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Abstract

Hippocampal neuroplasticity regulates memory and emotional responses, which are altered in major
depression, a leading cause of disability worldwide'. Molecular underpinnings of reduced hippocampal
neuroplasticity?, fewer neurons, and smaller volume®# in MDD are unknown and may involve blunted
adult hippocampal neurogenesis (AHN), a debated phenomenon in human brain®~8. Dynamic changes in
gene expression (GEX) are mediated, in part, by cis-regulatory elements (CREs), in response to
developmental cues, environmental signals, and cellular contexts. However, the accessibility of CREs
and their relation to GEX in specific hippocampus cell types in MDD is unknown. To this end, we
simultaneously profiled chromatin accessibility and GEX in 349,847 human hippocampal nuclei, used

machine learning®'?, RNA Velocity'! and pseudotime trajectory inference’? to investigate the presence
of progenitor cells and their progeny, and spatial transcriptomics in intact hippocampus sections to
sequence cytoplasm and neuronal processes providing anatomical transcriptome mapping. We
identified Type |, Il and Il neural progenitors and immature granule neurons. We find hyperactivated
inflammation and apoptosis in immature and mature granule neurons, possibly affecting AHN and cell
survival in MDD. Proteomics and transcriptomics convergent dysregulations in MDD, point to lipid
metabolism, neurogenesis, synaptogenesis, cell adhesion, and plasticity. Identified molecular markers
may drive biomarker and drug discovery for MDD and hippocampus resilience.

Main

Major depressive disorder (MDD) is recurrent and episodic, often treatment resistant?, a major cause of

disability worldwide, and the most frequent diagnosis in those who die by suicide'. Human brain
postmortem studies found smaller hippocampus dentate gyrus (DG) and fewer granule neurons

(GNs)313 in MDD, which may reflect impaired neuroplasticity resulting in MDD symptoms like impaired
emotional dysregulation and memory?. Moreover, hippocampus neuronal and neuropil loss were
correlated with MDD severity and illness duration®'2. /n vivo brain imaging confirmed smaller
hippocampal volume in MDD compared to controls'#. It remains unknown whether smaller hippocampal
volume and diminished neuroplasticity in MDD are the result of increased apoptosis, decreased AHN, or
other cellular and molecular changes.

Deficits in AHN have been linked to depressive-like behavior in rodents®. Conversely, adult born GNs
support stress recovery and emotional regulation’®, enhance hippocampal plasticity, and circuit
rewiring'”. Transcriptomics studies agreed that rodent markers are inadequate to identify progenitor
cells and their trajectory in humans and non-human primates®’2. In humans, early studies showed
proliferating cells becoming GNs'® and estimated neuron birth date based on 'C decay indicated
substantial AHN in people who had been subjected to radioactive exposure'®. Nevertheless, human AHN
remains debated?%?!, as immunofluorescence (IF), immunohistochemistry (IHC)?224, in situ
hybridization (ISH)?32%, and transcriptome sequencing studies®® led to opposite conclusions, likely
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driven by tissue processing methods, subjects’ medical history, mode of death, and psychotropic drugs
exposure?®.

To resolve this debate, provide new insights into the molecular characteristics of human hippocampus
cell types, and discover the molecular basis of cellular disruption in MDD, we assessed 106 subjects and
for the first time profiled almost 350,000 cells in untreated MDD subjects (MDDs) and neurotypical
controls (CTRL) with multi-omic single-nucleus RNA sequencing (snRNA-seq) and assay for
transposase-accessible chromatin with sequencing (snATAC-seq), spatial RNA-seq, and extensive
molecular marker validation (Fig. 1a). Here we present results from the largest and most deeply
sequenced single-nucleus multiome and spatial transcriptome resource dataset of neurotypical and

MDD human hippocampus cell types to date?’.

Single-nucleus multiome and spatial transcriptome profiling of adult human hippocampus We
simultaneously generated snRNA-seq and snATAC-seq data on 349,847 nuclei from deeply clinically
phenotyped sudden death subjects with high-quality brain tissue (52 samples from 18 subjects, 9 male
MDDs and 9 male CTRL, with 53% of nuclei from MDDs; Fig. 1a-d, Supplementary Tables 1-3; Methods).
Number of samples per donor, cells profiled per donor, RNA integrity number, post-mortem interval, and
age did not differ between MDDs and CTRL (Extended Data Fig. 1a-e). The medium number of unique
molecular indices, chromatin regions, and genes per donor did not differ between MDDs and CTRL
(Extended Data Fig. 1f-i). We used Harmony?® to correct for sample, donor, and batch in RNA and ATAC
data separately (Extended Data Fig. 2).

To integrate snRNA-seq and snATAC-seq data, we used weighted nearest neighbor (WNN) analysis?®
(Fig. 1b-d), an unsupervised method in Seurat (v5) to obtain a unified representation of snRNA-seq and
snATAC-seq data. We identified 31 unsupervised clusters, representing 12 broader cell types (Fig. 1b-c),
that were not driven by batch or donor effects (Fig. 1b-d; Extended Data Fig. 3a-d). In each cluster and
cell type, average GEX and predicted GEX inferred by accessible chromatin (or gene activity) data were
strongly correlated with each other (Fig. 1e; Extended Data Fig. 4e) and used to annotate cell types
based on their top-expressed genes (Fig. 1f-g; Extended Data Fig. 4c-d; Methods; Supplementary Table
4). Clusters included oligodendrocyte progenitor cells (OPC), oligodendrocytes (Olig), endothelial cells
(Endo), pericytes (Peri), vascular leptomeningeal cells (VLMC), microglia (Micro), macrophages (Macro),
T-cells (Tcell), choroid plexus cells (Ch.Pl), subventricular zone (SVZ) ependymal cells (Epe), Cajal
Retzius cells (CR), three astrocyte (Astro1-3), nine inhibitory neuron (InN.SST, InN.LHX6, InN.PVALB,
INN.VIP, InN.LAMPS5, InN.SLC17A8, InN.PENK, InN.TUBB3, InN.PROX1), six non-granule excitatory neuron
(ExN1-6), and two GN (GN1, GN2) clusters (Fig. 1d, Extended Data Fig. 4a-d). These 31 cluster
annotations aligned with those from recent human hippocampus snRNA-seq studies that did not include
ATAC sequencing®?® (Extended Data Fig. 5; Supplementary Table 5). The 12 broader cell types included:
OPC, Olig, Ch.PI, Epe, and CR (identical to the clusters), and merged clusters of vasculature cells (Vasc;
including Endo, Peri, and VLMC), immune system cells (Immune; including Micro, Macro, and Tcell),
astrocytes (Astro; including all three astrocyte clusters), granule neurons (GN, including both GN
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clusters), inhibitory neurons (InN, including all nine InN clusters), CA excitatory neurons (CA.ExN,
including ExN1, ExN 3) and other excitatory neurons (0.ExN, including ExN2, ExN4-6 that did not map on
CA regions, Fig. 2e-f; Supplementary Table 6).

Spatial GEX is concordant with single-nucleus cell type annotations

To investigate GEX in whole tissue, including cytoplasm and neuronal processes, and provide anatomical
mapping of GEX onto hippocampal subfields, we used Visium (10X Genomics) on intact hippocampus
proper tissue sections (6 subjects, 2 samples each; 3 male MDDs and 3 male CTRL; Supplementary
Table 7). First, we used histology (Fig. 2a) to guide hippocampus manual anatomical annotation into
granule cell layer (GCL), subgranular zone (SGZ), molecular layer (ML), CA1-4, and white matter (WM, Fig.
2b). Then we performed unsupervised clustering of Visium spots (55x55 ym in size) which provided a
more detailed spot-type annotation than manual annotation of hippocampal subfields and delivered 13
clusters that expressed genes concordant with expected cell types based on spot location in the
respective subfields (Fig. 2c-d; Supplementary Table 8). Unsupervised spot clusters included (Methods):
2 hilus clusters (hilus1, hilus2), CA3 stratum pyramidales (ca3), stratum oriens-stratum lucidum (so-slu),
so-slu of the CA3 (ca3-so-slu), stratum radiatum (sr), stratum oriens-stratum lacunosum (so-sla),
stratum moleculare (ml), stratum granulosum (gcl), SGZ-polymorphic layer (sgz-pl), stratum moleculare
(sgz-ml).

We further used Visium for validation of single-nucleus cell type annotations, performing anchor-based
integration of sn-multiome-based cell types (reference) with whole-transcriptome spatial GEX (query),
and found that Olig and Astro cell types mapped in WM, GN in GCL (Fig. 1h), and CA.ExN in CA regions,
while O.ExN had low prediction score in CA regions, and vasculature was spread across the tissue (Fig.
2e). Different ExN clusters mapped on specific subfields, with ExXN1 mapping on CA1, ExXN3 on CA3,
while Ch.Pl and Epe correctly mapped on choroid plexus and SVZ (Extended Data Fig. 4f).

We then used Xenium multiplex ISH (10X Genomics, 266 probes, 10.45x22.45 mm capture area) for
additional anchor-based integration of single-nuclei cell types. While CA.ExN mapped on CA1-4, O.ExN
mapped on the subiculum (Fig. 2e-f), which was not possible to verify with Visium because the smaller
capture area could not include the subiculum. Xenium confirmed the expected location of Astro, Olig, GN
(Fig. 1i), and Vasc (Fig. 2f).

Spatial RNA Velocity identifies a cell trajectory from the SGZ to the GCL

To infer cell trajectories based on proportions of spliced and unspliced RNAs, we applied RNA Velocity
analysis to spatial RNA-seq rather than to snRNA-seq data because the method relies on both
cytoplasmic and nuclear RNAs to infer transcription and degradation rates''. Since we hypothesized
that, if a neurogenic trajectory exists, it would be in the DG, to infer RNA Velocity, we selected spots
located in the SGZ, GCL, and ML (Fig. 2g; Extended Data Fig. 6; Methods). The partition-based graph
abstraction (PAGA) analysis identified a lineage from spatial cluster sgz.ml to cluster sgz.pl and then to
gcl (Fig. 2h), indicating that sgz.ml could have the most immature cells with cell bodies in the SGZ and
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apical dendrites in ML, likely radial-glia-like quiescent neural stem cells3C. The next cluster on the
trajectory was sgz.pl likely containing intermediate progenitors located in SGZ. Ultimately the gcl spatial
cluster would comprise GN at different dynamic functional states. Latent time (Fig. 2i) and pseudotime
calculated from RNA Velocity (Fig. 2j) agreed with time zero corresponding to cluster sgz.ml and
increasing time latency going towards clusters sgz.ml and then gcl. GEX-by-latent-time analysis showed
high expression of PCNA, HESX1, MKI67, and ENOXT at the earliest stage (sgz.ml spatial cluster), DCX,
CALB2, SOX11, GAD1, GAD2, and STMN?Z at the intermediate stage (sgz.pl spatial cluster), and CAMKZ2A,
NEUROG3, CAMKZ2A, SNAP25, PPFIA2, and RBFOX3 at the final stage of maturation (gcl spatial cluster,
Fig. 2k).

Supervised machine learning characterization of neurogenic cell trajectory

To determine the presence of a human hippocampus neurogenic niche at single-nucleus resolution, we
used a supervised machine learning approach. Supervised models have previously been used to

210 including those of the neurogenesis trajectory?®.

distinguish transcriptionally ambiguous cell subtypes
We scored all 349,847 high quality nuclei using normalized counts of genes known to be expressed in
mammalian hippocampus quiescent neural stem cells (Type 1), amplifying neural progenitors (Type II),
intermediate neural progenitors (Type Ill), and immature GN (ImGN; Fig. 3a) as per rodent and human
literature>8203031 A percentage of high confidence cells were selected (Methods). High confidence
cells with high expression of required marker genes and low expression of genes typically not expressed
in that cell type®”820.30 were used to train the models: for Type | we used GFAP, SOX2, PAX6, NES,
FABP7, HES5, and ETNPPL; Type Il had ASCL1, FOX03, NR2E1, EOMES, NEUROGZ2, NES, MCM2, PCNA,
MKI167, TOP2A, and not MBP or MOBP, to distinguish them from oligodendrocyte progenitors; for Type i
we used MYTIL, PROX1, DCX, CALB2, RELN, ST8SI2, ST8SIA4, and not mature neuron marker RBFOX3,
or inhibitory neuron marker VIP, for InGN, RBFOX3, PROX1, NEUROD1, DCX, BHLHEZ22, COL25A1, and
POSTN. Cells with 85% prediction score or higher were annotated as Typel (4,413 cells, 7.47% of GN)
Typell (1,680 cells, 2.83% of GN), Typelll (4,423 cells, 7.49% of GN) and ImGN (5,611 cells, 9.50% of GN)
and clustered separately (Fig. 3b). The LASSO approach extracted these cells from the original clusters
(Supplementary Table 9). Typel derived from Astro, as radial-glia-like progenitors are most like
astrocytes3C. Typell derived mostly from OPC, Astro, and Endo, as those clusters contain proliferating
cells. Typelll derived from InN and CR clusters. CR cells have a prominent role in brain development®?
and express CALB2 and TUBB3 and not SYT1 (Extended Data Fig. 4c-d), not typical of adult excitatory
CR. InN clusters expressed immature neuron markers: CALB2 (InN.VIP, InN.PROX1), TUBB3 (InN.TUBB3),
RELN (InN.LAMPS5), DCX (all InN subtypes), and PROX7 (InN.PROX1, InN.VIP, INN.LAMPS; Fig. 1f-g,
Extended Data Fig. 4c,d). Moreover, GAD7 and GAD2Z, classically used as InN markers, have transcript
variants expressed during brain development until neurons fully differentiate®3. Using Xenium and
RNAscope (ACDbio), we examined the expression of GAD7 in the DG, finding GADT co-expressed with
PROXT1 and DCXin the GCL (Fig. 3h). Finally, ImGN were pulled mostly from GN, in line with a recent
publication®. To validate spatial location of IMGN, we used anchor-based integration of single-nuclei GEX
(reference) and Xenium ISH (query) and found that ImGN are in SGZ and GCL (Fig. 3g).
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The maturity stages of the machine learning-identified cell types were reflected by gene ontology terms
showing Typel enriched for cell fate commitment, Typell for stem cell differentiation and neural
precursor cell proliferation, Typelll for neuron migration and axon development, and ImGN for cell growth
and learning or memory (Supplementary Table 10) .

In a larger sample (Supplementary Table 1), using RNAscope, we validated expression of DCX in human
SGZ and GCL as previously shown?', and demonstrated DCX co-localizing with NEUROD1, PROX1,
TUBB3 and RBFOX3 (Extended Data. Fig. 7a-g). Using IHC, we confirmed expression of Nestin and Ki67
proteins in human SGZ, DCX protein in human SGZ and GCL, and NeuN protein in GCL, as previously
reported'®. Using double IF, we replicated co-localization of DCX with PSA-NCAM'8, and showed DCX co-
labeling with neurofilament, calretinin, calbindin, and NeuN, and no DCX co-localization with glial markers
GFAP and IBA1 (Extended Data Fig. 7-8).

Single-nucleus pseudotime trajectory inference supports a human neurogenic lineage

To test if machine learning-identified neurogenic cell types Typel, Typell, Typelll, and ImGN belonged to a
differentiation trajectory, we used Palantir'? to model differentiation capturing the continuity in cell
states and cell fate determination (Fig. 3c-e). We included Typel, Typell, Typelll, ImGN, and the cells
remaining in the GN cell type after applying the LASSO model (Fig. 3b). Palantir assigned pseudotime in
concordance with our hypothesis and ordered cell types from Typel, Typell, Typelll to ImMGN and GN (Fig.
3c). GEX along the neurogenic lineage included PAX6, ETNPPL, and SOX2in Typel quiescent progenitors;
MKI167, TOP2A, PCNA in Typell proliferating progenitors; DCX, GAD1, GAD2, EOMES, TUBB3, PROX1,
STMNT in Typelll neuroblasts and ImMGN; and finally, SCL717A7, CALB1, CAMKZ2A, SYT1, and RBFOX3in
mature GN, also corresponding to open chromatin at those genes (Fig. 3d-f).

Moreover, Palantir lineage cell GEX is concordant with progressive GEX in Visium spots ordered by latent
time based on RNA Velocity (Fig. 2k), and they both suggest a phase in which GAD7 and GADZ2 are
expressed in Typelll. In fact, all InN expressed DCX; INN.LAMPS5 expressed RELN; InN.VIP and InN.PROX1
expressed CALBZ, InN.TUBB3 expressed TUBB3; and INN.PROXT, InN.VIP, and InN.LAMPS5 expressed
PROXT1 (Fig. 1f, Extended Data Fig. 4c).

Cell-type specific gene expression and chromatin accessibility are altered in MDD

To understand molecular underpinnings of hippocampus anatomical and functional disruption in
MDD?%31314 e analyzed cell-type specific differentially expressed genes (DEGs), differentially
accessible chromatin regions (DARs), and predicted differentially active genes (DAGs) both in the 31
clusters and the 16 cell types (OPC, Olig, Ch.PI, Epe, CR, Vasc, Immune, Astro, Typel, Typell, Typelll, ImGN,
GN, InN, CA.ExN, O.ExN, Supplementary Tables 11-13).

The clusters with the highest number of DEGs were GN2, GN1, ExN2, Epe, OPC, and Oligo, (Fig. 4a-b).
GN1 and GN2 had 75 and 43 DEGs, contributing to 13.2% and 7.6% of all DEGs respectively. Epe and
ExN2 had 182 DEGs, both contributing to 32% of DEGs. Regarding DARs, ExN1 had the most with 497
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hits (87.5% of all), Oligo and GN1 had 39 and 36, contributing to 6.9% and 6.3% of DARs respectively (Fig.
4c-d). As for predicted DAGs, 97.6% were identified in OPCs, and GN1, GN2, and Oligo had 15,13, and 13
respectively (Fig. 4e-f).

When analyzing cell types, GN had 101 DEGs, 0.ExN had 38, ImGN had 20, Typel and Typelll each had
one DEG: LINC02315 (upregulated) and ZNF257 (upregulated) respectively (Fig. 4a-b). DARs were the
highest in Immune (14227 DARs), followed by GN (41 DARs; Fig. 4c-d). DAGs were 60 in GN, 41 in O.ExN,
2 in ImMGN, and one in Typel and Typelll (ACOTT, upregulated in MDDs, Fig. 4e-f). Taken together, GN had
the most consistently dysregulated genes across modalities.

PsyGeNET Analysis

To explore which of the identified dysregulated genes had previously been associated with MDD, we
used PsyGeNET text mining database3?. In all clusters, we found 43 genes with DEGs and DAGs
overlapping with psychiatric disease-associated genes in PsyGeNET, and significant for depressive
disorders (p=0.033017458) with 15 overlapping genes (ADCY8, ATF3, DISC1, EMP1, ENPEP, FOLH1, FOS,
GRIN2A, GRK5, IL18, IL19, IL6R, SOD2, SYNDIGT), and for alcohol use disorder (pl=0.009390476), with 83
overlapping genes (Fig. 5a-b, Supplementary Table 14).

When analyzing cell types, GN had 7 DEGs previously linked to psychiatric disorders, including
depression, schizophrenia, and mood disorders (ADCY8, CCND2, DNAHS8, GABBR1, HLA-DQB1, PRKCB,
THEMIS, Fig. 5c), without any significant disease-specific associations.

Biological pathways of cell-type specific DEGs in MDD

To infer pathways associated with cell-type specific multi-omics changes in MDD, we performed pre-
ranked gene set enrichment analysis (GSEA, Supplementary Table 15). We focused on GN that had the
most dysregulated genes across modalities, and ImGN to understand why GN are fewer in MDD343. |n
ImGN, pathways related to interferon signaling, cellular stress, Golgi, MTORC1, sex hormone response
and apoptosis were enriched, while lipid homeostasis and glycosylation were negatively regulated in
MDD (Fig. 5d-e). In GN, pathways related to PTEN, MTORC1, apoptosis, sex hormone and immune
response, and thyroid, Parkinson, Huntington and Alzheimer’s diseases were enriched, and lipid
homeostasis was negatively regulated in MDD (Fig. 5f-g). Notably, in both ImGN and GN, apoptosis was
enriched in MDD with top genes CCND2, JUN, MADD, BCAP31, DNAJAT1, NEFH, PEA15, DAP, ENO2,
BMP2 (Supplementary Table 15).

Weighted gene co-expression networks dysregulation in MDD

While differential GEX analysis provides information on single-gene expression differences, MDD is
highly polygenic®® and disease state may be driven by gene network changes rather than single-gene
alterations®®. Therefore, we used pseudo-bulk GEX in GN and ImGN to perform weighted-gene co-
expression network analysis (WGCNA)3” and determine clusters of highly correlated genes that have an
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association with MDD. Each cluster was represented by a color-coded module eigengene (ME), the first
principal component of the module representing the overall expression level of the module.

In ImGN, six out of seven modules had correlations with MDD (Fig. 5h-j; Extended Data Fig. 9a-d). Four
ME were positively associated and two were negatively associated with MDD. MEblue, enriched for RNA
metabolism, splicing, translation and response to cellular stress, was positively correlated with MDD
(correlation 0.99, p=1x 1079, in line with GSEA findings described above. The MEturquoise module,
enriched for lipid modification and metabolism, was negatively correlated with MDD (correlation -0.99,
p=2x 10™4/) underscoring GSEA findings of lipid homeostasis being negatively regulated in MDD ImGN
and GN (Fig. 5e-g).

In GN, 8 modules out of 9 had correlations with MDD (Fig. 5k-m; Extended Data Fig. 9e-h). Three ME were
positively associated and five were negatively associated with MDD. The MEturquoise module, enriched
for lipid modification and metabolism, was positively correlated with MDD (correlation 0.99, p=2 x 1074)
and showed significant overlap (p=2 x 107%%) with upregulated DEGs in GN, and with GSEA findings (Fig.
5e-g). The MEblue module, enriched for development and cellular morphogenesis, was negatively
correlated with MDD (correlation -0.99, p=1x 10~°%) and showed significant overlap (p=7 x 107°) with
downregulated DEGs in GN, and with GSEA findings (Fig. 5e-g).

Quantification of target marker RNA and protein expression in MDD

In separate and enlarged samples, using unbiased stereology, we quantified number of cells expressing
neurogenic lineage RNAs and proteins labeled by multiplex ISH and IF, and single IHC, and used
quantitative real-time polymerase chain reaction (QPCR) to quantify RNA in bulk tissue

(Methods; Supplementary Table 16, Extended Data Fig. 7-8).

RNAscope DCX+/TUBB3+ cells were fewer in MDDs (N=11) vs. CTRL (N=11) in GCL (t=2.294; p=0.04)
but not SGZ (Extended Data Fig. 7n). DCX RNA measured by gPCR was lower in MDDs (N=5) vs. CTRL
(N=5) in anterior (t=3.371, p=0.0145) but not posterior DG (Extended Data Fig. 70).

Single-IHC Ki67+ cells were fewer in MDDs (N=17) vs. CTRL (N=23) in anterior (t=2.780; p=0.0084) but
not mid or posterior DG (Extended Data Fig 8p). MDDs had fewer Nestin+ cells in anterior (34 MDDs,
38 CTRL, t=4.360; p<0.0001) and posterior DG (31 MDD, 28 CTRL, t=3.654; pval=0.0008) but not in mid
DG (Extended Data Fig. 7q). Nissl+ glial cells were not different between MDDs and CTRL in any region
(Extended Data Fig. 7r). Single-IHC DCX+ cells were fewer in MDDs (N=22) vs. CTRL (N=36) in anterior
(t=3.547; p=0.0008), but not in mid or posterior DG (Extended Data Fig. 7s). MDD had fewer single-IHC
NeuN+ GNs in anterior (35 MDDs, 32 CTRL, t=2.951; p=0.004) and mid DG (28 MDDs, 26 CTRL, t=2.410;
p=0.01), but not in posterior DG (Extended Data Fig. 7t).

IF-stained DCX+/NeuN- cells were fewer in MDDs (N=8) vs. CTRL (N=8) in SGZ (welch-corrected t [t]=
2.318; p=0.04) but not GCL, and DCX+/NeuN+ cells did not differ between groups (Extended Data Fig. 8I-

0).
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Proteomics

We further used high resolution shotgun proteomics liquid chromatography with tandem mass

spectrometry (LC/MS/MS)38, to quantify expression of proteins corresponding to DEGs in MDDs vs.
CTRL as per snRNA-seq data (Methods; Extended Data Fig. 9i-m; Supplementary Table 17).

After running proteomics as we described®?, Elucidator (Methods) detected 80,504 peptides across 48
runs and identified 1811 proteins with protein score at a 4% false discovery rate (Extended Data Fig. 9i-
m; Supplementary Table 17). The 1131 proteins with two or more peptides and protein scores greater
than 250 were used for the analyses.

We found 308 differentially expressed proteins between MDDs and CTRL, of which four corresponded to
detected DEGs: CPNE8, HSDL2, NCH1, and RAC1 (Extended Data Fig. 9n).

HSDL2, a key factor of fatty acid regulation in lipid metabolism3?, was upregulated at both the RNA level
in GN and the protein level in bulk tissue.

RACT, important in neurodevelopmental function including neurogenesis, synaptogenesis, and plasticity

0 was lower at the protein level in MDDs

and expressed in migrating cortical neurons and adult neurons*
vs. CTRL. RAC1 is negatively regulated by ARHGAP15%*', whose genomic sequence overlaps with long

non-coding RNA AC079793.2, also downregulated in ImGN in MDD.

Conversely, CPNES8 regulating cell adhesion*? showed downregulated RNA expression in MDD GN and
upregulated protein expression in bulk MDD tissue.

Similarly, NCEH, a protector from a-synuclein neurotoxicity*3, was downregulated at the RNA level in Epe
but the protein was upregulated in bulk hippocampus tissue in MDD.

Discussion

Employing the first single-nuclei multiome and spatial transcriptome profiling of human anterior
hippocampus cells, combined with shotgun proteomics in anterior hippocampus tissue, we compared
sudden death neurotypical adult subjects and unmedicated patients with MDD.

Implementing a machine learning approach for rare cells identification, we detected quiescent (Type I),
amplifying (Type Il), and intermediate (Type Ill) progenitor cells, and replicated the identification of
immature neurons®. Our integrated analysis identified distinct clusters representing all hippocampal cell
types, in agreement with other publications®~8, identified a neurogenic lineage from early progenitors to
immature granule neurons, and defined cell type-specific gene expression and chromatin accessibility
dysregulation in MDD. Importantly, the annotation of these cell types, including those of the
neurogenesis trajectory, was validated by spatial GEX profiling using Visium, RNAScope, and Xenium,
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and by protein marker expression identification by double IF and IHC, providing robust evidence of cell
identity and relative cellular and spatial distribution within the hippocampus.

Cell trajectory inference using both single-nuclei and spatial transcriptome sequencing, supported the
neurogenic cell-lineage trajectory, and gene expression corresponding to maturational stages described

in mice®”.

Findings suggest transcriptional and epigenetic similarities of astroglia-like (Typel) progenitors with
astrocytes, amplifying progenitors (Typell) with other dividing cells (OPC, Astro and Endo).

These data do not demonstrate when cells of the neurogenic trajectory were generated but the
expression of proliferation markers (PCNA, MKI67, TOP2A; Fig. 2k, 3e) in Typell suggests the presence of
mitosis.

Typelll origination from GAD + neurons initially classified as InN, is largely due to DCX expression in GAD
+ cells, and warrants further investigation on transitional GAD expression in maturing cells.

We demonstrated for the first time GAD7 expression in Typelll, colocalizing with DCX, TUBB3 and
PROX1, and DCX mapping onto SGZ and GCL, in line with findings that GAD1 alternative transcripts are

expressed in human hippocampus during neuronal development3344. Additionally, GABAergic basket

cells could be generated in human DG as demonstrated in adult rats*°.

ImMGN coming from the GN cluster has been previously observed. Notably the number of ImGN is similar
to what previously estimated (close to 10% of all GNs), suggesting cells might remain in this immature
status for a long time, which has profound implications for the functional significance of AHN in the
human brain.

The presence of immaturity markers suggests a regenerative potential of the human SGZ. It remains
unknown how prolonged the immature state is and how long it takes to make a human neuron. Different
sequencing technologies, including epigenome analysis and deeper sequencing, may explain our finding

the full neurogenic lineage when others have not®~8.

This validity of our trajectory reconstruction is strengthened by RNA Velocity and pseudotime analysis
inferring of cell trajectory, and its identified molecular signatures that characterize neural stem cell
activation, proliferation, differentiation, and ultimately, neuronal maturation, matching those found in the
literature?%263%_ These findings provide a valuable resource for future studies investigating the regulation
of AHN and its potential modulation for therapeutic purposes.

In MDD, elevated inflammation, response to cellular stress and apoptosis pathways in ImGN and GN
suggests the molecular basis of smaller in vivo hippocampal volume'* and postmortem findings of

fewer GNs*'3 and agree with finding in MDD PFC?’ and patient blood*®~#8. Overlap between DEGs and
PsyGeNET MDD and alcohol use disorder genes, may explain the comorbidity between the two.
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Upregulation of LINC02375in Typel and OPC in MDD could prevent proliferation or transition to the
amplifying stage because this long-intergenic non-coding RNA is protective in lung squamous cell
carcinoma by blocking proliferation®®. In Typelll, InN and Olig, upregulation of ZNF257 which has over
1,000 binding sites in gene promoters and is believed to regulate transcription in the developing brain®°,
may contribute to increased nucleic acid binding, transcription and Vitamin D receptor pathway activity
in MDD affecting developmental processes. Dysregulation of MTORC1 in ImGN and GN supports altered
cell growth and metabolism?.

Using both proteomics and transcriptomics, we find genes dysregulated at both levels. Upregulated
HSDL?2, a key factor of fatty acid regulation in lipid metabolism3°, at the RNA level in GN and protein level
in bulk tissue suggests lipid metabolism dysregulation in MDD. Downregulation of both long non-coding
RNA AC079793.2in ImGN, overlapping in genomic sequence with ARHGAP15, and possibly negatively
regulating it, and its target protein RAC1 in bulk tissue, suggest reduced neurogenesis, synaptogenesis,
and plasticity®°. The fact that CPNES, regulating cell adhesion*?, and NCEH, protecting from a-synuclein

neurotoxicity*?, have downregulated RNA expression in GN and Epe respectively, while the proteins are
upregulated in bulk tissue, may be due to tissue-specific transcriptomic differences involving DG and
Epe, or compensatory post-transcriptional mechanisms.

Although this is the first study combining single-nucleus multi-omic (RNA and ATAC) profiling, with
spatial transcriptomic and bulk proteomics in human hippocampus, and comparing sudded death
neurotypical controls with unmedicated depressed subjects that had MDD, limitations include small
sample, not including women, possible clinical variability, and few subjects having received
benzodiazepines prior to death — although we excluded comorbidity and patients on antidepressants or
antipsychotics. Results should be replicated in larger samples that include women and low testing
effects of clinical and sociodemographic variables, because in animal models stress greatly affects
neurogenesis.

Overall, this comprehensive single-nuclei multi-omic, spatial transcriptomic, and proteomic profiling of
brain tissue supports the presence of a neurogenic niche and suggests molecular underpinnings of
anterior hippocampus atrophy in MDD. Dysregulated markers will drive future mechanistic studies
investigating their cellular, molecular, and behavioral effects, and will lead blood and brain imaging
biomarker discovery and drug development for MDD and hippocampus trophic support.
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Methods

Brain Collection

Brain tissue was obtained from the Brain Collection of the New York State Psychiatric Institute (NYSPI)
at Columbia University, which includes brain samples from the Republic of Macedonia', and the Human
Brain Collection Core (HBCC) of the National Institute of Mental Health (NIMH). Brain tissue collection
was conducted with IRB approval and informed consent obtained from next of kin who agreed to donate
the brains and participate in psychological autopsy interviews? which provide diagnoses according to
the Diagnostic Statistical Manual of Mental Disorders (DSM) through structured proxy-based interviews
comparable in reliability to the Structured Clinical Interview for DSM diagnoses (SCID) in living patients,

and has been extensively used in postmortem studies®”.

Subjects

We included 106 subjects with sudden death, no neuropathology including microvascular disease, short
agonal state, no resuscitation with prolonged (>10 min) hypoxia, no alcohol or drug use disorder, or
chronic illness that may affect CNS function (e.g. epilepsy, renal failure, metastatic malignancy, HIV,
Supplementary Table 1).

All 51 subjects with Major Depressive Disorder (MDD) included in this study had a diagnosis of MDD, a
major depressive episode within 4 months of death, were not in remission at death, had no history of
treatment during the three months before death, and had negative toxicology for psychoactive drugs,
except for 15 subjects with positive toxicology for benzodiazepines that could have been given at the
time of death in the emergency room, or previously prescribed.

All 55 controls included in this study had no neurological or psychiatric diagnoses, no pathological or
traumatic condition affecting the brain, clear toxicology reports, and had no history of psychiatric
treatments or suicide attempts.

Brain tissue processing

Right hemispheres were sliced at 2-cm intervals, flash frozen and stored at -80°C at the time of death.
Routine neuropathological examination and toxicology exams were performed. If the subject was 45
years old or older, hippocampal formation and neocortex are stained for senile plaques and
neurofibrillary tangles.

The whole hippocampal formation was dissected from two or three consecutive 2 cm-thick frozen
coronal blocks. Frozen adjacent sections of 50 m thickness were collected in tubes for snRNA/ATAC-
seq, and two adjacent sections of 14 m were mounted on barcoded slides for Visium spatial
transcriptomics (10X Genomics) per donor. Frozen tissue sections (16 m) were also used for qPCR,
RNAscope® Duplex, Multiplex and Hiplex in situ hybridization (ACDbio), and for Western Blots (WB).
Tissue fixed in 4% paraformaldehyde (length of tissue fixation was 5’ per each mm of block thickness)
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was used for immunohistochemistry (IHC) and immunofluorescence (IF). Supplementary Table 1
describes experiments performed in each sample.

Nuclei isolation

We adapted methods from Maitra et al. 20218 for isolating high-quality nuclei from human frozen brain
tissue. Using a glass douce tissue homogenizer (Wheaton, 357542), approximately 90 mg of tissue were
homogenized in 5mL lysis buffer (10mM tris-HCI pH 7.4, 10mM NaCl, 3mM MgCl, 6H,0, 0.05% NP-40)

and incubated on ice for 5 minutes. Then, 5mL nuclei wash buffer (NWB: 5% BSA, 0.25% glycerol, 0.001%
protector RNase inhibitor (MilliporeSigma, cat. no. 333539901) in 1x PBS) were added to sample to
quench the lysis. Homogenate was filtered through a 40 m Corning cell strainer (Millipore Sigma, cat.
no. CLS431750). Filtrate was centrifuged three times at 500g for 5 minutes at 4°C. After each incubation,
pellet was resuspended in NWB. Final resuspension was ultracentrifuged at 10,0009 for 30 minutes at
4°C over iodixanol cushion (Millipore Sigma, cat. no. D1556-250). Nuclei pellet was resuspended in less
than 100 L nuclei wash buffer (10X Genomics). Nuclei concentration and cell viability were estimated
using trypan blue and DAPI in Countess Il Hemocytometer (Applied Biosystems). Nuclei concentrations

varied between 2-9 108 nuclei/mL.
Library preparation and sequencing

Approximately 16,000 nuclei for each sample were loaded into the 10X Chromium Controller
immediately after quantification. Gene expression (GEX) and Assay for Transposase assessable
chromatin (ATAC) libraries were prepared according to Chromium Next GEM Single Cell Multiome ATAC
+ GEX (CG000338) User Guide. We generated 2-4 libraries per sample. The libraries were sequenced on
an lllumina NovaSeq 6000 using v4 chemistry to an average sequencing depth of 80,611 reads per cell
for RNA libraries and 37,119 reads per cell for ATAC libraries (Supplementary Tables 3 and 7).

Pre-processing and filtering multiome data

A count matrix and a fragment file were generated by 10X CellRanger (v2.0.0) pipeline with the chemistry
parameter set to Single Cell Multiome ATAC + GEX v1 (Supplementary Table 3). The reads were aligned
to the GRCh38 human genome. RNA and ATAC data for each sample were preprocessed in parallelly
using Seurat®'% (V5) and Signac'! (V1)R packages. The count matrix was filtered for cells that have
greater than 500 total number of unique transcripts and 200 genes expressed detected to remove dead
or dying cells, less than 10% mitochondrial DNA, less than 150,000 UMIs, and less than 20,000 genes
expressed to remove multiplets, an artifact that occurs when two or more cells are encapsulated in the
same GEM (Gel beads-in-EMulsion) and are tagged with the same barcode (Extended Data Fig. 3e).
Multiplets were then removed by considering canonical markers of expected cell types. Clusters that
expressed multiple markers of more than one cell type will be removed. Remaining cells were pre-
processed again using the standard Seurat workflow. For all samples, peaks BED (Browser Extensible

Data) files output from CellRanger were converted to GenomicRanges'?, an R/Bioconductor package for
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manipulating genomic intervals and combined to create a unified peak set representing all samples in
the dataset. Peaks longer than 10,000 and shorter than 20 bases were removed. Barcodes for cells that
were previously identified to be multiplets, dying, or quality were removed. Cells with transcription start
site (TSS) enrichment score less than 1, nucleosome signal greater than 3, ATAC read counts less than
200 and greater than 100,000 were removed (Extended Data Fig. 3e). Cells that passed quality control
(QC) in both modalities were retained for further analysis.

Multi-modal integration

In RNA and ATAC modalities, 52 samples were merged. Genes and peaks expressed in less than 0.01%
of cells that passed QC were removed. For chromatin accessibility data, we followed the Signac
workflow for merging multiple objects. Peaks on nonstandard chromosomes and in blacklist regions
from the hg38 genome were removed. Merged gene expression data were processed as follows: to
account for different number of counts per gene in each cell, the gene counts for each cell were divided
by the sum of counts for that cell, multiplied by 10,000 and natural log transformed using Seurat function
NormalizeData with default parameters. The intersection of the top 2,000 variable genes and a list of 93
genes involved in neurogenesis and neural maturation (sum: 2,065 genes) was passed to Seurat function
ScaleData for linear transformation, to center mean expression across cells for each gene to zero, and
scale expression of each gene, so that highly expressed genes were not given more weight in
downstream analysis. Principal component analysis (PCA) was run (RunPCA) with features set to these
2,065 genes, to prevent overfitting. Otherwise, default parameters were used. Fifty PCA cell embeddings
were passed to Seurat’s wrapper for Harmony'2 with group.by.vars set to sample, donor, and batch. The
Harmony-corrected PCA embedding was used for UMAP (Uniform Manifold Approximation and
Projection) and Louvain clustering (Extended Data Fig. 2). Similarly, accessible chromatin data are
processed using Signac workflow. We used latent semantic indexing (LSI) first by term frequency-inverse
document frequency normalization (TF-IDF) and then singular value decomposition (SVD) dimension
reduction with Signac functions RunTFIDF and RunSVD. TF-IDF accounts for differences in sequencing
depth between cells and gives higher values to rarer peaks, so they are not overlooked in downstream
analysis. All features in the TF-IDF matrix are passed to SVD. A total of 50 LSI components, excluding the
first, were passed to RunHarmony with group.by.vars parameter set to sample, donor, and batch. The
Harmony-corrected PCA and LSI reductions were passed to Seurat FindMultiModalNeighbors function
for Weighted Nearest Neighbor (WNN) analysis®. The weighted nearest neighbor and weighted shared
nearest neighbor graphs were passed to UMAP and Smart Local Moving (SLM) clustering algorithm
according to Seurat WNN vignette. Unsupervised clustering implemented with FindClusters function in
Seurat with resolution set to 1.6 yielded 113 clusters. Clusters with less than 20 cells and clusters driven
by one donor were merged with the nearest cluster using BuildClusterTree with slot set to ‘scale.data’
resulting in 31 clusters (Fig. 1d, Extended Data Fig. 3). We then created a gene activity matrix inferred
from single nuclei ATAC sequencing (snATAC-seq) data with the GeneActivity function in Signac which
quantifies ATAC-seq counts in the 2 kb-upstream region and gene body.

Cell cluster identification
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The 31 cell clusters were annotated using canonical gene expression in accordance with published
single-cell transcriptomics studies of mammalian hippocampus'#'8, markers identified by a Wilcoxon
rank-sum test implemented by FindAllIMarkers function in Seurat (parameter setting RNA: only.pos =
TRUE, min.pct = 0.2, min.diff.pct = 0.1, logFC_threshold = 1; parameter setting ATAC: only.pos =T,
min.pct = 0.05, test.use = ‘LR, latent.var = ‘nCount_ATAC"’), and prediction scores from integration with
spatial data implemented with TransferData function in Seurat. The following canonical cell types were
annotated using the respective recognized markers (ordered as in Fig. 1f-g): oligodendrocyte progenitor
cell (OPC): PDGFRA'161921 01 1G7?; oligodendrocyte (olig) MBP'%?2; vasculature cells including
endothelial cells (Endo): FLT1, PECAMT1 (protein name: CD31), CLDN5, NES, vascular leptomeningeal
cells (VLMC): CEMIP, COL1AZ; pericyte (Peri): PDGFRB, ABCC9, immune cells including microglia (Micro)
APBB1IP, PTPRC'*?°, P2RY12'4 macrophage (Macro): CD763 (alias is macrophage associated protein);
T-cell: CD247 (alias is T-cell surface glycoprotein); ependymal cells of the subventricular zone (Epe):
CFAP54, DNAH9, FOXJT; choroid plexus cells (Ch.Pl): HTR2C, CLIC6, TTR, astrocytes (Astro, 3 clusters):
AQP4, SLC1A2, ALDH1TL1, GLUL, GFAP, with subtypes Astro1: GPC5, WIF1, GFAP; Astro2: CD44, TNC,
GFAP; Astro3: TNC, GFAP, Cajal Retzius cells (CR): RELN'*'®; granule neurons (GN, 2 clusters): RBFOX3,
SYT1, MYTIL, SLC17A7, CAMKZ2A, PROX1, CALB1, TLL1, PPFIA2, SEMAS5A, BDNF, with subtypes

POSTN (GN1) and POSTN' (GN2); excitatory neurons (ExN, 6 clusters): with RBFOX3, MYT1L, CAMK2A,
SLC17A7, SV2B expressed by all ExN and specific subtype markers for ExXN1: CADPS2, NEURODG6; EXN2:
SATB2, SLC22A10, ExXN3: NEUROD6, TRHDE, CPNE4, HTR7, ExXN4. SATB2, SLC22A10, HS3STZ2, SYNPOZ,
ExN5: HS3ST2, NTNGT; ExXN6: HS3ST2, CHRMZ2, PCP4; inhibitory neurons (InN, 9 clusters): all expressing
RBFOX3, MYTIL, GAD1, GAD2, SLC32A1, DCX, with InN subtypes expressing: VIP, SST, PVALB, LHX®6,
LAMPS, SLC17A8, TUBB3, PROX1, PENK.

Out of the 31 cell clusters (Extended Data Fig. 4), 12 cell types were identified by merging all astrocyte
clusters, all inhibitory neuron clusters, all immune clusters, all vasculature clusters, the two GN clusters,

ExN1 and ExN3 merged to CA.ExN (EPHAS5'®, NEUROD6'?), and ExN2 and ExN4-6 merged to Other ExN
(0.ExN; expressing TSHZ2?324),

Single nuclei integration with other datasets

We integrated our database with publicly available databases to achieve a better characterization of the
molecular landscapes defining cell types and states in the human hippocampus in neurotypical controls
and MDD. We downloaded the count matrix of datasets generated by recently published studies focusing

on the hippocampus'4162526 |ndependently generated datasets were preprocessed using our standard

pipeline using Seurat'® and Harmony'? in R. Then, following a published approach’#, for the top 2000
variably expressed genes, Pearson’s R was calculated for the average expression across cell types
(Extended Data Fig. 5).

Tissue and library preparation for Visium spatial gene expression
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Two adjacent sections per donor were sectioned at 14 ym at -20C and mounted within capture areas on
Visium slides. Slides were stored at -80C, then fixed, stained, and imaged according to 10X User Guide
CG000160 Rev C. Spatial gene expression libraries were prepared according to 10X User Guide
CG000239 Rev F. The libraries were sequenced on an lllumina NovaSeq 6000 using v4 chemistry to an
average sequencing depth of about 67,000 reads/spot and 1965 median genes/spot (Supplementary
Table 7). SpaceRanger (v1.3.0) with chemistry set to Spatial 3’ v1 used to generate count matrices.

Tissue preparation and loading for Xenium in-situ hybridization

Fresh frozen tissue was sectioned at 10pym onto 10.45mm x 22.45mm sampling area on 10X Genomics
Xenium Slide according to 10X Demonstrated Protocol CG000579 Rev C. Tissue was fixed and
permeabilized according to 10X Demonstrated Protocol CG000581 Rev C. Probe hybridization, ligation,
and amplification were carried out according to 10X User Guide CG000582 Rev C. The output from the
Xenium analyzer was loaded into Xenium Explorer 1.3 or RStudio for integration with single-nuclei gene
expression data.

Spatial gene expression data pre-processing, integration, and clustering

Visium (10X Genomics) count matrices and spatial data were loaded into Seurat using the
Load10X_Spatial command with the default parameters. Feature counts for each spot were divided by
total counts for that spot and multiplied by scale factor (10,000) and natural log transformed using
function NormalizeData. Features that were outliers to mean variability were found with local polynomial
regression of log(variance) and log(mean) which gives the observed mean and expected variance of
feature expression implemented using the FindVariableFeatures function. Then, data were scaled and
centered using ScaleData function. Spatial data from replicates were merged using the merge function.
Dimensionality reduction and clustering were calculated using RunPCA, FindNeighbors, FindClusters,
and RunUMAP with dimensions parameter set to 1:30.

Spatial data were integrated with multiome data using FindTransferAnchors and TransferData functions
in Seurat' (Fig. 1h, Fig. 2e).

Hippocampalsubfields, including granule cell layer (GCL), subgranular zone (SGZ), molecular layer (ML),
Cornu Ammonis (CA), white matter (WM), vasculature (vasc), chorioid plexus (chor.plex), and
subventricular zone (SVZ) were manually annotated in Loupe Browser within the Visium fiducial frame
(Fig. 2b). Folds in the tissue were labeled as such and excluded from downstream analysis. Spots with
less than 500 unique molecular identifiers were excluded from downstream analysis. Unsupervised
clustering of merged spatial gene expression data was driven largely by sample and donor identify, so
spatial gene expression data were integrated using canonical correlation analysis (CCA) in Seurat
(Extended Data Fig. 6a-b).

Spatial cluster identification
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Using FindClusters in Seurat, 13 clusters were identified at 0.5 resolution: two hilus clusters, hilus1
comprising mostly excitatory neurons, and hilus2 showing markers of inhibitory neurons, mossy cell
markers, serotonin receptor 2c (HRT2C) and tryptophan hydroxylases 2 (TPH2); CA3 stratum
pyramidales (ca3) comprising excitatory neurons; stratum oriens-stratum lucidum (so-slu) representing
WM,; so-slu of the CA3 (ca3-so-slu) expressing parvalbumin and markers involved in cell-cell adhesion,
extracellular matric, methylation, calcium signaling, and trophic factors; stratum radiatum (sr) comprised
of axonal markers; stratum oriens-stratum lacunosum (so-sla) made up of dendrites; stratum moleculare
(ml) comprised of apical dendrite-associate markers and HTR2B, stratum granulosum (gcl) made up
mostly of GNs; SGZ-polymorphic layer (sgz-pl) expressing markers involved in neurogenesis,
development and differentiation, TPH7 and TPH2Z, scattered spots in SGZ and stratum moleculare (sgz-
ml) expressing stem cell, differentiation and neurogenesis markers and HTR3A and HTR1D; vasculature
(vasc) expressing endothelial and collagen markers, and HTR2B and TPHT; and choroid plexus (ch.pl)
expressing cilia and flagella associated markers, HTR2C, and astrocyte markers (Supplementary Table
8).

Integration of spatial and single-nucleus gene expression datasets

We used Seurat v3 anchor-based integration to transfer annotations from single nucleus data to spatial
Visium data. Single-nucleus annotations were used as the reference dataset and both whole
transcriptome Visium spatial gene expression and Xenium in-situ hybridization were used as query data.
Spots were assigned probability scores based on transcriptional congruence with cell types from single
nucleus data (Fig. 1h-i, Fig. 2e-f, Extended Data Fig. 4f).

RNA Velocity inference on Visium spatial transcriptomic data

To understand the kinetics of cell state in human hippocampus, we computed RNA velocity using
velocyto?’_based on the relative abundance of nascent (unspliced) mRNAs and mature (spliced) mRNAs

7

on Visium spots (55x55 m). Samtools?® (v1.9) was used to sort bamfiles and velocyto run’’ was used to

run velocity analysis and output a loom file. Pseudotime lineage analysis was performed by RNA velocity
(scVelo Python package??, Fig. 2g-k, Extended Data Fig 6). The proportion of spliced/unspliced RNAs
did not differ between unsupervised spot clusters, and we did not have power to test differences
between MDD and CTRL.

We used unsupervised clusters located in SGZ and GCL (Supplementary Table 8) that expressed
proliferation, differentiation, maturation and neurogenesis markers among their top 100, to subset spots
hypothesized to be part of neurogenesis trajectory (Extended Data Fig. 6¢-h). We selected spatial
clusters sgz.ml, sgz.pl, and gcl (Supplementary Table 8) and recalculated UMAP embedding using the
top 5000 variably expressed genes and additional genes known to be involved in neurogenesis (total of
5074 genes) and the first 15 PCs for FindNeighbors and RunUMAP. Seurat object was translated to
AnnData using SeuratDisk functions SaveH5Seurat and Convert with ‘dest’ set to ‘h5ad.’ The ‘data’ layer
from the Seurat object was used for gene expression calculations in scvelo. The AnnData object was
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merged with loom files output of velocyto run on the command line. The dynamical model was run with
the default parameters.

Identification of neurogenic niche stem cell progeny using machine learning on single nuclei
transcriptome data

We apply a supervised learning approach to identify neurogenic cell types, as recently published'®.
Prototypes for each cell type were discovered by first retaining the sparse counts matrix for the top 4000
variable genes and an additional 54 genes involved in neurogenesis and neuronal maturation. The Seurat
function NormalizeData was rerun on this matrix with the default parameters. For each gene, normalized
counts that were above the sum of the third quartile and the product of 1.5 times the inter-quartile range
were brought down to this value to reduce the effect of extreme outliers. Prototype scores were
assigned to cells for identification of the following cell types: Typel progenitors (quiescent neural stem
cells), Typell progenitors (intermediate amplifying neural progenitors), Typelll (differentiating neurons),
and ImGN (immature granule neurons, which are maturing and integrating into the DG circuit) using
normalized count data. The distribution of summed normalized counts of selected genes expected to be
expressed at each maturation stage was used to determine a cutoff for defining prototypical cells,
considering that, based on previous studies in rodents and primates, progenitors are expected to be a
small proportion of the total number of adult human dentate gyrus cells (<1% of all cells). We summed
normalized counts of the following stage-specific genes: for Typel, we summed normalized counts for
GFAP, SOX2, PAX6, NES, FABP7, HES5, and ETNPPL; for Typell, normalized counts for ASCL17, FOXO03,
NRZ2ET1, EOMES, NEUROG2, NEUROD1, NES, MCM2, PCNA, MKI67, and TOP2A were summed, and
because oligodendrocyte progenitors can express markers in common to other progenitors, normalized
counts for MBP and MOBP were subtracted so that cells that could be on the oligodendrocyte
differentiation trajectory were less likely to be determined to be Typell prototypes; for Typelll, we
summed normalized counts for MYTT1L, PROX1, DCX, CALB2, RELN, ST8SIAZ2, and ST8SIA4 and
subtracted normalized counts for RBFOX3 and VIPto decrease the likelihood that Typelll prototypes
were at a later stage of maturation or inhibitory neurons; for ImGN prototypes, normalized counts of
RBFOX3, PROX1, NEUROD1, DCX, BHLHEZ22, COL25A1, and POSTN were summed. Cells with high
prototypes scores were identified as prototypical, or high confidence cells.

We applied the LASSO regression (implemented with gimnet in R3%) for each cell type individually. For
each cell type, the prototypes and a randomly sampled quantity of cells required to reach 50,000 were
used for training and testing the model. The trained model uses a list of positively and negatively ranked
coefficients to rank genes in their ability to predict cell types. This method uses many genes to
characterize these cell types (for Typel, Typell, Typelll, and ImGN it used 372, 410, 555, and 422 genes
respectively), instead of just a few arbitrarily chosen genes. Few cells (approximately 150 cells) were
assigned two identities. For these cells, we manually assigned the identity with the highest predicted
probability from predict.g/m with type set to response’ and the tuning parameter s was chosen by 10-
fold cross validation by cv.gimnet. For final counts of cells in each LASSO identified cell type, see
Supplementary Table 9.
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Cell trajectory inference based on single nucleus transcriptomic data

In the absence of cytoplasmic mRNA and thus degradation rate in the single-nuclei gene expression
data, we used Palantir®' to characterize the trajectory of cells identified as Typel, Typell, Typelll, ImGN,
and GN from LASSO regression. Typel, Typell, Typelll, InGN, and GN cell types were subset, and re-
preprocessed using Seurat and Harmony as described in Multi-modal integration. The first 5 Harmony
batch, sample, and donor corrected PCs were used for FindNeighbors and RunUMAP (Fig. 3b). Seurat
object was converted to AnnData using SeuratDisk functions SaveH5Seurat and Convert with ‘dest’ set
to ‘h5ad. Palantir function core.run_palantir was used to calculate psueodtime ordering of each cell (Fig.
3c), terminal state probabilities, and entropy (a quantitive measure of the differentiation potential of each
cell). Generalized Additive Models®' were used to determine the gene expression trends along the
neurogenesis lineage using the function presults.compute_gene_trends (Fig. 3e).

Differential gene expression analysis in MDD versus CTRL

To determine cell-type specific differentially expressed genes (DEGs) between subjects with MDD and
neurotypical controls, count, peak, and gene activity matrices were aggregated on the sample and cell
type level. Data were normalized using center log ratio transformation implemented using the clr
function in the compositions R package. Then, we used the differential expression pipeline from R
package limma3%33. Samples from the same donor were not aggregated. Instead, we used limma’s
DuplicateCorrelation function to add a random effect for donor identity because, in some cases, samples
from the same donor were processed in different batches. Additionally, since donors had between 2-3
samples, we used voomWithQualityWeights to adjust for differences in the number of samples per donor
and number of cells aggregated/sample. We added RIN, PMI, batch, and age to the model as fixed
effects. For RIN, PMI, batch, and age, values that were outside the sum of the third quartile and the
product of 1.5 times the inter-quartile range from the median were winsorized to reduce the effect of
extreme outliers. P-values were adjusted using Benjamini-Hochberg correction. We implemented the
Bioconductor scRNA-seq pseudobulk pipeline to analyze DEGs between MDD and neurotypical controls

in all clusters34-38,

Differential chromatin accessibility analysis in MDD versus CTRL

To determine cell-type specific differentially accessible regions (DARs) between subjects with MDD and
neurotypical controls, the peaks matrix was aggregated and the pipeline for differential gene expression
was applied. Additionally, a gene activity matrix was created from snATAC-seq using GeneActivity
function in Signac. Chromatin accessibility at transcriptional and promoter regions was used to create
the gene activity matrix. Then, the pipeline for predicted differentially active genes (DAGs) was applied to
the aggregated gene activity matrices.

Pre-ranked gene set enrichment analysis
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We performed pre-ranked Gene Set Enrichment Analysis (GSEA)3° with FGSEA*? using the product of log
fold change and negative base 10 log of the Benjamini-Hochberg (BH) corrected p-value as the ranking
method. We used the Gene Ontology (GO) annotation system to determine molecular function (MF, the
molecular activities carried out by gene products), the cellular component (CC, the cellular location
where gene products are active and perform their function), and biological process (BP, the processes
and activities in which gene products are involved), with gene sets obtained from Molecular Signatures
Database (MSigDB)*'. We used Kyoto Encyclopedia of Genes and Genomes (KEGG)*? to infer biological

pathways related to DEGs, and used the Reactome pathway*? to understand molecular mechanisms of
biological reactions that are interconnected and result in pathways. The following parameters were used
for the fgsea function: minSize=15, maxSize=400, nperm = 10000. Outputs with BH adjusted p-value less
than 0.05 were considered significant.

PsyGeNET analysis

We ran enrichedPD from Psygenet2r** a R/Bioconductor package for the analysis of psychiatric disease
genes, for leveraging PsyGeNET#® a knowledge resource that collects and validates information of
psychiatric diseases and their genes. We used database = ‘ALL’ to find psychiatric disorders for which
DEGs from any cell type showed enrichment. We tested all DEGs from gene expression, all DEGs from
gene activity, and the combination, and ran psygenetGene with database = ‘ALL’ and created
geneAttrPlot for the evidence index. We then ran psygenetGene with DEGs from GN and ImGN (Fig. 4c)
which were the cell types with most dysregulated genes across multiple modalities: transcript, chromatin
accessibility and gene activity.

Weighted gene co-expression network analysis (WGCNA)

Weighted gene co-expression network analysis (WGCNA) was performed to identify co-expression
modules using snRNA-seq data??4%. First, the aggregated expression for each sample (N = 52; 25 CTRL,
27 MDD) in the GN and ImGN cell types was calculated by summing the counts per gene across all
nuclei. To account for known external sample traits, the counts were corrected for age and batch using
limma*’. In addition, lowly expressed genes with total counts of below 5 were removed. A soft
thresholding power of 20 and 18, respectively, and a minimum module size of 30 genes, were used for
network construction and module detection for GN. Each module was correlated with the phenotype
(CTRL vs. MDD), and significance was determined using a p-value < 0.05. The online tool Metascape*®
was used to perform GO on the modules that showed a correlation with MDD.

In Situ Hybridization

For each donor, 3 serial sections of 16 m at 80 m intervals were used for Singleplex and Duplex
RNAScope assays. For Singleplex RNAscope (ACDbio), the DCX probe (RNAscope Probe-Hs-DCX, Cat.
No. 489551) was hybridized and amplified. Duplex RNAscope was used to investigate DCX co-
localization with NEUROD1, PROX1, RBFOX3, or TUBB3 mRNA in the human DG. Fresh frozen 16 m
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tissue sections were fixed in 4% paraformaldehyde for 15 minutes at room temperature (RT). Sections
were washed in 1x PBS and then dehydrated in 50%, 70%, and twice in 100% EtOH for 5 minutes.
RNAscope was performed according to manufactured instructions. The DCX probe (Cat. No. 489551-C2)
and NEUROD1 probe (Cat. No. 437281), PROX1 probe (Cat. No. 530241), RBFOX3 probe (Cat. No.
415591), or TUBB3 probe (Cat No. 318901) were hybridized and amplified in C2 and C1 respectively.
Slides were counterstained with 50% hematoxylin (Gil's Hematoxylin No. 1) according to manufacturer’s
instructions. The slides are then quickly dipped in xylene and mounted with Permount.

Multiplex RNAscope was used to investigate the expression of GAD7 (Cat No 404031-C2), PROX1 (Cat
No 530241-C3), and DCX (Cat No 489551) in the human DG, because single nuclei data showed co-
expression of GAD17 in cell clusters expressing DCX. Sections were counterstained with 4, 6-diamidino-2-
phenylindole (DAPI).

Gene expression analysis using qPCR

RNA was isolated using RNeasy FFPE Kit (Qiagen, Germantown, MD) according to the manufacturer’s
instructions. RNA quantity was assessed by evaluation of the A260/280 and A260/230 ratios using a
Nanodrop spectrometer (Thermo Scientific 840274100). Superscript Il enzyme (Invitrogen) was used to
reverse transcribe 200 ng total RNA. Quantitative Real-Time PCR was performed on a StepOnePlus™
Real-Time PCR System using a TagMan™ Gene Expression Master Mix (Applied Biosystems, Waltham,
USA). A ready-made DCX TagMan™ probe (Applied Biosystems, Waltham, USA) was used to amplify a
77bp region spanning an exon boundary within the coding sequence of the target gene. Each sample
was assayed in triplicate and DCX target gene expression was normalized to the geometric mean of the
reference gene beta-actin (ACTB). DCX gene expression was analyzed in PRISM using a Welch unpaired
T-test.

Double Immunofluorescence

To examine expression of cell type specific markers at the protein level in human hippocampus, we
performed double immunofluorescence (IF) for protein corresponding to RNAs of interest identified with
the single nuclei and spatial transcriptomic analyses.

Human hippocampus tissue sections (50 m thick) were washed and prepared as previously published*’.
The primary antibodies were incubated [(1:1000 guinea pig anti-DCX (Millipore), 1:5000 mouse anti-Glial
Fibrillary Associated Protein (GFAP, Sigma-Aldrich), 1:500 rabbit anti-lonized calcium binding adaptor
molecule 1 (Iba1, Fujifilm), 1:50,000 mouse anti-Neurofilament (NF; Sigma-Aldrich); 1:2000 mouse anti-
polysialylated neural cell adhesion marker (PSA-NCAM, Miltenyi Biotec); 1:500 rabbit anti-Calretinin
(Swant Inc.), 1:500 rabbit anti-Calbindin (Swant Inc.), 1:500 rabbit anti-Neuronal Nuclear Marker (NeuN,
Millipore)] in a 25% blocker overnight or for 5-days (Calretinin and Calbinin) at 4°C. The secondary
antibodies were incubated overnight at 4°C with Jackson Alexa Fluor 488 goat anti-mouse or anti-rabbit
(1:500) and Jackson Alexa Fluor 594 goat anti-guinea pig (1:500). The following day the tissue was
washed for 30min (2x15°) in 0.05M PBS. Then the tissue was counterstained with 4, 6-diamidino-2-
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phenylindole (DAPI) in PBS for 3min before being washed for 15min (3x5’) in 0.05M PBS. The tissue was
then treated with 0.1% True Black (Biotium) in 70% ethanol in distilled water to quench autofluorescence.
Sections were then washed for 1h (6x10’) in 0.05M PBS. The tissue was coverslipped using 90% glycerol
and PBS.

Immunohistochemistry

Immunohistochemistry (IHC) for DCX was performed as previously described*® Sections were incubated
in guinea pig anti-doublecortin (1:30,000, Millipore) in 10% blocking solution overnight at 4°C on a
shaker. Following 2-hour secondary incubation with anti-guinea pig biotin-conjugated antibody (Vector
Laboratories) and 1-hour incubation in avidin-biotin-horse radish peroxidase system (Vector
Laboratories), diluted 1:200, sections were washed in sodium acetate for 5 min, followed by a PBS wash
for 20 min (2x10’) before being mounted on glass slides and desiccated. Sections were counterstained
with Nuclear Red which involves dehydrating slides in ethanol, clarifying slides in xylenes and cover-
slipping with Permount (Sigma-Aldrich).

Sections were processed to identify mature granule neurons (anti-Neuronal Nuclear antigen [NeuN]
mouse monoclonal antibody, 1:100,000; Chemicon, Temecula, CA), progenitor cells of Type Il or llI (anti-
nestin mouse monoclonal antibody, 1:8000, Chemicon) and mitotic cells (anti-Ki-67 mouse monoclonal
antibody, 1:200, Novocastra Clone-MM1, Newcastle Upon Tyne, UK). Immunohistochemistry and

stereology were performed as previously described®°.

Confocal Microscopy

Cell markers co-localization was visualized using an Olympus Fluoview FV1000 Confocal Laser Scanning
System (Olympus, Waltham, MA) equipped with an Olympus 1X81 Inverted Microscope, with electronic
stage controller (Prior Scientific, Rockland, MA), camera interface, and Olympus Fluoview 1000 (v. 1.5)
software, using the following objectives: UPLSAPO 10X and 20X air, with numerical aperture (NA) 0.40,
0.75; UPLFLN 40X oil with NA 1.30; and PLAFON 60X oil with NA 1.42 (Olympus).

To quantify co-localization of cell markers (i.e., DCX/NeuN), image stacks of the whole DG were obtained
using a confocal scanning microscope (Leica TCS SP8 2-Photon, Leica Microsystems Inc.), and then
processed for Stereology using Stereoinvestigator software (MBF, Inc.). Fluorescence from the different
fluorophores was detected in the following way: 1) 488-AffiniPure was excited at 488 nm and detected at
505-550 nm, 2) 594-AffiniPure was excited at 552 nm and detected at 600-650 nm, and 3) DAPI was
excited at 405 nm and detected at 415-485 nm. For 488- and 552-nm excitation, the beam path included
a TD 488/552/638 beamsplitter, while for 405 nm excitation a substrate beamsplitter was used.

Hippocampal sections from each subject were scanned to produce 13 + 2 ym image stacks, depending
on the thickness of each tissue section. All z stacks were imaged with a dry Leica 20X objective (NA
0.70, working distance 0.5 mm), with a field of view of 553.6 x 553.6 um, a pixel size of 0.54 x 0.54 pym,
optical sectioning of 2.36 um, and a z step of 1 ym. Positive and negative controls were run to ensure
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signal specificity and minimal background, creating an optimal signal to noise ratio. The same
parameters were applied for every section of every subject. Image stacks were then imported in our
MicroBrightfield system (MBF Bioscience, Williston, VT) to perform unbiased stereology.

Cell quantification and statistical analysis

We used an unbiased stereological approach (optical disector with fractionator) to estimate numbers of
cells expressing DCX (DCX+), DCX/NeuN+ cells, DCX mRNA+ cells and DCX/TUBB3 mRNA+ cells.
Olympus BX51-WI microscope was used with electronic stage controller LUDL MAC 6000 XYZ (BioVision
Technologies, Exton, PA) and camera interface for Retiga 2000R CCD Scientific Camera (Q-Imaging,
Surrey, BC, Canada).

For anatomical alignment along the rostro-caudal axis of the DG, processed sections were anatomically
matched with Nissl-stained sections at 1-mm interval using a stereoscope (Leica, Wild M3Z, Heerburg,
Switzerland). We defined the anterior DG as the portion from the most rostral appearance of the DG to
the start of the lateral geniculate. The mid DG was defined as the portion going from the start of the
lateral geniculate to the disappearance of the lateral geniculate, and the posterior DG was the region
from the end of the lateral geniculate to the end of the caudal DG. Outlines of the DG including SGZ and
GCL were aligned from the most rostral to the most caudal hippocampal sections and used as
boundaries for cell counting. To quantify cells, the first hippocampus section to be sampled was the one
in which the DG first appeared. Subsequent sections were assayed every 2 mm thereafter in systematic
fashion, until the DG disappeared, with an average of 8-10 sections per subject for DCX
immunohistochemistry experiments. It should be noted that for DCX/NeuN and RNAscope experiments,
an average of 3-5 sections of the anterior hippocampus were used per subject. Using the Stereo
Investigator system, DG boundaries were defined at low magnification using the 4x objective. Cells were
not counted in the upper and lower 3 um in the z planes of the tissue sections (the guard zones). The
estimated total number of cells was calculated as:

N=YQ x(1/hsf)x(1/asf)x(1/ssf)

where 39~ = total number of cells counted, hsf (height sampling fraction) = h/t, where tis the mean
section thickness, his the height of the optical dissector, asf= area sampling fraction (area of the
counting frame over the area of x,y step), and ssf = section sampling fraction (1/section interval).

The cell counts were analyzed in PRISM using a Welch unpaired T-test.
Proteomics

We used Shotgun proteomics liquid chromatography with tandem mass spectrometry (LC/MS/MS), a
strategy with broad applicability, based on digestion of proteins with proteolytic enzymes and analysis of

the resulting peptides by mass spectrometry®’.
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Fresh-frozen 4% paraformaldehyde post-fixed tissue was dissolved in 0.2% RapiGest SF in 50 mM
ammonium bicarbonate, heated to 105 °C for 30 min, then to 80 °C for 2 h, digested with trypsin as
previously described®?°3, and then 50 fmol of yeast alcohol dehydrogenase were added as internal
control.

LC/MS/MS was run for 120 minutes, two chromatograms recorded for each biological replicate, in
traveling-wave ion mobility spectrometry (TWIMS) MSE resolution mode °1°3%% mass spectra were
recorded every 0.6s; every 30s internal “lockmass” spectrum of Glu-1-Fibrinopeptide B was recorded
(m/z 785.8426); 11,000 mass spectra were recorded per run; a total of 792,000 mass spectra were
analyzed. Of the 1811 proteins detected, 680 were represented by a single peptide or with protein

identification quality scores less than 250 and were not included in the analysis.

The two groups (MDDs and CTRL) were compared against each other and differentially expressed
proteins were identified with a PeptideTeller predicted error (false positive rate of 1%). P-values used in
our report on these experimental results are based on the error function called xdev, which addresses
false positives by using an advanced error model as described in previous papers®>°. The xdev-derived
P-values were generated by the software Rosetta Elucidator Protein Expression Analysis System (V.
4.0.0.2.13, PerkinElmer, Boston, MA)). This software, developed by Merck & Co./Rosetta®’~° extends the
dynamic range of fold-change data, especially for low abundance proteins. This system matches
accurate mass and retention time across all LC/MS/MS chromatograms in the experiment, enhancing
the effectiveness of the mass spectrometry analyses. The xdev represent the difference of intensities
between groups (pairwise comparisons) divided by the error of the difference, and the p-value of
differential expression is calculated from an error function of a standard Gaussian distribution.
Elucidator ran on Oracle Linux v. 6.5 server with 128 GB RAM and 32 Tb of RAID network attached
storage. From within Elucidator, results were searched with Mascot server (Version 2.5.1, Matrix Science
Ltd., London, UK). The search was against a SwissProt human canonical protein sequence database with
isoforms (UniProtKB/Swiss-Prot Release 2017_01 containing 84,336 sequences; 48,572,808 residues,
www.uniprot.org). Our quality control indices included peptide count above two for considering a protein
a good candidate, and p-value < 0.05.
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Figure 1

Defining hippocampal cell types characterized by gene expression and accessible chromatin
sequencing. a. Schematic of study design. b-d. UMAP plots using batch-, sample-, and donor-corrected
Harmony components. b. UMAP visualization of 349,847 cells derived from gene expression data and
colored by cell types. c.UMAP visualization of 349,847 cells derived from accessible chromatin data and
colored by cell types. d. UMAP visualization of 349,847 cells derived from integration of two modalities
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using WNN analysis colored by annotations from unsupervised clustering. e. Pearson’s correlation of
natural log1p of the average gene expression and average predicted gene activity calculated from
accessible chromatin in each cell type. f-g. Dotplot depicting the expression of marker genes (PDFGRA -
oligodendrocyte progenitor cells (OPC); MBP — oligodendrocytes (Olig); PDGFRB, PECAM1, CEMIP-
vasculature cells (Vasc); APBB1IP, P2RY12, MRC1 - immune cells (Immune); CFAP54 - ependymal cells
(Epe); TTR, HTR2C - epithelial cells of choroid plexus (Ch.Pl); AQP4, SCL1A2, GFAP - astrocytes (Astro);
RELN - Cajal Retzius cells (CR); RBFOX3, SYT1, SV2B — neurons; SLC17A7, CAMK2A — excitatory
neurons; PROX1, CALBT - granule neurons (GN); EPHA5, NEUROD6 — Cornu Ammonis excitatory
neurons (CA.ExN); TSHZ2 - other excitatory neurons (0.ExN); GAD1, GAD2, DCX, SCL32A1T - inhibitory
neurons (InN). (For detailed dotplot with 31 clusters and specific marker genes see Extended Data Fig.
4c). f. Dotplot depicting expression of marker RNA transcripts. g. Dotplot depicting predicted gene
activity based on chromatin accessibility. h-i. Anchor-based integration of single-nuclei gene expression
data with (h) whole-transcriptome spatial gene expression and (i) single-cell in-situ hybridization with
266 probes.
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Figure 2

Visium spatial transcriptomics and Xenium in-situ hybridization, anchor-based integration of single
nuclei data, and RNA Velocity. a. Example of Visium capture area with manual annotation of
hippocampal subfields. b.Subfield annotations projected onto Visium section at a spot level. ¢. Visium
unsupervised clustering annotation identifies 13 distinct clusters on the tissue section. d. UMAP
visualization of 39,230 spots from 12 spatial gene expression samples. UMAP is derived from anchor-
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based integration. c¢-d. Cluster color-coding is maintained. e. Anchor-based integration of whole
transcriptome spatial gene expression and single-nuclei (sn) gene expression provides a probabilistic
transfer of annotations from reference (sn) to query (spatial) to annotate 55um spatial spots. Color
shows probability score. From top to bottom: Cornu Ammonis (CA) excitatory neurons (CA.ExN) have
high probability score on CA regions, other excitatory neuron (0.ExN) have low probability score on CA
regions, vasculature (Vasc) is diffuse across section. f. Anchor-based integration of snRNA-seq data
(reference) with single-cell in-situ hybridization using 266 probes over 12x24 mm capture area (query)
The larger capture area allows the spatial differentiation of CA.ExN in CA regions from O.ExN in
subiculum. X and Y-axes represent microns. g-. UMAP projection of subset of Visium unsupervised
clusters gcl, sgz.pl, and sgz.ml g. with stream of velocity vectors from sgz.ml to sgz.pl to gcl estimated
using RNA Velocity dynamical modeling. h. Partition-based graph abstraction (PAGA) with velocity-
directed edges, a much simpler abstracted graph, in which edge weight represents confidence in the
presence of connections, providing an easily interpretable overview of lineage trajectory. i. UMAP
projection colored by latent time which represents the internal time of the spot and is based only on its
transcriptional dynamics. j. UMAP colored by pseudotime which is calculated from the velocity graph.
The root spot, or ‘zero’ is implicitly inferred (i.e. not used as an input parameter). k.Heatmap of gene
expression (yellow = high, dark blue = low) by latent time, showing spots ordered by latent time on x-axis
and genes on the y-axis.
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Figure 3

achine learning approach and Palantir trajectory inference to investigate neurogenic lineage | . a.
Schematic representation of gene expression in prototypical cells used to train and test the LASSO
regression. b. UMAP plot of Typel, Typell, Typelll, ImGN, and GN cells using batch-, sample-, and donor-
corrected Harmony principal components, colored by cell type. ¢. Palantir-inferred pseudotime showing
Typel as youngest, Typell and Typelll following, and ImGN and GN as oldest. d. Violin plots of gene
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expression in cell types identified as Typel, Typell, Typelll, and ImGN by LASSO regression. CA.ExN and
O.ExN are merged to ExN. e. Gene expression trends for the neurogenic lineage using Palantir
Generalized Additive Models. Color represents the z-scored scale gene trends of imputed expression. f.
Coverage plots showing accessible chromatin peaks in each cell type with violin plot to showing RNA
expression. From left to right: PAX6, SOX2, and PROX1. CA.ExN and O.ExN are merged. g. Anchor based
integration of snRNA-seq data (reference) with Xenium single-cell in-situ hybridization (query). ImGN in
red are in the subgranular zone (SGZ) and granule cell layer (GCL). X and Y-axes represent microns. h.
Two probe-based protocols (RNAScope and Xenium) used to validate co-expression of PROXT (red),
GAD1 (green), and DCX (yellow) in cells located in the SGZ and GCL of the dentate gyrus.
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Figure 4

Cell type-specific differential gene expression, chromatin accessibility, and predicted gene activity in
MDD versus CTRL. a. Distribution of differentially expressed genes in clusters (left) and cell types
(right). Upregulated genes on the right of the dashed line and downregulated gene on the left. Clusters
Olig, OPC, Epe, and Ch.PI were not aggregated, so they are not shown again in the cell type graph.
Clusters or cell types with no differential gene expression in MDD are not shown. b. Dotplot showing
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log(cpm)-adjusted counts for top 15 differentially expressed genes in MDD ImGN (left) and GN (right). c.
Distribution of differentially accessible chromatin peaks in MDD in clusters (left) and cell types (right).
Regions more accessible are on the right of the dashed line and less accessible on the left. d. Dotplot
showing log(cpm)-adjusted counts for top 30 differentially expressed accessible chromatin peaks in
MDD GN. e.Distribution of differentially predicted gene activity in MDD calculated from accessible peaks
counts in clusters (left) and cell types (right) with increased predicted gene activity in MDD on the right
of the dashed line and decreased on the right. f. Dotplot showing log(cpm)-adjusted counts for ImGN
and GN differentially predicted gene activity in MDD calculated from accessible peaks counts.
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Figure 5

Pathway dysregulation in MDD. a. PsyGeNET database reported gene-disease association network plot
for all DEGs from snRNA-seq data in our sample and genes previously linked to psychiatric disorders. b.
Bar graph of gene-disease association showing number of genes associated with disease (blue) and
number of genes uniquely associated with each disease (yellow). ¢. Gene-disease association heatmap
for GN DEGs (note that THEMIS is also a DEG in ImGN). Evidence index of 1 (blue) indicates that all
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literature support association. Evidence index between 0 and 1 (grey) indicate partial support for
association.

d-g. Gene set enrichment analysis for INnGN and GN. Genes are ranked using log(fold change)-log10
(Benjamini-Hochberg adjusted p-value). Terms in blue are enriched for genes upregulated in MDD. Terms
in red are enriched for genes downregulated in MDD. d. KEGG and REACTOME pathway dysregulation in
ImGN. e. Hallmark pathway terms dysregulated in ImGN. f. KEGG and Reactome pathway dysregulation
in GN. g. Hallmark pathway terms dysregulated in GN h. Weighted gene co-expression network analysis
(WGCNA) heatmap showing module eigengenes (ME) correlation and associated p-value (in
parentheses) for ImGN, with MDD-CTRL status and covariates (age, RIN, PMI). i. The turquoise module
was positively associated with MDD in ImGN and was enriched for lipid modification and metabolism
and the blue module was enriched for RNA splicing, RNA metabolism, translation and response to stress,
and protein folding. j. The blue module negatively associated with MDD in ImGN was enriched
metabolism, and lipid modifications. k. Heatmap showing the correlation and associated p-value (in
parentheses) of GN WGCNA module eigengenes with MDD-CTRL status and covariates (age, pH, PMI). I.
The turquoise module positively associated with MDD in GN was enriched for cell morphogenesis and
projection development, and VEGF pathways. m. The blue module negatively associated with MDD in GN
was enriched for lipid and metabolic processes.
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