Supplementary Material

1 Final Parameter Updates

1. Sampling 7

7i|t ~ Dirichlet(n; + t), i=1,2,....d

Where, n; = (nil, T2, ... ,nid)
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That is, f; is a tilted Gamma density with parameters d,d;, B; = by + Zizl wg —
d d
Yoiqlogm; —> 0 logu; and o = t.

2 Proofs of Auxiliary Results

2.1 Proof of Lemma 1

Proof Let Y = (Y1,Ys,...,Y;) be a random vector such that the components are
independently distributed according to

Y; ~ Gamma(«;), 1=1,2,...,k.
Define the normalized vector X = (X1, Xa,..., X}) as

Xi:ki, i=1,2,... k.
2j=1Yj
Then,
X ~ Dirichlet(ay, ag, ..., ag).
Similarly,
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which implies,
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(X2, X3,...,X}) ~ Dirichlet(ag, as, . .., ag).

2.2 Proof of Theorem 2

Proof Let (A1 = I, As = Ia,..., Ay = I) be a finite partition © = N, the set of positive
integers. Then, using the definition of Dirichlet process, we get,

(Gj (41), Gj (A2),..., Gj (Ar)) ~ Dirichlet (agGo (A1), a0Go(A2), ..., a0Go(Ar))

e ij,...,ij ~ Dirichlet QOZBj,...,OzQZﬁj (1)

Jj€l JEI- Jjeh Jelr
We make a partition ({1,2,...,5 —1},{j},{j+1,7+2...}) of N such that,
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Then by removing the first element and using Lemma 2.1,
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2.3 Proof of Lemma 3

Proof: Given that each v; is independently and identically distributed as a Beta(ca, 3) and
the random vector v = (y1,72,-.-,7q) is defined as
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such that Z;-l:l vj = 1. Then it follows from the construction of Generalized Dirichlet
Distribution that
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Similarly, given that for each i, the random variables 7, .’s are independently distributed as
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forall j =1,2,...,d—1 and
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such that Z?:l mi; = 1. Then again, by the construction of Generalized Dirichlet
distribution, for all i = 1,2,...,d, we have
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Now, the denominator corresponding to the term 1 — ;1 — -+ — m;; becomes 0 for all j =
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This is the probability density function of a Dirichlet(cgy) distribution. O

3 Rationale for Choices of Simulated Datasets

To motivate the choice of simulation distributions, we focus on two widely used dis-
crete families with countable support: the Geometric and the Poisson distributions.
Empirical validation is performed using the two real-life datasets analyzed in the main
paper. For the USO stock volume data, we fit a Poisson distribution to a representative
row of the empirical TPM, employing the same rate specification \; = log(i + ¢) as in
our simulation design. For the Heathrow rainfall data, we fit a Geometric distribution
to a representative row of the empirical TPM, using the functional form p; = )\i_l.
The respective distributions were chosen because they offered the best empirical fit to
the observed data. The corresponding graphs have been provided in the next section.
The constant ¢ must satisfy ¢ > e—1 to ensure that the values of p; remain bounded
strictly between zero and unity. In practice, we experimented with several choices of
¢ > 2 and evaluated the resulting fits both numerically and visually. The coefficient of
determination (R?), as a measure of goodness of fit, together with graphical inspec-
tion, indicated that values of ¢ in the interval 5 < ¢ < 20 consistently yield strong
performance across both cases, with only minor variations in R? and close graphi-
cal conformity of the fitted curves. In all the subsequent analyses, we fix ¢ = 9, as
it provides an excellent fit with high R? and strong visual agreement in both cases.
Alternative choices of ¢ within this interval are observed to yield similar results.



4 Additional Tables and Graphs
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Fig. S1 Empirical validation of distributional choices for the simulation study. Panel (a) shows
the Poisson fit on a representative row of the USO TPM and the comparison between 5\2 and its
functional form. Panel (b) shows the Geometric fit on a representative row of the Heathrow TPM
and the comparison between p; and its functional form. In both cases, the parameter functions and
the distributions align well with the observed data, supporting their use in the simulation study.
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Fig. S2 Actual vs Predicted Series using the three methods (Training:Test = 50:50) - (a) GHSBP:
Bayesian Estimation with generalized hierarchical stick-breaking prior, (b) HSBP: Bayesian estima-
tion with hierarchical stick-breaking prior and (¢) MLE: maximum likelihood estimation



Table S1 MAE (%) and RMSE (%) for GHSBP
under Poisson distribution. Bold values indicate
the lowest RMSE. Each block varies one
hyperparameter, keeping the others fixed.

«a B bo MAE RMSE

0.5 2 0.05 | 0.981 2.425

0.5 2 0.1 0.981 2.422

Vary bo 0.5 2 0.2 0.971  2.419
0.5 2 0.25 | 0.979 2.428

0.5 2 0.5 0.983 2.443

0.5 2 1 0.981 2.428

0.45 2 0.1 0.987 2.426

0.5 2 0.1 0.981 2.422

1 2 0.1 0.995 2.459

2 2 0.1 0.994 2.475

0.4 2 0.2 0.984 2.427

Vary « 0.5 2 0.2 0.971 2.419
1 2 0.2 0.988 2.440

0.7 0.5 1 0.987 2.448

1 0.5 1 0.991 2.449

2 1 10 1.026 2.564

1 1 10 1.016 2.524

0.5 1 0.1 0.987 2.436

0.5 2 0.1 0.981 2.422

Vary 3 0.5 3 0.1 0.983 2.442
0.5 1 0.2 0.981 2.438

0.5 2 0.2 0.971  2.419

0.5 3 0.2 0.981 2.430




Table S2 MAE (%) and RMSE (%) for GHSBP
under Geometric distribution. Bold values
indicate the lowest RMSE. Each block varies one
hyperparameter, keeping the others fixed.

«a B bo MAE RMSE

0.5 2 0.05 | 1.013 1.961

0.5 2 0.1 1.018 1.956

Vary bo 0.5 2 0.2 1.016 1.968
0.5 2 0.25 | 1.026 1.981

0.5 2 0.5 1.031 1.996

0.5 2 1 1.036 2.022

0.45 2 0.1 1.031 1.990

0.5 2 0.1 1.018 1.956

1 2 0.1 1.000 2.081

2 2 0.1 1.014 2.224

0.4 2 0.2 1.042 1.987

Vary a 0.5 2 0.2 1.016 1.968
1 2 0.2 0.996 2.065

0.7 0.5 1 1.023 2.040

1 0.5 1 1.011 2.069

2 1 10 1.061 2.349

1 1 10 1.092 2.336

0.5 1 0.1 1.026 1.985

0.5 2 0.1 1.018 1.956

Vary 3 0.5 3 0.1 1.027 1.992
0.5 1 0.2 1.022 1.985

0.5 2 0.2 1.016 1.968

0.5 3 0.2 1.032 2.013
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