂
- 27 • Supplementary Figure 12 | The aminopeptidase activity of EryP_{E384A} toward Ala-*p*NA was not responsive to the change of Ca²⁺ concentration
- 28 • Supplementary Figure 13 | The overall crystal structure of EryP_{E802R} and the close-up view of the inter-domain interactions
- 29 • Supplementary Figure 14 | Y392 stabilizes the tetrahedral intermediate during enzymatic amide hydrolysis.
- 30 • Supplementary Figure 15 | EryP_{E802R} displays significantly improved aminopeptidase activity and is not responsive to the presence of Ca ions
- 31 • Supplementary Figure 16 | MD stimulation of EryP-(Leu-*p*NA) bound with Ca²⁺ and EryP_{E802R}-(Leu-*p*NA) in complex without Ca²⁺
- 32 • Supplementary Figure 17 | the designed inter-domain charge-charge interaction in AplP_{R98E-A368E-A779R}
- 33 • Supplementary Figure 18 | The aminopeptidase activity of AplP_{R98E-A368E-A779R} was enhanced by 2.6-fold compared with AplP toward Ala-*p*NA
- 34 • Supplementary Figure 19 | The hydrolysis of Ala-*p*NA by EryP was not accelerated by the addition of peptide substrate AplA_{cyc}
- 35 • Supplementary Figure 20 | Sequences of peptide substrates

49 **Supplementary Table 1.** Primers used in this study

Primer	Sequence (5'-3')
AplA BamHI F	TGCTGGATCCAGTCCAGGAAATTCTGAACTGCAAGAACTGCC
AplA HindIII R	TGCTAAGCTTTAACAGTTGGACCAGGTAAAGGAACCTGGCCAAC
AplKC NdeI F	AGCTCATATGGTCTGGATACCGTTATTCGCTTGGCGTC
AplKC XhoI R	AGCTCTCGAGTTATTCTTCAGAATCGGCACCCGCGGAG
AplP NdeI F	GATTCATATGGTACCCGTCCGGAGGC
AplP XhoI R	GTATCTCGAGTTAACGACCCGGCGCCACC
AplP _{R98E} F	AGCCGTAGCGGTGAAGGCCTGAGCCGT
AplP _{R98E} R	ACGGCTCAGGCCTTCACCGCTACGGCT
AplP _{A368E} F	GATACCGATGCGGAGCTGCGTTCGAC
AplP _{A368E} R	GTCGAAACGCAGCTCCGCATCGGTATC
AplP _{A779R} F	CGTTGGCCGGCGCCAGGCGCACAC
AplP _{A779R} R	GTGGTGCCTGGCGCGCCGGCAACG
EryP NdeI F	AGCTCATATGGCTCCGCCAACCTGACCCG
EryP XhoI R	AGCTGCTCTCGAGTCAGCTACGGTAAACTCACGCGC
EryP _{E307Q} F	ACCGTGCTGCACCAGATGGCGCACATG
EryP _{E307Q} R	CATGTGCGCCATCTGGTGCAGCACGGT
EryP _{E384A} F	CTGCAGGCGGTGGCAGTTAACTTTGAT
EryP _{E384A} R	ATCAAAGTTAACTGCCACCGCTGCAG
EryP _{Y392F} F	GATGGTATCACCTTGCAGGGCGCG
EryP _{Y392F} R	CGCGCCCTCGCAAAGGTGATACCATC
EryP _{E802A} F	CGTCGTAGCAGCGCACGTGCGCAGCCG
EryP _{E802A} R	CGGCTGCGCACGTGCGCTACGACG
EryP _{E802R} F	CGTCGTAGCAGCCGTCGTGCGCAGCCG
EryP _{E802R} R	CGGCTGCGCACGACGGCTGCTACGACG

Supplementary Table 2. Data collection and refinement statistics of EryP and EryP_{E802R}

Parameters	SeMet	<i>closed</i>	<i>intermediate</i>	<i>open</i>	EryP _{E802R}
Data collection					
Wavelength (Å)	0.97918	0.97918	0.97918	0.97930	0.9785
Space group	<i>P</i> 4 ₁ 2 ₁ 2	<i>P</i> 4 ₅ 2 ₁ 2	<i>P</i> 12 ₁ 1	<i>P</i> 2 ₁ 2 ₁ 2 ₁	<i>P</i> 12 ₁ 1
Cell dimensions					
a, b, c (Å)	153.75	153.58	91.42	58.818	58.909
α, β, γ (°)	90 90 90	90 90 90	90 93.41 90	90 90 90	90 114.76 90
Resolution (Å)	82.42 - 2.56 (2.63 - 2.56) *	39.09 - 1.90 (1.93 - 1.90) *	37.74 - 1.80 (1.85 - 1.80) *	36.18 - 2.66 (2.76 - 2.66) *	19.57 - 1.77 (1.83 - 1.77) *
Rmerge	0.384(3.052)	0.124(0.750)	0.048(0.443)	0.205(0.775)	0.073(0.293)
Completeness (%)	100.0 (100.0)	100.0 (99.8)	98.9(91.6)	99.37 (97.44)	99.7(99.8)
Mean I/σ (I)	12.8(1.8)	25.2(6.1)	16.4(2.1)	8.74(1.68)	16.1(5.0)
Refinement					
Resolution (Å)		1.90	1.80	2.66	1.77
Rwork/Rfree		15.38/18.14	19.00/21.02	20.18/21.58	13.61/17.19
No. reflections		92586 (9138)	169146 (15534)	29991 (2859)	88415 (8837)
RMSD					
bond lengths (Å)		0.022	0.014	0.020	0.021
bond angles (°)		1.79	1.20	1.68	1.78
No. atoms					
Protein		6808	13318	6720	6806
Ligand/ion		24	2	1	13
water		796	1058	131	1367
B-factors					
Protein		27.23	42.36	52.81	14.88
Ligand/ion		36.56	37.44	32.11	23.14
water		36.70	45.67	45.08	26.28
Ramachandran plot					
Favored		97.67	98.28	98.02	97.90
Allowed		2.33	1.72	1.98	2.10
Dis-allowed		0	0	0	0

54 Data were collected from a single crystal. *Values in parentheses are for highest-resolution shell.

56 **Supplementary Table 3.** Detailed MS data of Figure 6a.

57

Species	Sequence	Predicted Mass/Da	Observed Mass/Da
AplA_{LP}(-19)	His ₆ -VQE	1855.86	1855.57
AplA_{LP}(-17)	His ₆ -VQEIL	2082.18	2082.8
AplA_{LP}(-16)	His ₆ -VQEILE	2211.3	2211.74
AplA_{LP}(-14)	His ₆ -VQEILELQ	2452.59	2452.97
AplA_{LP}(-13)	His ₆ -VQEILELQE	2581.7	2581.81
AplA_{LP}(-11)	His ₆ -VQEILELQELP	2791.98	2791.96
AplA_{LP}(-5)	His ₆ -VQEILELQELPSASATE	3338.51	3338.46
AplA_{cyc}	His ₆ -VQEILELQELPSASATEDMPL-AplA _{cyc} -cp	5998.58	5998.02

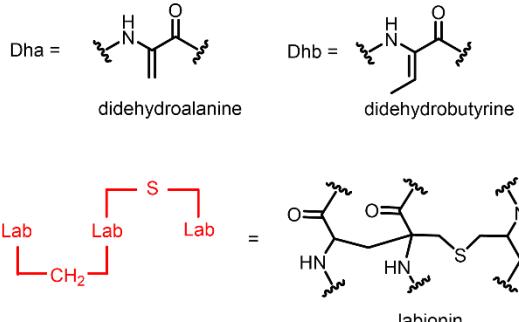
58 **Supplementary Table 4.** Detailed MS data of Figure 6b.

Species	Sequence	Predicted [M+Na] ⁺ Mass/Da	Observed [M+Na] ⁺ Mass/Da
AplA_{CP}(-1)	L-AplA _{cyc} -CP	2356.03	2355.53
AplA_{CP}(-2)	PL-AplA _{cyc} -CP	2453.08	2452.59
AplA_{CP}(-3)	MPL-AplA _{cyc} -CP	2584.12	2583.57
AplA_{CP}(-4)	DMPL-AplA _{cyc} -CP	2699.15	2698.72
AplA_{CP}(-5)	EDMPL-AplA _{cyc} -CP	2828.19	2828.49
AplA_{CP}(-6)	TEDMPL-AplA _{cyc} -CP	2929.24	2928.57
AplA_{LP}(-13)	His ₆ -VQEILELQE	2603.18	2602.57
AplA_{LP}(-11)	His ₆ -VQEILELQELP	2813.31	2813.63
AplA_{LP}(-10)	His ₆ -VQEILELQELPS	[M+H] ⁺ = 2877.3543	[M+H] ⁺ = 2877.562

59

60

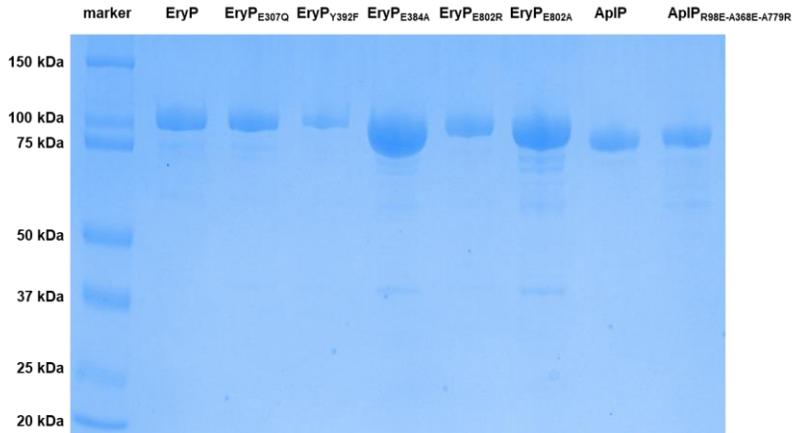
61


62

63

A)

Lanthipeptide	Strain	Gene	Accession number	Genome coordinates
Erythreapeptin	<i>Saccharopolyspora erythraea</i> NRRL 2338	<i>eryP</i>	WP_009950696.1	NC_009142.1 1484009-1486591 (-)
		<i>eryKC</i>	WP_009949110.1	NC_009142.1 4798016-4800550 (+)
		<i>eryA</i>	WP_009949109.1	NC_009142.1 4800618-4800758 (+)
		<i>ramA</i>	WP_009949108.1	NC_009142.1 4800854-4802512 (+)
		<i>ramB</i>	WP_009949106.1	NC_009142.1 4802509-4804218 (+)

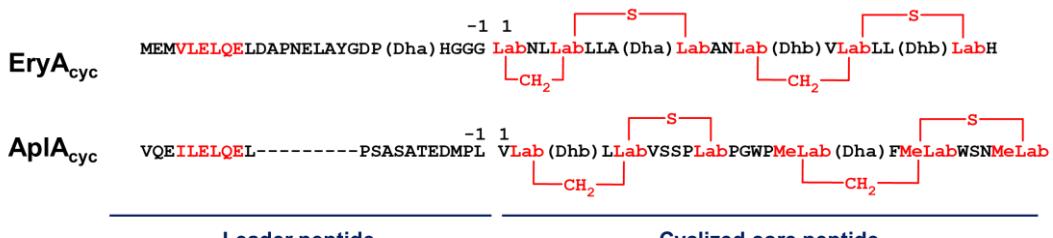

B)

64

65 **Supplementary Figure 1.** (A) Genetic information of the *ery* BGC and the *eryP* gene in the genome
 66 of *Saccharopolyspora erythraea* NRRL 2338. (B) Chemical structures of Dha, Dhb and labionin
 67 motifs in erythreapeptin.

68

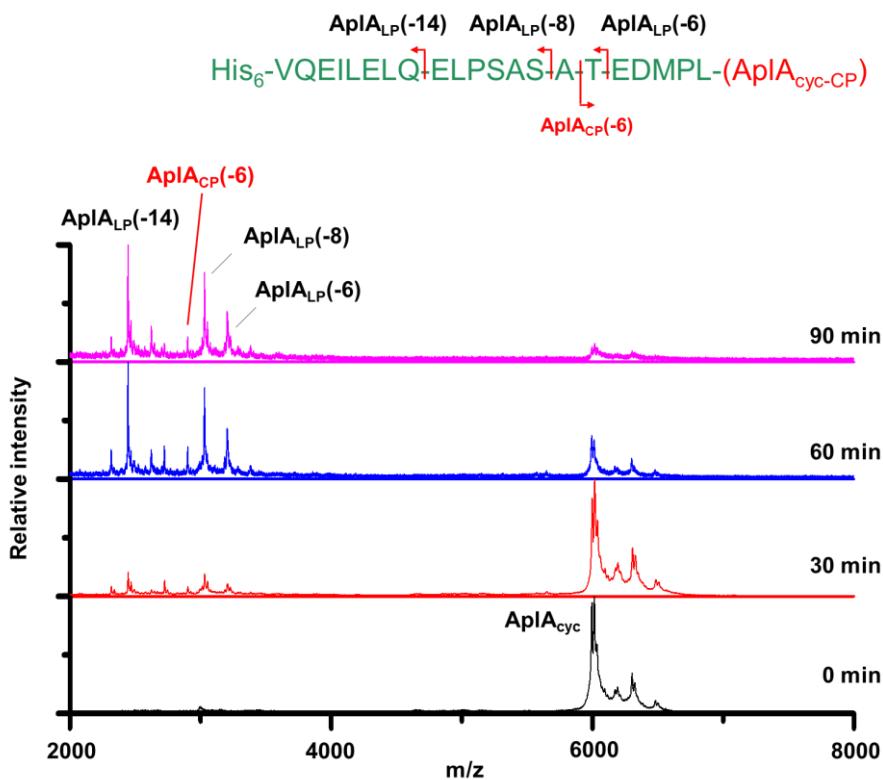
69


70 **Supplementary Figure 2.** SDS-PAGE analysis of enzymes investigated in this study. M.W. of EryP
 71 is 96.2 kDa, and M.W. of ApIP is 90.7 kDa.

72

Substrate	[CaCl ₂] (mM)	K _m (mM)	V _{max} (μM·min ⁻¹)	k _{cat} (min ⁻¹)	k _{cat} /K _m (min ⁻¹ mM ⁻¹)
Ala-pNA	none	36 ± 5	81 ± 9	81	2.2
	1.0	5.2 ± 0.1	57 ± 1	57	11
Leu-pNA	none	1.6 ± 0.1	18 ± 1	18	11
	1.0	2.6 ± 0.1	89 ± 4	89	35
Pro-pNA	none	11 ± 1	9.5 ± 0.6	9.6	0.87
	1.0	5.4 ± 0.4	16 ± 1	16	3.0

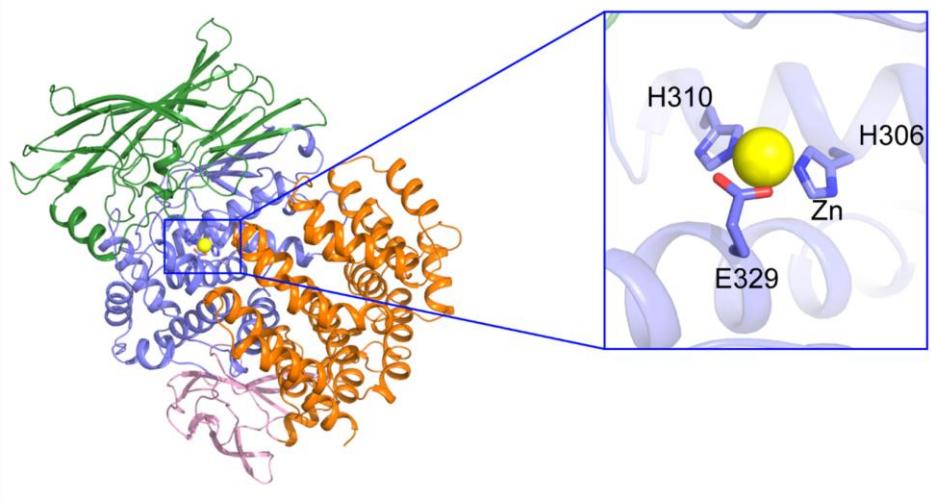
Supplementary Figure 3. Catalytic efficiency of EryP toward Ala-pNA, Pro-pNA and Leu-pNA. Assay conditions: 1.0 μM EryP was incubated with Ala-pNA (100 μM to 10 mM) or Pro-pNA (100 μM to 10 mM) or Leu-pNA (10 μM to 1.0 mM) in 20 mM Tris buffer, pH 8.0, at 37 °C. Error values indicate standard deviation of three independent replicates.


77

78

Supplementary Figure 4. Structural comparison between EryA_{cyc} and AplA_{cyc}.

80

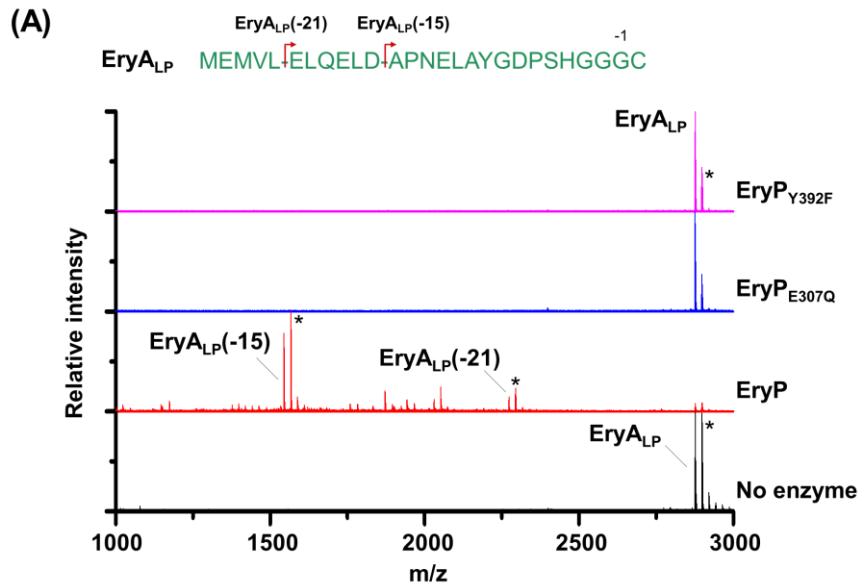

Species	Sequence	Predicted Mass/Da	Observed Mass/Da
AplA _{LP} (-14)	His ₆ -VQEILELQ	2452.59	2452.89
AplA _{LP} (-8)	His ₆ -VQEILELQELPSAS	3036.43	3036.31
AplA _{LP} (-6)	His ₆ -VQEILELQELPSASAT	3208.52	3208.46
AplA _{CP} (-6)	TEDMPL-AplA _{cyc-CP}	2889.19	2889.88

81

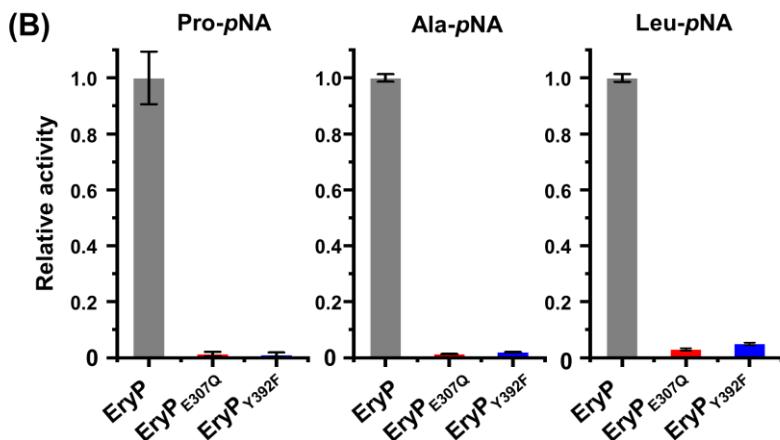
82 **Supplementary Figure 5.** EryP cleaves AplA_{cyc} peptide as an endopeptidase at multiple sites, as
 83 determined by MALDI-TOF analysis. Assay conditions: 100 μ M AplA_{cyc} peptide and 1.0 μ M EryP
 84 were incubated in 20 mM Tris buffer, pH 8.0, at 37 °C for indicated time.

85

(A)

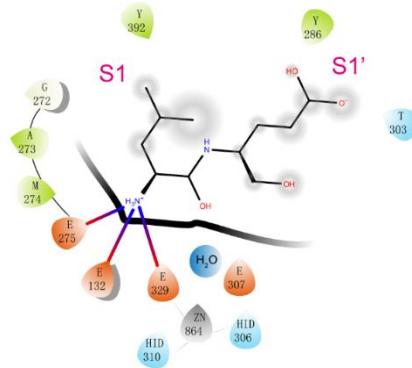
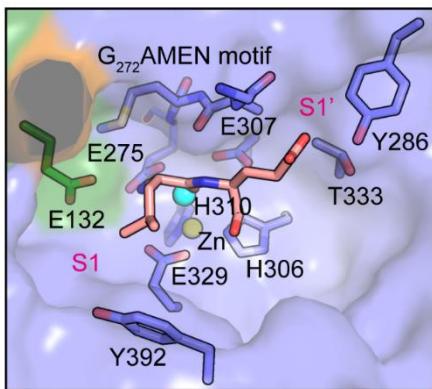

(B)

EryP	(246)	GFFHKAFGVYPFGKYDQCFVPEFNAG	AMEN	AGCVTFLEDYVFRSRVTGYLYERR--SET
AplP	(231)	GYLRADFATPYPFAKLDLCLVAELPAA	AMEN	AACVTLSES LARP GTADPAARLRR--SGV
ePepN	(235)	KWDEERFGLEYDLDIYMI VAVDFFNMG	AMEN	KGLNIFNSKYVLARTDTATDKYLDIERV
ERAP1	(291)	EFYEDYFSI PYPLPKQDLAAIPDFQSG	AMEN	WGLTTYRESALLFDAEKSSASSKLGITMT
EryP	(304)	VL HEMA HMWFGDLVTMRWWDDLWLNE	S	FATWASVLAQVGATQYTNAWTTFASVEKSWAYR
AplP	(289)	LL HELA HMWFGDLVTMRWWDDLWLNE	S	FAVVAAVRAQA-ALGDPAAWTTFALTEKAWAYE
ePepN	(295)	IG HEYF HNWTGNRVTCRDWFQLSLKE	E	GLTVFRDQEFS DLSRAVN RINNVRTMRLQFA
ERAP1	(351)	VA HELA HQWFGN LVTMEWWNDLWLNE	E	GFAKFM EFVSVS-VTHPELKVGDYFFGKCFDAME
EryP	(364)	QDQLPSTHPVAA DIPDLQAVEVNFDGITY	Y	AKGASVLKQLVAYVGLENFLAGLKVFDRHA
AplP	(348)	QDRLPSTHPVVA DLA ADDTDAALRFDGITY	Y	AKGA ALLRQLAVHLGEDRFRAGLADYLGRHA
ePepN	(355)	EDASPM AHP I RPD MVIE MNNFY TLT--V	Y	EKGAEVIR MIHTLLGEENFQKGMQLYFERHD
ERAP1	(410)	V DALN SSSHPV STP VENPAQ IREM FDDVS	Y	DKGACI LNMMLREYLSADAFKSGIVQYLQKHS


86

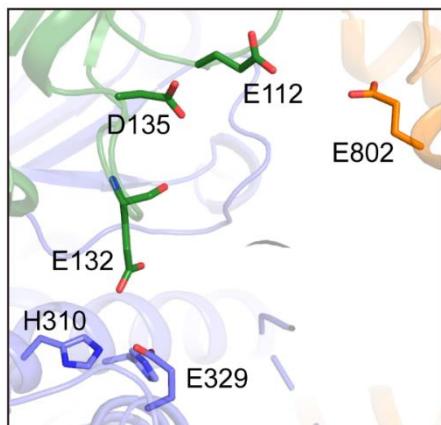
87 **Supplementary Figure 6.** EryP contains a zinc binding motif that is highly conserved in M1 Zn-
88 dependent metallopeptidases. (A) The overall crystal structure of EryP and the close-up view of the
89 Zn binding residues. (B) Sequence alignment of EryP with M1 Zn-dependent metallopeptidases.
90 Catalytic residues are labeled with stars and the conserved HEXXH(X)₁₈E is highlighted. Accession
91 numbers of related proteins: EryP(WP_009950696.1), AplP(AHB63590.1), ePepN(AAA24317.1),
92 ERAP1(NP_001185470.1).

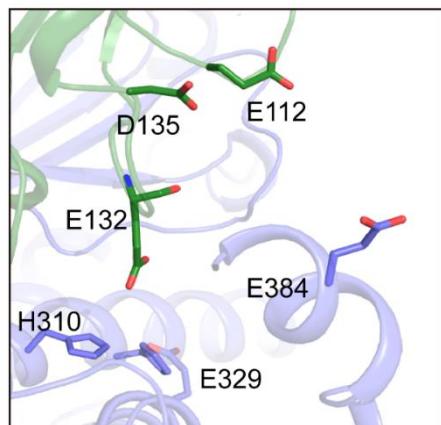
93

Species	Sequence	Predicted Mass/Da	Observed Mass/Da
EryA _{LP} (-15)	APNELAYGDPSHGGC	1544.62	1544.76
EryA _{LP} (-21)	ELQELDAPNELAYGDPSHGGC	2271.98	2272.17
EryA _{LP}	MEMVLELQELDAPNELAYGDPSHGGC	2876.18	2876.33

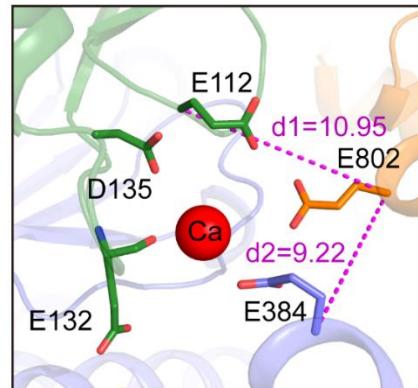
94
 95 **Supplementary Figure 7.** Both endopeptidase and aminopeptidase activities of EryP_{E307Q} and
 96 EryP_{Y392F} were abolished. (A) EryP_{E307Q} and EryP_{Y392F} were inactive toward EryA_{LP} peptide. Assay
 97 conditions: 100 μ M EryA_{LP} peptide and 1.0 μ M EryP were incubated in 20 mM Tris buffer, pH 8.0,
 98 at 37 °C for 24 h. (B) The aminopeptidase activity of EryP_{E307Q} and EryP_{Y392F} toward amino acid
 99 *p*NA derivatives were almost abolished compared with EryP. * represents the sodium adducts of
 100 peptides in MS. Error bars indicate standard deviation of three independent replicates.


101


102

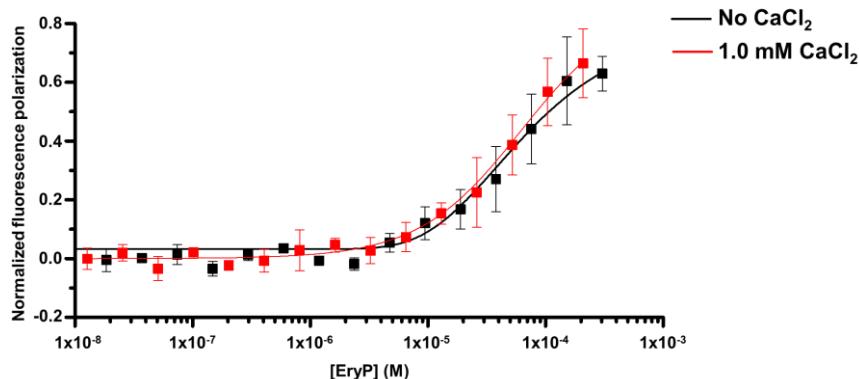
103 **Supplementary Figure 8.** The docking model of a dipeptide Leu-Glu into the active site of EryP in
 104 the *closed* state. Following the convention for naming peptidase sites, the site responsible for
 105 accommodating the peptide side chain N-terminal to the cleavage site is named **S1**, and the
 106 subsequent position are named **S1'**.

107


intermediate

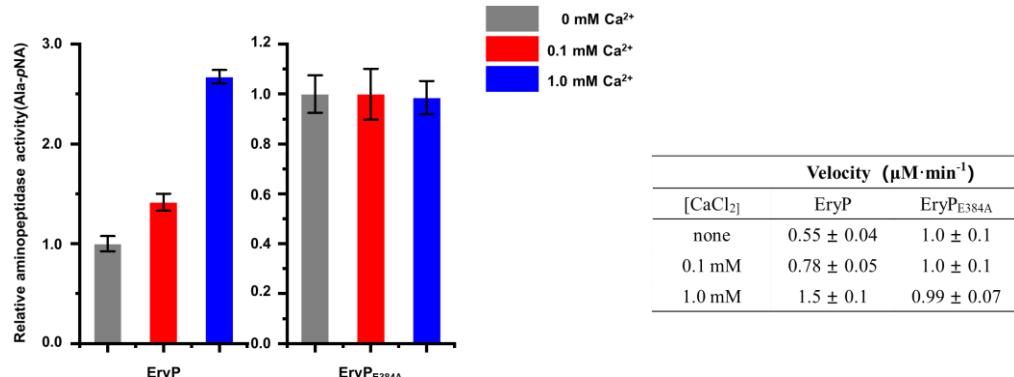
open

108

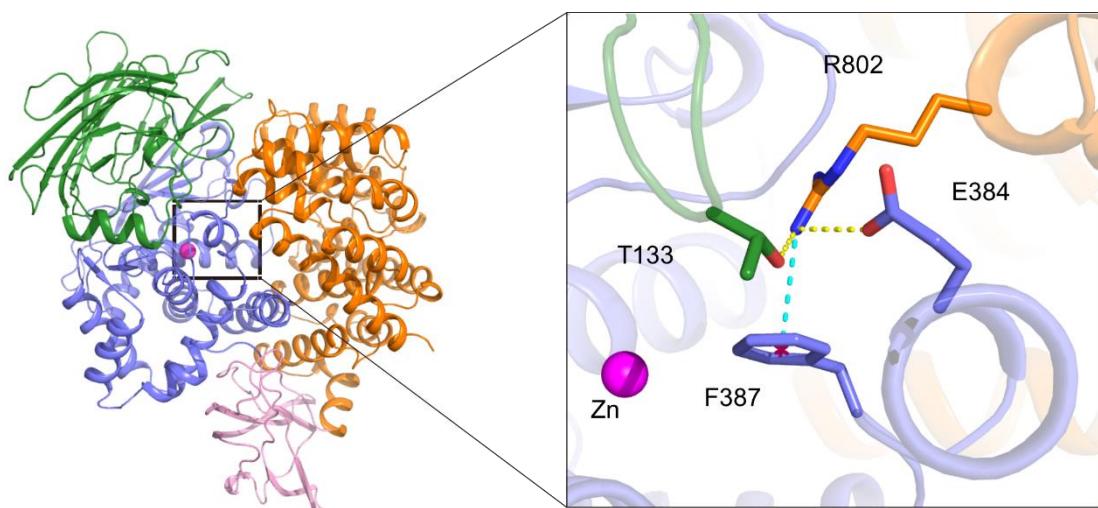

109 **Supplementary Figure 9.** The Ca binding residues in the *intermediate* and *open* states of EryP.
 110

111

112 **Supplementary Figure 10.** Dimensional descriptors were selected to describe the motion of
 113 domain-IV relative to domain-I and II: **d1** is the distance between the CA atoms of E802 and E112,
 114 and **d2** is the distance between the CA atoms of E802 and E384. In the *closed* state of EryP, **d1** =
 115 10.95 Å and **d2** = 9.22 Å.

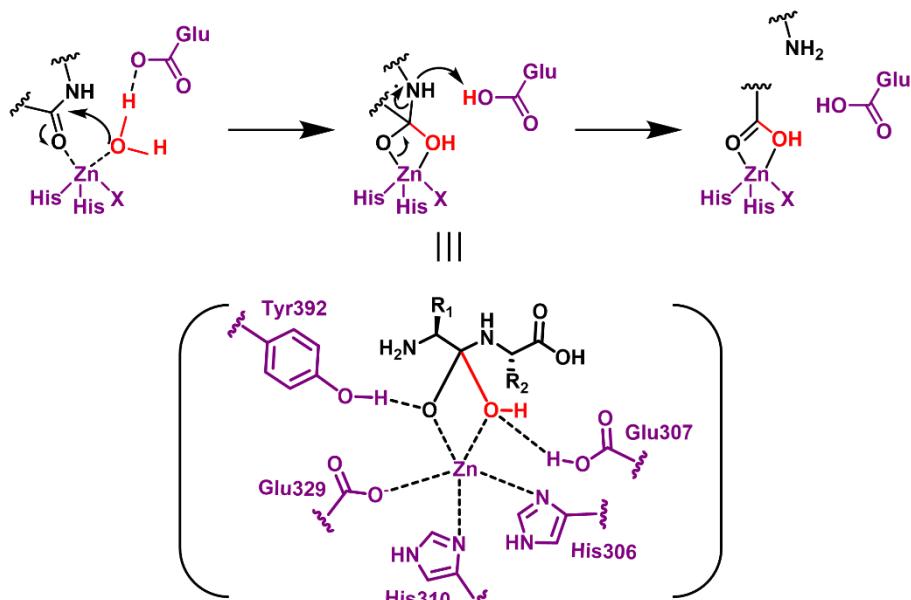

116

117


118 **Supplementary Figure 11.** The binding affinity of EryP with EryA_{LP} was not altered by the
 119 addition of 1.0 mM CaCl₂. K_D values for EryP-EryA_{LP} binding are 52.9 ± 11.5 μM (no CaCl₂) and
 120 59.8 ± 7.9 μM (1.0 mM CaCl₂). Error bars indicate standard deviation of three independent replicates.

121

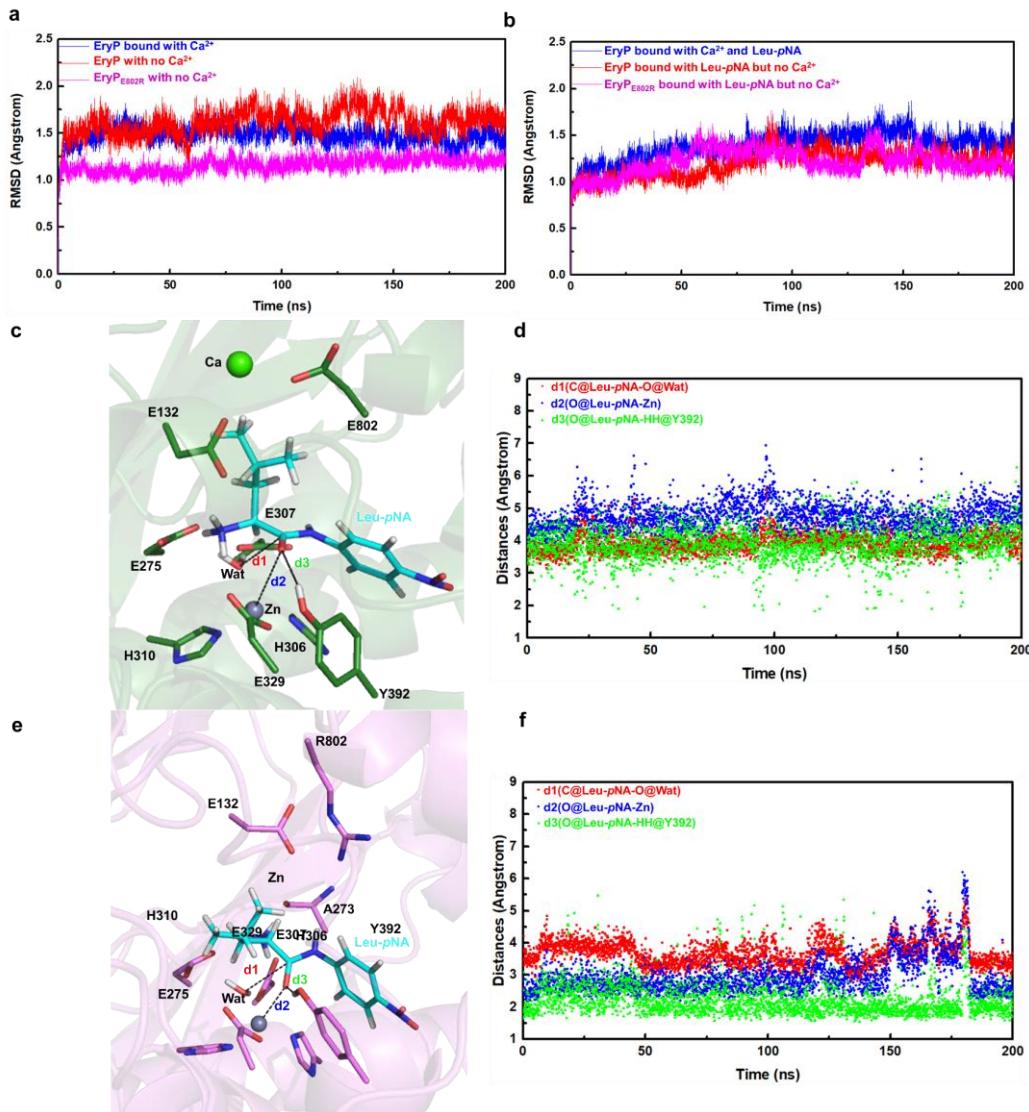
122


123 **Supplementary Figure 12.** The aminopeptidase activity of EryP_{E384A} toward Ala-pNA was not
 124 responsive to the change of Ca²⁺ concentration. Assay conditions: EryP or EryP_{E384A} (1.0 μM) was
 125 incubated with Ala-pNA (0.10 mM) in 20 mM Tris buffer, pH 8.0, at 37 °C. Error bars indicate
 126 standard deviation of three independent replicates.

127

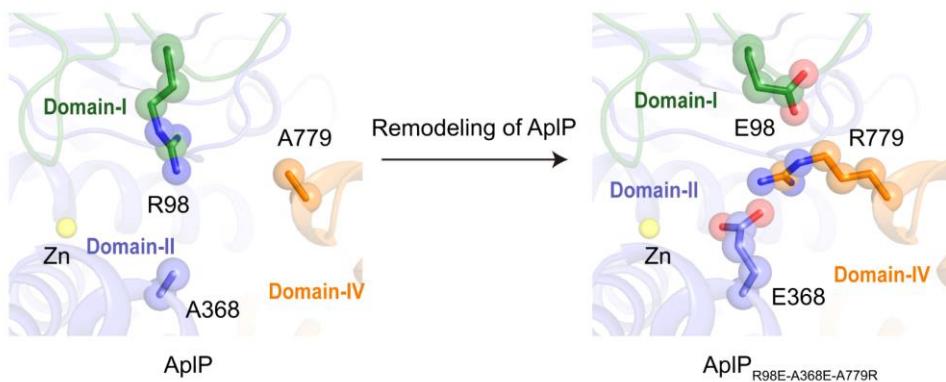
128 **Supplementary Figure 13.** The overall crystal structure of EryP_{E802R} and the close-up view of the
129 inter-domain interactions between residues T133, E384, F387 and R802.

130


131

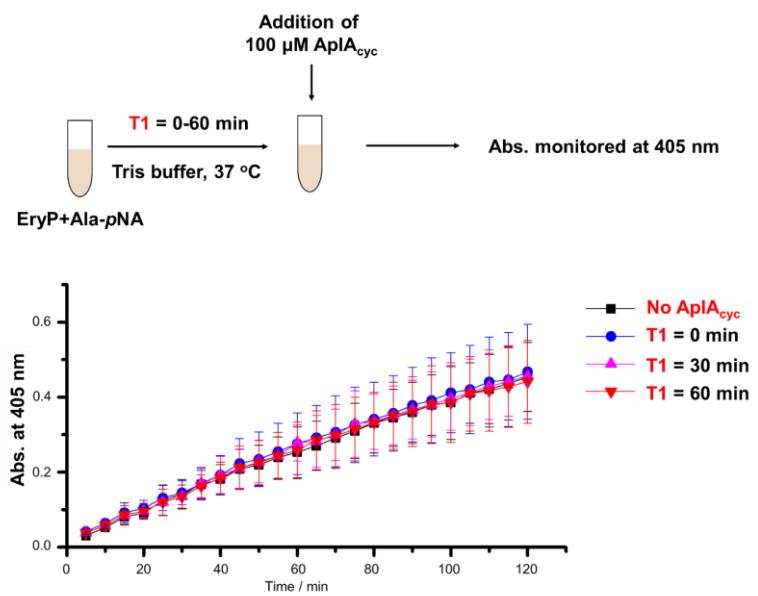
132 **Supplementary Figure 14.** Y392 stabilizes the tetrahedral intermediate during enzymatic amide
133 hydrolysis.

134


Substrate	Enzyme	[CaCl ₂]	K _m (mM)	V _{max} (μM·min ⁻¹)	k _{cat} (min ⁻¹)	k _{cat} /K _m (min ⁻¹ ·mM ⁻¹)	Relative
Ala-pNA	EryP	none	36 ± 5	81 ± 9	81	2.2	1.0
	EryP _{E802R}	none	0.57 ± 0.05	22 ± 1	1075	1876	837
		1.0 mM	0.27 ± 0.01	12 ± 1	575	2148	954
Leu-pNA	EryP	none	1.6 ± 0.1	18 ± 1	18	11	1.0
	EryP _{E802R}	none	0.23 ± 0.02	38 ± 1	1890	8169	748
		1.0 mM	0.22 ± 0.01	32 ± 1	1599	7129	653

135 **Supplementary Figure 15.** EryP_{E802R} displays significantly improved aminopeptidase activity and
 136 is not responsive to the presence of Ca ions. Kinetic parameters are acquired from Michaelis-Menten
 137 analysis of EryP and EryP_{E802R}. Assay conditions: 20 mM Tris buffer, pH 8.0, 1.0 μM EryP or 0.02
 138 μM EryP_{E802R}. The concentration of amino acid-pNA derivatives ranges from 10 μM to 10 mM.
 139 Error values indicate standard deviation of three independent replicates.

140


141 **Supplementary Figure 16.** RMSD of backbone heavy atoms relative to the first snapshot during
 142 200 ns classical MD simulation on (a) EryP and EryP_{E802R} with or without Ca ions and (b) EryP-
 143 (Leu-pNA) and EryP_{E802R}-(Leu-pNA) complexes with or without Ca ions. According to the RMSDs,
 144 all MD trajectories reaches equilibrium and the protein structures are dynamically stable.
 145 Representative MD snapshot and key distances of (c-d) EryP-(Leu-pNA) in complex with Ca²⁺ and
 146 (e-f) EryP_{E802R}-(Leu-pNA) in complex without Ca²⁺ during 200 ns MD simulations.

147
148
149
150
151
A)

Supplementary Figure 17. Residues R98, A368 and A779 in the modeled AplP structure, and the designed inter-domain charge-charge interaction in $\text{AplP}_{\text{R98E-A368E-A779R}}$.

	Velocity ($\mu\text{M} \cdot \text{min}^{-1}$)
AplP	0.65 ± 0.03
$\text{AplP}_{\text{R98E-A368E-A779R}}$	1.7 ± 0.1
Relative	2.6

Supplementary Figure 18. The aminopeptidase activity of $\text{AplP}_{\text{R98E-A368E-A779R}}$ was enhanced by 2.6-fold compared with AplP toward Ala-*p*NA. Assay conditions: 1.0 μM AplP or $\text{AplP}_{\text{R98E-A368E-A779R}}$ was incubated with 100 μM Ala-*p*NA in 20 mM Tris buffer, *pH* 8.0, at 37 °C. Error values indicate standard deviation of three independent replicates.

Supplementary Figure 19. The hydrolysis of Ala-*p*NA by EryP was not accelerated by the addition of peptide substrate ApIAcyc. Assay conditions: 10 μM EryP was incubated with 1.0 mM Ala-*p*NA in 20 mM Tris buffer, *pH* 8.0, at 37 °C for T1 min before 100 μM ApIAcyc peptide was

160 added in the reaction mixture. The absorbance at 405 nm was monitored after the addition of
161 AplA_{cyc} . Error bars indicate standard deviation of three independent replicates.
162
163

AplA_{cyc}

His₆-VQEILELQ-ELPSASATEDMPL-($\text{AplA}_{\text{cyc-CP}}$)
-6 -1

AplA_{LP(-6)-(-1)}

TEDMPL

AplA_{cyc-CP(-6)}

TEDMPL-($\text{AplA}_{\text{cyc-CP}}$)

EryA_{LP}

MEMVL-ELQELD-APNELAYGDPSHGGC
-15 -1

EryA_{LP(-15)-(-1)}

APNELAYGDPSHGGC

164
165 **Supplementary Figure 20.** Sequences of peptide substrates.