
Supplementary Material

1 Final Parameter Updates

1. Sampling π
πi|t

˜
∼ Dirichlet(ni

˜
+ t

˜
), i = 1, 2, . . . , d

where, ni = (ni1, ni2, . . . , nid)
2. Sampling u

˜

P (u
˜
|t) ∝

d∏
i=1

e−uiu
∑d

j=1 tj−1

i 1[ui>0]

That is,

uj |t
ind∼ Gamma(t, 1) for all j = 1, . . . , d

3. Sampling w
˜

P (w
˜
|α, t

˜
) ∝

d∏
j=1

e−(tj+tj+1+···+td)wjwα−1
j 1[wj>0]

That is,

wj |α, t
˜

ind∼ Gamma(α,
d∑

k=j

tk) for all j = 1, . . . , d

4. Sampling t
˜

P (t
˜
|π, u

˜
, w
˜
) ∝

d∏
j=1

fj(tj)

where,

fj(t) ∝
1

Γ(t)d
e−(b0+

∑j
k=1 wk−

∑d
i=1 log πij−

∑d
i=1 log ui)ttδj−1

1[t>0], δj =

{
α if j = 1, 2, · · · , d− 1

β if j = d
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That is, fj is a tilted Gamma density with parameters d, δj , Bj = b0 +
∑j

k=1 wk −∑d
i=1 log πij −

∑d
i=1 log ui and α0 = t.

2 Proofs of Auxiliary Results

2.1 Proof of Lemma 1

Proof Let Y
˜

= (Y1, Y2, . . . , Yk) be a random vector such that the components are

independently distributed according to

Yi ∼ Gamma(αi), i = 1, 2, . . . , k.

Define the normalized vector X
˜
= (X1, X2, . . . , Xk) as

Xi =
Yi∑k

j=1 Yj
, i = 1, 2, . . . , k.

Then,
X
˜
∼ Dirichlet(α1, α2, . . . , αk).

Similarly,
1∑k

i=2 Yi
(Y2, Y3, . . . , Yk) ∼ Dirichlet(α2, α3, . . . , αk).

Now,

1∑k
i=2 Yi

(Y2, Y3, . . . , Yk) =
1∑k

i=1 Yi − Y1
(Y2, Y3, . . . , Yk)

=
1

1− Y1∑k
i=1 Yi

(
Y2∑k
i=1 Yi

,
Y3∑k
i=1 Yi

, . . . ,
Yk∑k
i=1 Yi

)

=
1

1−X1
(X2, X3, . . . , Xk),

which implies,

1

1−X1
(X2, X3, . . . , Xk) ∼ Dirichlet(α2, α3, . . . , αk).

□

2.2 Proof of Theorem 2

Proof Let (A1 = I1, A2 = I2, . . . , Ar = Ir) be a finite partition Θ = N, the set of positive
integers. Then, using the definition of Dirichlet process, we get,(

Gj(A1), Gj(A2), . . . , Gj(Ar)
)
∼ Dirichlet (α0G0(A1), α0G0(A2), . . . , α0G0(Ar))

=⇒

∑
j∈I1

πij , . . . ,
∑
j∈Ir

πij

 ∼ Dirichlet

α0

∑
j∈I1

βj , . . . , α0

∑
j∈Ir

βj

 (1)

We make a partition ({1, 2, . . . , j − 1}, {j}, {j + 1, j + 2 . . . }) of N such that,j−1∑
k=1

πik, πij ,

∞∑
k=j+1

πik

 ∼ Dirichlet

α0

j−1∑
k=1

γk, α0γj , α0

∞∑
k=j+1

γk


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Then by removing the first element and using Lemma 2.1,

1

1−
∑j−1

k=1 πik

πij ,

∞∑
k=j+1

πik

 ∼ Dirichlet

α0γj , α0

∞∑
k=j+1

γk

 (2)

πij = π′
ij

∏j−1
k=1(1− π′

ik) implies that

π′
ij =

πij

1−
∑j−1

k=1 πik
.

Again, ∑∞
k=j+1 πik

1−
∑j−1

k=1 πik
=

1−
∑j

k=1 πik

1−
∑j−1

k=1 πik
= 1− π′

ij ,

and
∞∑

k=j+1

γk = 1−
j∑

k=1

γk.

Hence, from (2),

(π′
ij , 1− π′

ij) ∼ Dirichlet

α0γj , α0

j∑
k=1

(1− γk)

 .

=⇒ π′
ij ∼ Beta (α0γj , α0(1−

j∑
k=1

γk)) i, j = 1, 2, . . .

□

2.3 Proof of Lemma 3

Proof: Given that each νj is independently and identically distributed as a Beta(α, β) and
the random vector γ

˜
= (γ1, γ2, . . . , γd) is defined as

γj = νj

j−1∏
k=1

(1− νk)

for all j = 1, 2, . . . , d− 1 and

γd =

d−1∏
k=1

(1− νk)

such that
∑d

j=1 γj = 1. Then it follows from the construction of Generalized Dirichlet
Distribution that

γ
˜d−1

= (γ1, γ2, . . . , γd−1) ∼ GDd−1(α, α, . . . , α︸ ︷︷ ︸
d-1 times

;β, β, . . . , β︸ ︷︷ ︸
d-1 times

)

Similarly, given that for each i, the random variables π′
ij ’s are independently distributed as

Beta(α0γj , α0(1−
∑j

k=1 γk)) with

πij = π′
ij

j−1∏
k=1

(1− π′
ik)
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for all j = 1, 2, . . . , d− 1 and

πid =

d−1∏
k=1

(1− π′
ik)

such that
∑d

j=1 πij = 1. Then again, by the construction of Generalized Dirichlet
distribution, for all i = 1, 2, . . . , d, we have

πi1, . . . , πid−1 ∼ GD

(
α0γ1, . . . , α0γd−1;α0(1− γ1), . . . , α0(1−

d−1∑
k=1

γk)

)
.

Hence the probability density function of (πi1, . . . , πid−1) becomes

f(πi1, . . . , πid−1) ∝π
α0γd−1

id−1 (1− πi1 − · · · − πid−1)
α0(1−

∑d−1
k=1 γk)

d−2∏
j=1

π
α0γj

ij (1− πi1 − · · · − πij)
α0(1−

∑j
k=1 γk)−α0γj+1−

∑j+1
k=1 γk .

Now, the denominator corresponding to the term 1 − πi1 − · · · − πij becomes 0 for all j =

1, . . . , d − 2. Moreover, given that 1 − πi1 − · · · − πid−1 = πid and 1 −
∑d−1

k=1 γk = γd, the
probability density function of πi

˜
= (1− πi1 − · · · − πid) becomes

f(πi1, . . . , πid) ∝ π
α0γd−1

i,d−1 πα0γd

id

d−2∏
j=1

π
α0γj

ij ,

which implies,

f(πi1, . . . , πid) ∝
d∏

j=1

π
α0γj

ij 0 < πij < 1 and,

d∑
j=1

πij = 1 ∀ i = 1, . . . , d.

This is the probability density function of a Dirichlet(α0γ
˜
) distribution. □

3 Rationale for Choices of Simulated Datasets

To motivate the choice of simulation distributions, we focus on two widely used dis-
crete families with countable support: the Geometric and the Poisson distributions.
Empirical validation is performed using the two real-life datasets analyzed in the main
paper. For the USO stock volume data, we fit a Poisson distribution to a representative
row of the empirical TPM, employing the same rate specification λi = log(i+ c) as in
our simulation design. For the Heathrow rainfall data, we fit a Geometric distribution
to a representative row of the empirical TPM, using the functional form pi = λ−1

i .
The respective distributions were chosen because they offered the best empirical fit to
the observed data. The corresponding graphs have been provided in the next section.

The constant cmust satisfy c > e−1 to ensure that the values of pi remain bounded
strictly between zero and unity. In practice, we experimented with several choices of
c ≥ 2 and evaluated the resulting fits both numerically and visually. The coefficient of
determination (R2), as a measure of goodness of fit, together with graphical inspec-
tion, indicated that values of c in the interval 5 ≤ c ≤ 20 consistently yield strong
performance across both cases, with only minor variations in R2 and close graphi-
cal conformity of the fitted curves. In all the subsequent analyses, we fix c = 9, as
it provides an excellent fit with high R2 and strong visual agreement in both cases.
Alternative choices of c within this interval are observed to yield similar results.
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4 Additional Tables and Graphs

(a) Poisson

(b) Geometric

Fig. S1 Empirical validation of distributional choices for the simulation study. Panel (a) shows

the Poisson fit on a representative row of the USO TPM and the comparison between λ̂i and its
functional form. Panel (b) shows the Geometric fit on a representative row of the Heathrow TPM
and the comparison between p̂i and its functional form. In both cases, the parameter functions and
the distributions align well with the observed data, supporting their use in the simulation study.
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(a) Heathrow Rain

(b) USO Stock Volume
Fig. S2 Actual vs Predicted Series using the three methods (Training:Test = 50:50) - (a) GHSBP:
Bayesian Estimation with generalized hierarchical stick-breaking prior, (b) HSBP: Bayesian estima-
tion with hierarchical stick-breaking prior and (c) MLE: maximum likelihood estimation
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Table S1 MAE (%) and RMSE (%) for GHSBP
under Poisson distribution. Bold values indicate
the lowest RMSE. Each block varies one
hyperparameter, keeping the others fixed.

α β b0 MAE RMSE

Vary b0

0.5 2 0.05 0.981 2.425
0.5 2 0.1 0.981 2.422
0.5 2 0.2 0.971 2.419
0.5 2 0.25 0.979 2.428
0.5 2 0.5 0.983 2.443
0.5 2 1 0.981 2.428

Vary α

0.45 2 0.1 0.987 2.426
0.5 2 0.1 0.981 2.422
1 2 0.1 0.995 2.459
2 2 0.1 0.994 2.475
0.4 2 0.2 0.984 2.427
0.5 2 0.2 0.971 2.419
1 2 0.2 0.988 2.440
0.7 0.5 1 0.987 2.448
1 0.5 1 0.991 2.449
2 1 10 1.026 2.564
1 1 10 1.016 2.524

Vary β

0.5 1 0.1 0.987 2.436
0.5 2 0.1 0.981 2.422
0.5 3 0.1 0.983 2.442
0.5 1 0.2 0.981 2.438
0.5 2 0.2 0.971 2.419
0.5 3 0.2 0.981 2.430
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Table S2 MAE (%) and RMSE (%) for GHSBP
under Geometric distribution. Bold values
indicate the lowest RMSE. Each block varies one
hyperparameter, keeping the others fixed.

α β b0 MAE RMSE

Vary b0

0.5 2 0.05 1.013 1.961
0.5 2 0.1 1.018 1.956
0.5 2 0.2 1.016 1.968
0.5 2 0.25 1.026 1.981
0.5 2 0.5 1.031 1.996
0.5 2 1 1.036 2.022

Vary α

0.45 2 0.1 1.031 1.990
0.5 2 0.1 1.018 1.956
1 2 0.1 1.000 2.081
2 2 0.1 1.014 2.224
0.4 2 0.2 1.042 1.987
0.5 2 0.2 1.016 1.968
1 2 0.2 0.996 2.065
0.7 0.5 1 1.023 2.040
1 0.5 1 1.011 2.069
2 1 10 1.061 2.349
1 1 10 1.092 2.336

Vary β

0.5 1 0.1 1.026 1.985
0.5 2 0.1 1.018 1.956
0.5 3 0.1 1.027 1.992
0.5 1 0.2 1.022 1.985
0.5 2 0.2 1.016 1.968
0.5 3 0.2 1.032 2.013
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