

Engineering NKG2D ligand affinity transforms EGFR-targeted NK cell engagers into high-potency effectors against pancreatic cancer

Seul-Gi Lee^{a,†}, Myungjee Lee^{a,†}, Hye-Min Lee^b, Ga-Hyun Son^a, Sang-Rok Yoon^a, Byeong-Ho Chae^a, Dae-Seong Kim^a, Kyung-Mi Lee^b, and Yong-Sung Kim^{a,c,*}

† These authors contributed equally to this work

^a Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea

^b Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Republic of Korea

^c College of Advanced Bio-convergence Engineering, Ajou University, Suwon 16499, Republic of Korea

*To whom correspondence should be addressed: Yong-Sung Kim, Ph.D.

Department of Molecular Science and Technology, Ajou University

206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea

Tel.: +82-31-219-2662; E-mail: kimys@ajou.ac.kr

ORCID: Yong-Sung Kim: 0000-0003-2673-1509

This supplementary data includes:

Supplementary Tables 1 to 2

Supplementary Figures 1 to 6

Supplementary Information

Supplementary Table 1. Biochemical and biophysical properties of α EGFR \times NKG2DL.

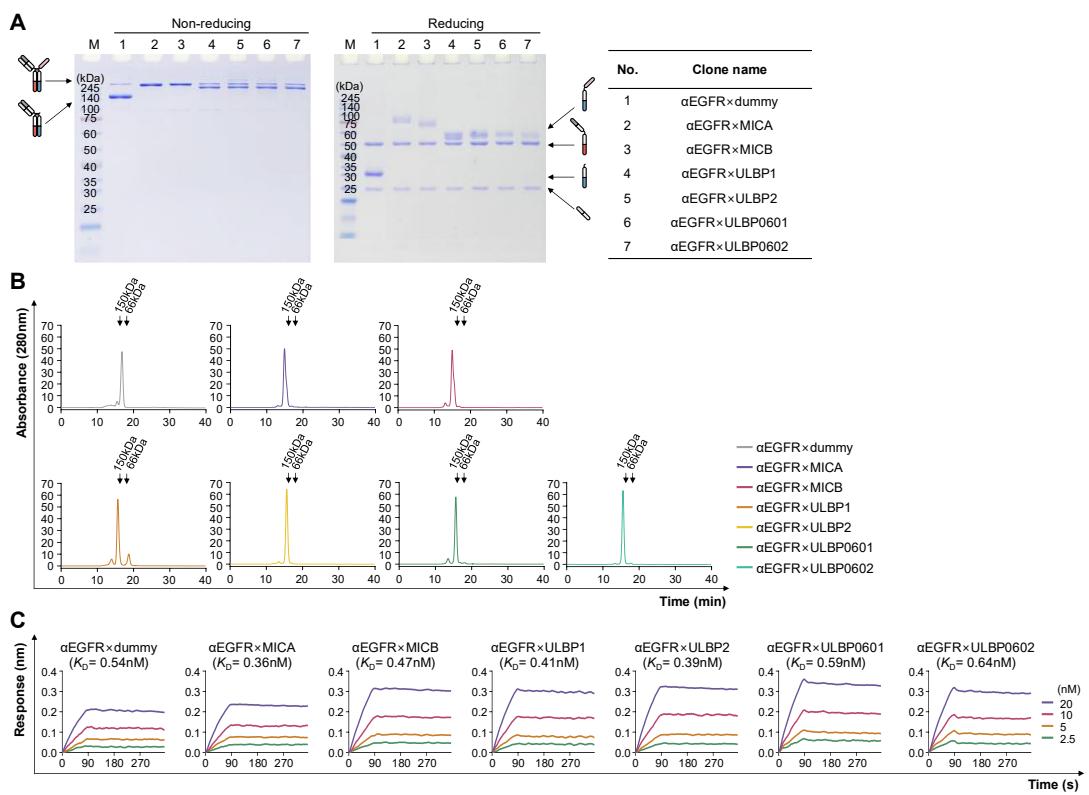
Molecule	MW (kDa)	Purification Yield (mg L ⁻¹) ^a	apparent K_D for NKG2D ^b	Target	k_{on} (M ⁻¹ s ⁻¹) ^c	k_{off} (s ⁻¹) ^c	K_D (nM) ^c	R^2 ^c
α EGFR \times dummy	98.4	20.2 \pm 1.3	-	EGFR	(4.04 \pm 0.21) \times 10 ⁵	(2.19 \pm 0.18) \times 10 ⁻⁴	0.54 \pm 0.05	0.99
				EGFR	(5.07 \pm 0.18) \times 10 ⁵	(1.84 \pm 0.15) \times 10 ⁻⁴		
α EGFR \times MICA	131.1	19.8 \pm 1.3	11.6 \pm 0.9	NKG2D	(2.39 \pm 0.12) \times 10 ⁴	(5.49 \pm 0.09) \times 10 ⁻³	229 \pm 12.4	0.98
				EGFR	(3.61 \pm 0.18) \times 10 ⁵	(1.67 \pm 0.16) \times 10 ⁻⁴		
α EGFR \times MICB	131.1	20.6 \pm 1.1	99.1 \pm 14.4	NKG2D	N.Q. ^d	N.Q. ^d	0.47 \pm 0.05	0.99
				EGFR	(5.12 \pm 0.22) \times 10 ⁵	(2.18 \pm 0.19) \times 10 ⁻⁴		
α EGFR \times ULBP1	120.8	21.4 \pm 2.7	119.2 \pm 23.1	NKG2D	N.Q. ^d	N.Q. ^d	0.42 \pm 0.04	0.99
				EGFR	(4.24 \pm 0.16) \times 10 ⁵	(1.66 \pm 0.13) \times 10 ⁻⁴		
α EGFR \times ULBP2	120.2	19.0 \pm 2.4	95.0 \pm 17.1	NKG2D	N.Q. ^d	N.Q. ^d	0.39 \pm 0.03	0.99
				EGFR	(5.52 \pm 0.26) \times 10 ⁵	(3.13 \pm 0.22) \times 10 ⁻⁴		
α EGFR \times ULBP0601	119.8	17.2 \pm 2.6	14.9 \pm 0.6	NKG2D	N.Q. ^d	N.Q. ^d	0.57 \pm 0.05	0.99
				EGFR	(5.81 \pm 0.38) \times 10 ⁵	(3.58 \pm 0.33) \times 10 ⁻⁴		
α EGFR \times ULBP0602	119.7	22.5 \pm 1.7	2.4 \pm 0.2	NKG2D	(2.50 \pm 0.06) \times 10 ⁴	(7.03 \pm 0.13) \times 10 ⁻⁴	28.1 \pm 0.82	0.99

^a Purification yield was calculated from a 100 mL scale HEK293F culture and extrapolated to a 1 L scale. Data are represented as mean \pm SD (n = 2).

^b Apparent K_D was determined by native ELISA using soluble hNKG2D. Data are represented as mean \pm SD (n = 3).

^c Each value represents the mean \pm SD of two independent experiments. In each experiment, at least four datasets were used to determine kinetic constants. The association rate constant (k_{on}), dissociation rate constant (k_{off}), equilibrium dissociation constant (K_D), and goodness of fit (R^2) were calculated using Octet Data Analysis software (version 11.0 ForteBio).

^d N.Q. indicates “not quantifiable”, although experiments were performed.

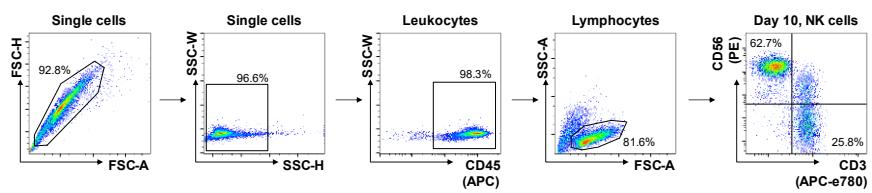

Supplementary Table 2. Biochemical and biophysical properties of affinity-matured ULBP6-fused α EGFR \times ULBP6 ICES.

Molecule	MW (kDa)	Purification Yield (mg L $^{-1}$) ^a	k_{on} (M $^{-1}$ s $^{-1}$) ^b	k_{off} (s $^{-1}$) ^b	K_D (nM) ^b	R^2 ^b	Affinity improvement (fold) ^c
α EGFR \times ULBP0602	119.9	27.7 \pm 4.0	(2.77 \pm 0.06) \times 10 4	(8.59 \pm 0.12) \times 10 $^{-4}$	31.0 \pm 0.77	0.99	-
α EGFR \times ULBP6#1	119.9	28.0 \pm 3.6	(2.07 \pm 0.05) \times 10 4	(7.62 \pm 0.76) \times 10 $^{-5}$	3.67 \pm 0.38	0.99	8.4
α EGFR \times ULBP6#2	119.9	26.6 \pm 3.7	(3.99 \pm 0.05) \times 10 4	(9.71 \pm 0.64) \times 10 $^{-5}$	2.43 \pm 0.16	0.99	12.8
α EGFR \times ULBP6#3	120.0	29.2 \pm 4.4	(3.26 \pm 0.08) \times 10 4	(1.36 \pm 0.10) \times 10 $^{-4}$	4.17 \pm 0.34	0.99	7.4
α EGFR \times ULBP6#4	120.0	29.5 \pm 5.4	(3.19 \pm 0.08) \times 10 4	(2.06 \pm 0.12) \times 10 $^{-4}$	6.44 \pm 0.41	0.99	4.8

^a Purification yield was calculated from a 100 mL scale HEK293F culture and extrapolated to a 1 L scale. Data are represented as mean \pm SD (n = 2).

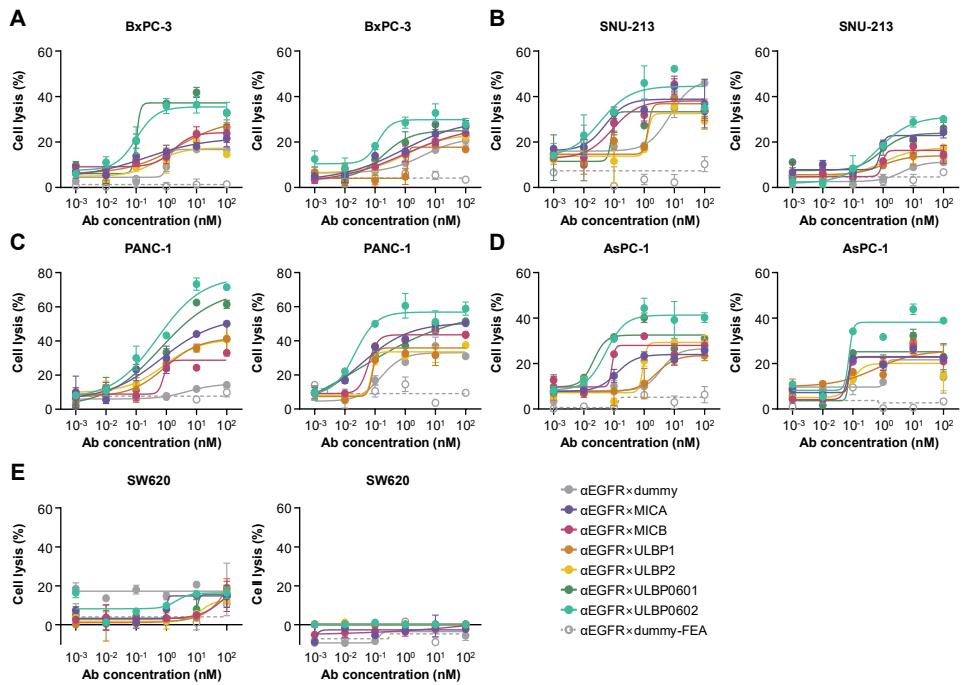
^b Each value represents the mean \pm SD of two independent experiments. In each experiment, at least four datasets were used to determine kinetic constants. The association rate constant (k_{on}), dissociation rate constant (k_{off}), equilibrium dissociation constant (K_D), and goodness of fit (R^2) were calculated using Octet Data Analysis software (version 11.0 ForteBio).

^c Affinity improvement values indicate the fold increase in NKG2D binding affinity, calculated relative to the K_D of the α EGFR \times ULBP0602 ICE.

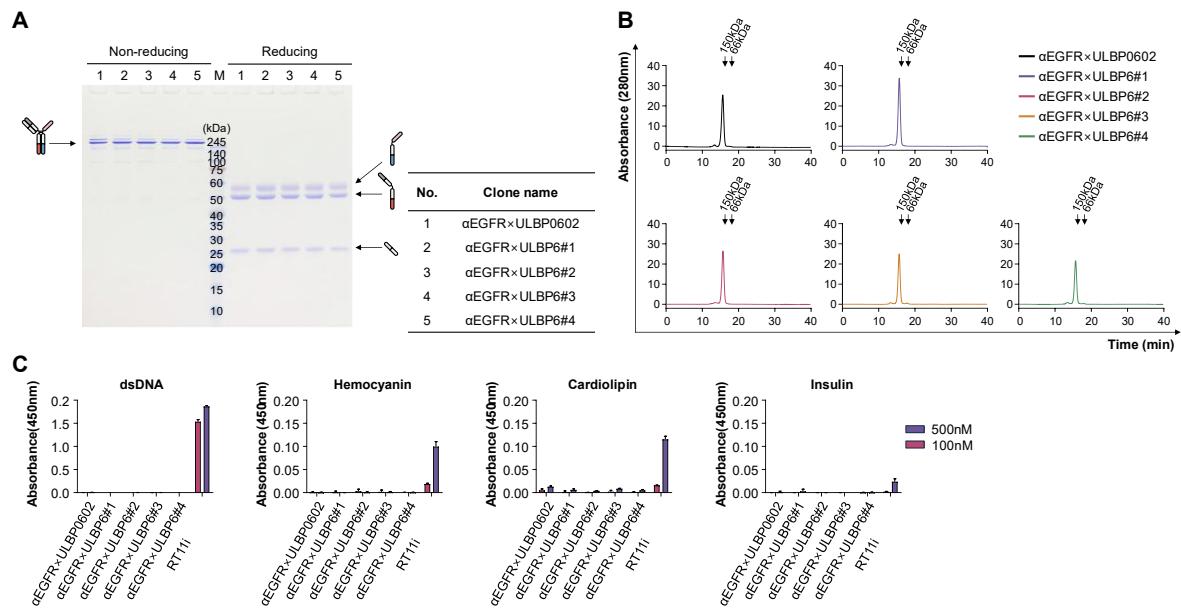


Supplementary Figure 1. Biophysical characterization and EGFR-binding kinetics of αEGFR×NKG2DL ICEs.

(A) SDS-PAGE of purified αEGFR×NKG2DL ICEs (4 µg per lane) under non-reducing and reducing conditions on 12% polyacrylamide gels.


(B) Analytical SEC profiles of αEGFR×NKG2DL ICEs (30 µg per injection) on a Superdex 200 Increase 10/300 column with UV detection at 280 nm. Arrows indicate elution positions of molecular-mass standards (150 kDa, trastuzumab; 66 kDa, bovine serum albumin).

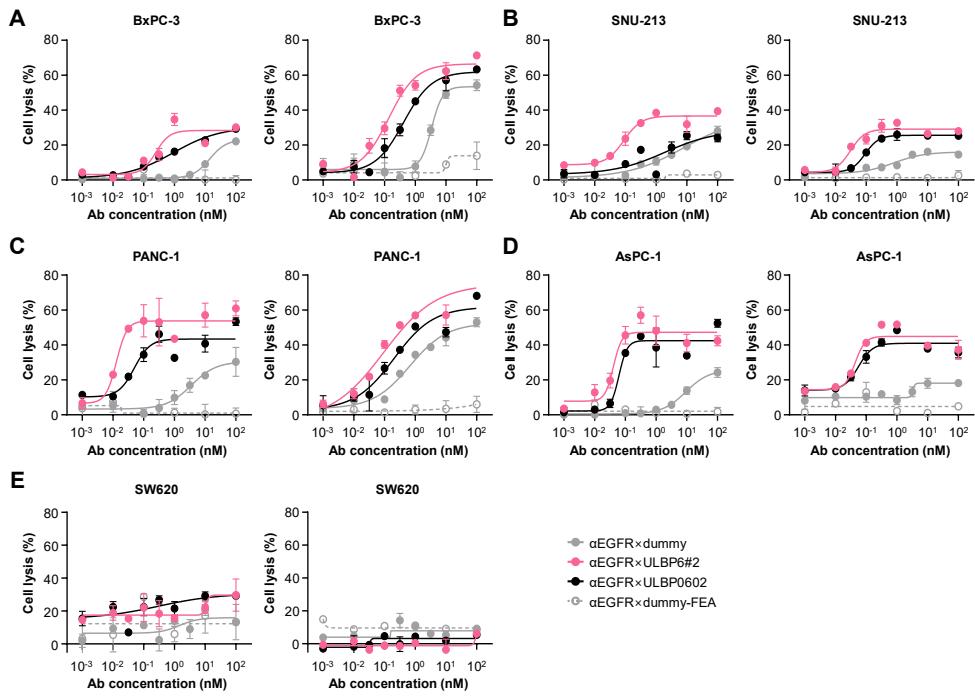
(C) Kinetic analysis of EGFR binding by BLI. Representative sensorgrams are shown with increasing antigen concentrations indicated by color; kinetic parameters (k_{on} and k_{off}) and K_D values are provided in [Supplementary Table 1](#).


Supplementary Figure 2. Flow-cytometry gating strategy for quantifying NK cells after *ex vivo* expansion of PBMCs.

Representative gating scheme used to identify NK cells in PBMC cultures expanded with KL-1 and EBV-LCL feeder cells in the presence of rhIL-2. NK cells were defined as $CD45^+CD3^-CD56^+$ cells stained with APC conjugated anti-CD45, APC-eFluor 780 conjugated anti-CD3, and PE conjugated anti-CD56. Unstained and isotype controls were included.

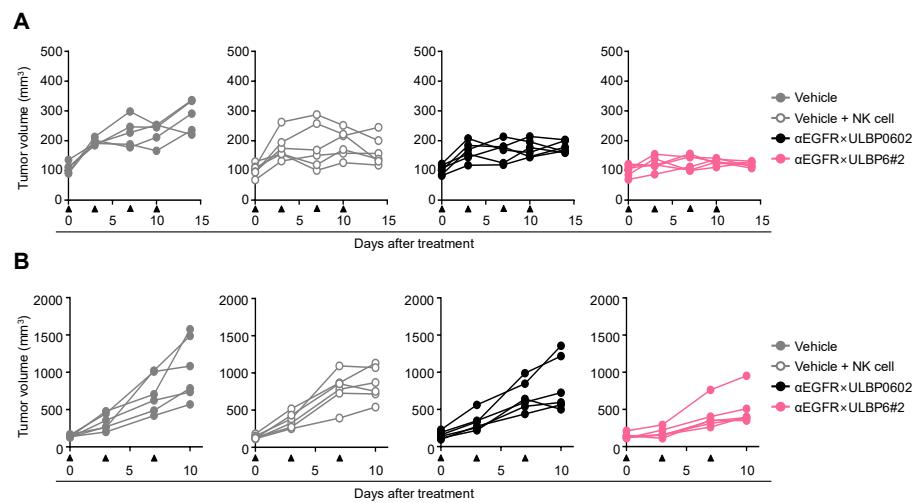
Supplementary Figure 3. *In vitro* cytotoxicity of α EGFR×NKG2DL ICEs using NK cells from additional donors.

NK cell-mediated cytotoxicity assays were performed as in Fig. 2B using NK cells from two additional donors. Data are shown as mean \pm SEM of technical duplicates.



Supplementary Figure 4. Biophysical characterization and nonspecific binding assessment of engineered aEGFR×ULBP6 ICEs.

(A) SDS-PAGE of purified engineered aEGFR×ULBP6 ICEs (4 µg per lane) under non-reducing and reducing conditions on 12% polyacrylamide gels.


(B) Analytical SEC profiles of engineered aEGFR×ULBP6 ICEs (30 µg per injection) on a Superdex 200 Increase 10/300 column monitored at 280 nm. Molecular-mass standards are indicated (150 kDa, trastuzumab; 66 kDa, bovine serum albumin).

(C) Polyspecific binding to immobilized dsDNA, cardiolipin, hemocyanin, and insulin assessed by ELISA; RT11i was used as a positive control. Data are mean ± SD (n = 3).

Supplementary Figure 5. *In vitro* cytotoxicity of α EGFR \times ULBP6#2 versus α EGFR \times ULBP0602 using NK cells from additional donors.

NK cell-mediated cytotoxicity assays were performed as in Fig. 4A and 4B using NK cells from two additional donors. Data are shown as mean \pm SEM of technical duplicates.

Supplementary Figure 6. Individual tumor growth curves for NK-humanized PDAC xenograft studies.

(A) Individual tumor growth profiles for the PANC-1 group corresponding to Fig. 5B.

(B) Individual tumor growth profiles for the BxPC-3 group corresponding to Fig. 5E.