
npj Natural Hazards 
Supplementary Information for 

1 

Neglecting Spatiotemporal Rainfall Variability Underestimates Flood Hazard and Risk 

John A. Baer1, Antonia Sebastian*1,2, Lauren E. Grimley1, James Doss-Gollin3,4, Daniel B. Wright5, 
Mohammad Ashar Hussain5, Marissa Webber1 

1Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, 
NC, USA 
2Environment, Energy and Ecology Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 
3Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA 
4Ken Kennedy Institute, Rice University, Houston, TX, USA 
5Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA 

*Correspondence to: Antonia Sebastian (asebastian@unc.edu) 

 

 

Contents 
 

Figures S1-9 .................................................................................................................................... 2 

Tables S1-S2 ................................................................................................................................. 12 

Appendix A. Transposition Domain ............................................................................................. 14 

Appendix B. Stochastic Storm Transposition ............................................................................... 16 

Tropical Cyclone Postprocessor ............................................................................................... 16 

Validation of Storm Realizations .............................................................................................. 16 

Appendix C. Hydrodynamic Model .............................................................................................. 20 

Development ............................................................................................................................. 20 

Validation .................................................................................................................................. 20 

Supplemental References .............................................................................................................. 30 

 

 

 



Supplementary Figures S1-S9 

2 

Figures S1-9 

 

 
Supplementary Figure S1. A map of the study area and watershed encompassing New Bern, 
North Carolina. In the inset box, the red outline shows the transposition domain used for SST, 
while the blue shaded region shows the extent of the main map.  
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Supplementary Figure S2. A comparison of rainfall frequency curves produced by SST (blue) 
and Atlas 14 (black). The 90 percent confidence interval of the Atlas 14 IDF curve is shown as 
black error bars, while the ensemble spreads of the SST frequency curve is shown as a semi-
transparent shaded region. The SST curve and ensemble spread closely match the Atlas 14 IDF 
curve for most return periods: treating the Atlas 14 IDF curve as the “true” value, we find a mean 
absolute error of 18.95 mm and an overall bias of -12.55 mm, suggesting that the SST rainfall 
volumes are similar to - but overall slightly less than – the design storm rainfall. 
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Supplementary Figure S3. A histogram of the differences in flood hazard between the five-
meter hazard map produced by the SST ensemble minimum and the lower bound design storms. 
Negative values represent more frequent flooding from SST, while positive values represent 
more frequent flooding from the design storm approach. 
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Supplementary Figure S4. A histogram of the differences in flood hazard between the five-
meter hazard map produced by the SST ensemble mean and the mean design storms. Negative 
values represent more frequent flooding from SST, while positive values represent more frequent 
flooding from the design storm approach. 
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Supplementary Figure S5. A histogram of the differences in flood hazard between the five-
meter hazard map produced by the SST ensemble maximum and the upper bound design storms. 
Negative values represent more frequent flooding from SST, while positive values represent 
more frequent flooding from the design storm approach. 
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Supplementary Figure S6. Percentage of pixels in the mean downscaled flood hazard rasters 
that correspond to different return period bins (half-open intervals). Relative to the design storm 
approach, SST substantially increases the number of pixels that are in the five-year floodplain, 
and slightly increases the number of pixels in the 25-year floodplain. 
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Supplementary Figure S7. Scatterplot of the relationship between mean total rainfall (in 
millimeters) and flood extent for SST storms and design storms. The 90 percent confidence 
interval of the design storms is represented as black error bars. The estimated frequency for each 
storm is also shown, based on IDF curves from the CCRA rain gauge. Generally, design storms 
produce floods with extents as large as or larger than the equivalent SST storm.  
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Supplementary Figure S8. Violin plot of the relationship between mean total rainfall and flood 
damages for SST and the design storm approach. The 90 percent confidence interval of the 
design storms is represented as black error bars, while the “N=” annotations at the top of each 
violin correspond to the number of SST storms included in that distribution. For each return 
period, the SST distributions were constructed by selecting all storms with mean total rainfall 
within 10 percent of the design storm of the same return period. Across all return periods, the 
distribution of risk estimates produced by SST have relatively thick tails that extend beyond the 
upper-bound design storm estimate. 
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Supplementary Figure S9. A map of the Spearman rank correlation for the return periods of 
each combination of rainfall, flood extent, and flood losses. More positive values and darker 
colors correspond to more positive correlation between two variables. 
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Supplementary Figure S10. A comparison of the frequency relationships between rainfall, 
flood extent (including permanent water bodies), and flood damage for model runs with SST 
storms. Design storms are represented by the black line, which shows the relationship that would 
result from assuming that these relationships are one-to-one. The points highlighted in red are 
shown on Figure 4 in the main text. While the relationships between storm, flood, and damage 
frequency are correlated, they are not one-to-one (as suggested by design storm approaches), 
even for small return period storms. 
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Tables S1-S2 

 

Design Storm Return 
Period [Years] 

Mean SST Return Period 
[Years] 

1 1 
2 1 
5 2 
10 3 
25 7 
50 20 
100 69 
200 185 
500 389 

 

Supplementary Table S1. A comparison of the hazard estimates produced by the SST ensemble 
mean and the mean design storms. For each return period, the comparison was performed by 
identifying all pixels in the design storm hazard raster equal to that return period, then 
calculating the mean return period of all corresponding pixels in the SST hazard raster. SST 
produces equal or smaller return periods for all design storm floodplains, particularly for areas 
with 10-year, 25-year, 50-year, and 100-year return periods. 
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 Return Period [Years] 

Storm ID 
Basin-

Averaged 
Rainfall 

Flood 
Extent Flood Damage 

5-179-18 40 20 154 
5-329-18 48 58 163 
1-197-18 59 116 59 
6-183-11 69 96 131 
0-97-18 71 286 150 
4-403-11 74 20 120 
3-430-18 75 200 77 
2-472-14 85 118 194 
5-398-18 90 182 76 
5-303-18 118 316 109 
9-281-17 172 73 63 
1-495-18 231 400 223 
5-214-16 334 134 86 

 

Supplementary Table S2. Examples of highly nonlinear frequency relationships of rainfall, 
flood extent, and flood damage for 13 SST storms. Storm ID numbers are constructed as follows: 
(Ensemble Member)-(Synthetic Year)-(Storm Arrival in Year).
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Appendix A. Transposition Domain  

 
Figure A1. The three SLAM transposition domains considered. Each domain varies only in the 
GSL applied during application of the SLAM methodology, with a GSL of 0.025 representing 
the least conservative domain. 
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Figure A2. A comparison of the CCRA rainfall frequency curve from Atlas 14 against those 
produced by SST with the most conservative (GSL = 0.01) and least conservative (GSL = 0.025) 
transposition domains. The RMSEs and MAEs are shown for each curve relative to Atlas 14. 
Note that these rainfall frequency curves appear different than those in Fig. S2 because these 
were generated with RainyDay’s “DURATIONCORRECTION” option, which enables more 
accurate rainfall frequency estimates (particularly for small return periods) but cannot be used in 
conjunction with hydrologic modeling.  
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Appendix B. Stochastic Storm Transposition 

Tropical Cyclone Postprocessor 

Coastal settings pose two major challenges for SST. First, rainfall patterns can change rapidly 
with increasing distance from the coast due to oceanographic effects 1,2, complicating the 
delineation of a transposition domain3. Second, tropical cyclone (TC) rainfall intensity declines 
as the storm makes landfall 4, such that transposing these storms randomly throughout the 
transposition domain – as is typically done in SST 5–7 – might result in unrealistically high 
rainfall distributions. To address these issues, we developed a postprocessor for RainyDay that 
can apply alternate transposition schemes based on user-defined storm types, a process we refer 
to as modified SST (M-SST).  

To create the postprocessor, we modified RainyDay such that it saved relevant data from each 
transposed storm realization in a tabular format that could be read into our postprocessor. The 
postprocessor then identifies the storm type of each realization based on user-supplied 
classifications of the parent storm types. Parent storms can either be classified as “TC”, in which 
case they are subject to cyclone-specific transposition methods, or “Other”, in which case they 
are transposed exactly as they would have been by RainyDay. TCs are then transposed by 
randomly sampling a location from a user-specified coastline and shifting the track such that 
their landfall timing or minimum distance to land (if the parent storm did not make landfall) is 
preserved. The new track is validated within a user-specified tolerance by ensuring that points 
over land or over water in the observed track remain so in the transposed track. If the transposed 
track violates the validation criteria, the track is iteratively transposed until these criteria are 
satisfied. Other type-specific transposition schemes could theoretically be added in the future. 

To apply the postprocessor to our study, we manually classified our parent storms as TCs using 
NOAA’s Historical Hurricane Tracks database 8. Landfall timing (or minimum distance to land) 
was calculated using storm tracks from the International Best Track Archive for Climate 
Stewardship (IBTrACS) database 9 matched to each parent storm. A simplified shapefile of the 
coastline, modified to remove estuaries and interpolated to add thousands of uniformly-spaced 
vertices along its length, was used to sample a random landfall location. For our synthetic storm 
ensemble, we selected a tolerance of zero, meaning that all points along the transposed track 
remained over land or over water as in the observed track (Fig. B1). 

Validation of Storm Realizations 

The M-SST storm realizations were validated by generating a rainfall frequency curve and 
comparing it against similar curves produced via traditional SST and Atlas 14 at the Coastal 
Carolina Regional Airport (CCRA) rain gauge (Fig. B2). M-SST produced a 24-hour rainfall 
frequency curve that more closely matched the Atlas 14 curve at CCRA than one produced by 
traditional SST, reducing the root-mean-square error (RMSE) from 31.03 to 24.61 mm and the 
mean absolute error (MAE) from 26.06 to 18.95 mm. Additionally, M-SST produced an 
ensemble spread similar to those of traditional SST and Atlas 14, suggesting it reasonably 
represents the distribution and frequency of extreme rainfall events in the study area. However, 
similar to traditional SST, M-SST underpredicted rainfall volumes for storms with return periods 
less than 10 years relative to Atlas 14. It also underpredicted rainfall volumes associated with the 
500-year return period, potentially due to limitations induced by Stage IV’s relatively short 
period of record, or by the tight tolerance we selected for TC transpositions (Fig. B3). 
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Figure B1. Examples of transposed TC tracks produced by M-SST for Hurricanes (a) Michael, 
(b) Gaston, (c) Isabel, and (d) Gustav. Transposed tracks remain over land and water at the same 
timesteps as their parent tracks, and only the portion of the TC track that falls within the 24-hour 
time frame of the parent storm is considered during validation. Any TC track can theoretically be 
transposed through this method, regardless of whether the storm approaches the transposition 
domain from the landward (a) or seaward (b, c) side or never makes landfall at all (d).  
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Figure B2. Comparison of the rainfall frequency curves produced by traditional SST (pink line), 
M-SST (blue line), and Atlas 14 (black dots). The 90 percent confidence interval of the Atlas 14 
IDF curves are shown as black error bars, and the ensemble spreads of the SST and M-SST 
frequency curves are shown as semi-transparent shaded regions. The M-SST curve and ensemble 
spread more closely matches the Atlas 14 data for all except the 500-year return period, 
producing a lower average RMSE and MAE relative to the mean and upper and lower bounds of 
the Atlas 14 IDF curve than traditional SST. 
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Figure B3. Comparison between the CCRA rainfall frequency curve from Atlas 14 and those 
produced by M-SST with a TC transposition tolerance of 0, 3, and 100. The RMSEs and MAEs 
are shown for each curve relative to Atlas 14.  
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Appendix C. Hydrodynamic Model 

Development 

The SFINCS model used in this study was adapted from an existing model of the Carolinas 10. 
Channel bathymetry was adjusted along the Trent River, using a rectangular channel that 
preserved the effective bankfull cross-sectional area of the channel as measured in field cross-
sections from the North Carolina Floodplain Mapping Program. The invert elevation of the Trent 
River was raised by 2 m upstream of United States Geological Survey gauge 02092554 based on 
analysis of simulated versus observed hydrographs. Typical ranges of Manning’s n were defined 
for each land use type in the National Land Cover Dataset based on values from Arcement & 
Schneider (1989)11, Chow et al. (1998)12, and Savage et al. (2016)13. The initial model used the 
average of these ranges, but during calibration, Manning’s n was increased to the upper end of 
these ranges (or slightly beyond) for undeveloped and natural land use categories, particularly for 
woody wetlands and small upland creeks, which helped better reflect the dense growth 
characteristics of the coastal swamp forests present in our model domain and resulted in 
improved model performance (Table C1). 

Validation 

The model was validated against five storm events of varying intensity and duration (Table C1), 
including Hurricanes Matthew and Florence. For Hurricane Matthew, we used wind field data 
from Oceanweather, Inc. (OWI) and for Hurricane Florence we use a modified OWI product 
described in Ratcliff (2022) 14. For both TCs, we use time-series water level boundary conditions 
from an ADvanced CIRCulation (ADCIRC) model at the downstream boundary. For the other 
three validation events, wind stress was neglected, and time-series water level data was obtained 
from North Carolina Emergency Management (NCEM). For the 2009 and 2010 validation 
events, no time-series data was available, and so the historical average of the observed water 
levels at NCEM gages was used.  

Validation metrics included bias, mean absolute error (MAE), and Nash-Sutcliffe (NSE) and 
Kling-Gupta (KGE) efficiencies between observed and modeled values of runoff volume, 
maximum water surface elevations, depths, and timing at locations where data was available. 
Simulated hydrographs for each validation event were compared against observed hydrographs 
from United States Geological Survey (USGS) gauges 02092554 and 02092500 located along 
the Trent River. For Hurricanes Matthew and Florence, hydrographs were also compared at 
USGS rapid deployment gauge 02092576 located at the confluence of the Trent and Neuse 
Rivers near downtown New Bern. Forty-six HWMs from the USGS were used to validate 
maximum water surface elevations from Florence, and six HWMs from NCEM were used to 
validate maximum water surface elevations from Matthew. No HWMs were available for the 
other three events. 

SFINCS simulated hydrographs that matched observations for all five validation events (Fig. 
C1), resulting in an average KGE of 0.72 and an average peak elevation bias and RMSE of 0.38 
and 1.14 meters, respectively (Fig. C2). The model predicted peak water levels at the upstream 
Trent River gauge (02092500) within half a meter, but overpredicted them at the downstream 
gauge (02092554) for all events except Hurricane Matthew. The model showed less bias in terms 
of total runoff volume, with a mean area-under-hydrograph error of just 4% (Table C2). These 
validation results suggest that hydrologic processes like precipitation, infiltration, and runoff are 
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captured by the model. We expect that large uncertainties in the peak water levels may be a 
result of incomplete river bathymetry information.  

For Hurricanes Florence and Matthew, the model closely recreated observed HWMs in the 
densely developed areas around New Bern (Fig. C3), with an overall RMSE of 0.43 meters and a 
bias of just 0.02 meters (Fig. C4). These results represent a slight improvement in the domain-
wide performance of the model from Grimley et al. (2025)10 which covers eastern North and 
South Carolina and was validated for Hurricanes Florence and Matthew only. We validated the 
model for three additional events and made local refinements – including a finer grid resolution, 
refined channel bathymetry, and calibrated n – that improved the model skill in reproducing 
water levels. Overall, our model performs similarly to other hydrodynamic models used for 
hazard and risk modeling and demonstrates high skill for storms of varying magnitude and 
frequency (Table C3).  
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Figure C1. Comparison of observed hydrographs with those simulated by the hydrodynamic 
model for each of the five validation events. No data was available for gauge 2092554 during the 
2009-11-11 event. Our model reproduces the shape of observed hydrographs – including peak 
height and timing - for all five storms, which vary in type and intensity.  
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Figure C2. Scatterplot of simulated versus observed maximum water levels at USGS gauging 
stations. Our model can reproduce observed peak stage elevations but overpredict water levels at 
the downstream gauge (02092554) during the largest events. 
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Figure C3. Map of model HWM error for Hurricanes Matthew and Florence. HWM error is 
calculated as the difference between the simulated maximum water elevation and the surveyed 
elevation of an HWM indicator, such as mud, seed, or foam lines, at the same coordinates. 
Locations where the model overpredicted maximum flood elevations are shown in red, while 
areas where the model underpredicted them are shown in blue. Our model tended to underpredict 
maximum flood elevations in the rural, western portion of the domain, but closely reproduced 
observed elevations in the developed areas near New Bern and Havelock. 
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Figure C4. Scatterplot of simulated versus observed HWMs for Hurricanes Matthew and 
Florence. The black line represents perfect agreement between simulated and observed 
maximum flood elevations. Our model slightly underestimated HWMs for Matthew, but closely 
reproduced HWMs for Hurricane Florence, with a near-zero bias across these two events. 
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ID NLCD Name 

Ranges from Arcement & Schneider (1989), 
Chow et al. (1998), and Savage et al. (2016) 

Final 
Model Low 

Average 
(Initial 
Model) High 

11 Open Water 0.02 0.023 0.025 0.025 
21 Developed, Open 0.03 0.04 0.05 0.05 
22 Developed, Low Intensity 0.08 0.1 0.12 0.12 

23 
Developed, Medium 

Intensity 0.06 0.1 0.14 0.15 
24 Developed, High Intensity 0.12 0.16 0.2 0.2 
31 Barren Land 0.023 0.027 0.03 0.03 
41 Deciduous Forest 0.1 0.13 0.16 0.2 
42 Evergreen Forest 0.1 0.13 0.16 0.18 
43 Mixed Forest 0.1 0.13 0.16 0.2 
52 Shrub/Scrub 0.07 0.115 0.16 0.16 
71 Herbaceous 0.025 0.038 0.05 0.05 
81 Hay/Pasture 0.025 0.038 0.05 0.05 
82 Cultivated Crops 0.025 0.038 0.05 0.05 
90 Woody Wetlands 0.07 0.115 0.16 0.35 

95 
Emergent Herbaceous 

Wetlands 0.07 0.115 0.16 0.085 
-- Large Rivers 0.025 0.03 0.045 0.045 
-- Smaller Rivers/Streams 0.035 0.045 0.055 0.1 

 

Table C1. Comparison of the final Manning’s roughness coefficients selected for each land use 
type against the typical ranges used in literature. The average of these ranges was used in the 
initial model, and were adjusted upward for the final model, particularly for small streams and 
woody wetlands, to reflect the characteristics of the coastal swamp forests in our study area. 
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Event 
Name TC Simulation 

Period 

Total 
Rainfall 

[mm] 

Max.  
24-hr. 

Rainfall 
[mm] 

Max.  
72-hr. 

Rainfall 
[mm] 

Return 
Period, 
Years 

(24-hr.) 

Return 
Period, 
Years 

(72-hr.) 
Hurricane 
Florence Yes 9/7/2018 - 

10/01/2018 565.7 335 515 269 974 

Hurricane 
Matthew Yes 10/01/2016 - 

10/31/2016 210.5 151 180 7 7 

Unnamed No 9/07/2014 - 
9/30/2014 175.6 48 74 <1 <1 

Unnamed No 9/23/2010 - 
10/15/2010 407.0 213 302 29 67 

Unnamed No 11/5/2009 - 
11/25/2009 213.2 140 173 5 5 

 

Table C1. Observed storm events used to validate the hydrodynamic model. “Total rainfall” 
refers to the average total rainfall over the watershed during the simulation period. The 
maximum 24-/72-hour rainfall reflects the maximum amount of rainfall that fell in any 24-/72-
hour window, averaged across the watershed. Rainfall return periods are listed relative to Atlas 
14 IDF curves for the CCRA gauge and show that storms spanning a range of magnitudes and 
frequencies were used to validate our hydrodynamic model. 
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Event Date 
USGS 

Gauging 
Station 

Area Under Hydrograph,  
Percent Error 

Hurricane Florence 2018-09-12 
02092500 -10% 
02092554 13% 

Hurricane Matthew 2016-10-08 
02092500 -6% 
02092554 -13% 

Unnamed Event 2014-09-12 
02092500 58% 
02092554 -34% 

Unnamed Event 2010-09-30 
02092500 -5% 
02092554 21% 

Unnamed Event 2009-11-11 02092500 7% 
 

Table C2. Hydrodynamic model area-under-hydrograph (AUH) error for the five validation 
events, where “area-under-hydrograph” reflects the total area under the hydrograph above the 
lowest stage level recorded during the simulation period, in arbitrary units. This metric serves as 
a proxy for runoff volume. 
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Event Date USGS Station NSE RMSE 
[m] 

MAE  
[m] KGE 

Hurricane 
Florence 2018-09-12 02092500 0.91 0.55 0.36 0.89 

02092554 0.84 0.99 0.56 0.71 
Hurricane 
Matthew 2016-10-08 02092500 0.65 0.72 0.67 0.90 

02092554 0.75 0.35 0.31 0.66 
Unnamed 

Event 2014-09-12 02092500 -0.76 0.67 0.58 0.67 
02092554 0.33 0.17 0.13 0.63 

Unnamed 
Event 2010-09-30 02092500 0.71 0.76 0.52 0.87 

02092554 0.66 1.04 0.70 0.42 
Unnamed 

Event 2009-11-11 02092500 0.83 0.42 0.25 0.87 

 

Table C3. Hydrodynamic model validation statistics for the five validation events. Statistics 
include the NSE, RMSE, MAE, and KGE. We find high KGE and NSE for our model, 
suggesting that the model can reproduce watershed responses to a variety of storm types and 
magnitudes. 
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