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S1 The MERLIN approach

S1.1 Statistical model for MERLIN

The MERLIN framework employs a linear structural model to define the relationship between an
exposure X and an outcome Y . For a given individual i, this model incorporates M genetic variants
(Gj , for j = 1, . . . ,M SNPs), an environmental modifier Ei, and an unmeasured common confounder
Ui. The individual-level model is specified as: without loss of generality, we denote Xi and Yi as the
covariate-adjusted exposure and outcome for individual i. The individual-level model is specified as:

Xi =
∑

j

Gijω
(G)
j + Eiω

(E) +
∑

j

GijEiω
(GI)
j + UiεX + ϑXi , (1)

Yi = Xiϖ
(A) +

∑

j

Gijϖ
(G)
j + Eiϖ

(E) +XiEiϖ
(I) + UiεY + ϑYi . (2)

Apart from standard regression assumptions, the validity of MERLIN relies on the following key
assumptions.

1. Core assumptions for instrumental variables [1]:

• Confounder Independence: Gj→→ Ui and Ei→→ Ui, ↑j.
• G-E Independence: Gj→→ Ei, ↑j.
• Exposure Relevance: Gj ↓→→ X, and GjE ↓→→ X, ↑j.

2. Distributional and centering assumptions for model simplification:

• Gj and Ei are mean-centered (E[Gj ] = 0 and E[Ei] = 0).

• For a discrete binary modifier, we use a standardized form (values
√

1→p
p ,↔

√
p

1→p ) that

ensures E[Ei] = 0 and E[Ei]2 = 1. Its skewness, µ3 = EE3
i , is generally non-zero unless the

binary categories are equally frequent (p = 0.5).

• For a continuous modifier, our simplest derivations assume it has zero skewness (µ3 =
EE3

i = 0), a property of symmetric distributions like the normal distribution.

S1.2 Distribution of summary statistics for the exposure

We aim to establish the approximate distribution for the vector of estimated genetic e!ects on exposure,
ω̂ = (ω̂(G),↑

, ω̂(GI),↑)↑. Here, ω̂1 are the estimated main e!ects of SNPs (Gj) on X, and ω̂(GI) are
estimated Gj ↗E interaction e!ects on X. These are typically obtained as marginal (single-predictor
or interaction-term-specific) ordinary least square (OLS) estimates from GWAS and GWIS regressions,
respectively.

Let W = [G,GE] be the n ↗ 2M matrix of genetic predictors of interest (where G is n ↗M and
GE is n ↗ M , with its j-th column being GijEi). Let ω = (ω(G),↑

,ω(GI),↑)↑ be the vector of true
e!ects of these predictors from the structure model for exposure (Equation 1), which can be written
in matrix form as:

X = Wω + Eω
(E) + ϱx, (3)

where the residual term is ϱx = UεX + ϑX from Equation (1).
The vector of marginal OLS estimates ω̂ is given by ω̂ = D

→1
W W

↑
X, where DW = diag(W↑

k Wk) is
a diagonal matrix with the sum of squares of each predictor Wk (column of W ). Substituting Equation
(3): ω̂ = D

→1
W W

↑
Wω + D

→1
W W

↑
Eω

(E) + D
→1
W W

↑
ϱx. We assume that the genetic predictors W are

exogenous with respect to the full residual ϱx. Specifically, E[W↑
ϱx] = 0. This holds if: (i) Gj and Ei

are independent of unmeasured confounders Ui, and (ii) Gj and Ei are independent of the errors ϑXi.
Under these conditions, the expectation of ω̂ is E[ω̂] = D

→1
W W

↑
Wω +D

→1
W W

↑
Eω

(E).
The asymptotic distribution of

↘
n(ω̂↔E[ω̂]) can be derived using the multivariate Lindeberg-Levy

Central Limit Theorem for 1↓
n
W

↑
ϱx and Slutsky’s Theorem for the product with the scaling term

3



nD
→1
W . The term nD

→1
W converges in probability to BW = diag→1(ς2

Wk
), where ς

2
Wk

is the population
variance of the kth predictor Wk. Assuming Var(ϱx) = ς

2
xIn, this yields:

↘
n(ω̂ ↔ E[ω̂]) d↔≃ N (0, BW”WBWς

2
x),

where ”W = E[ 1nW
↑
W ] is the population covariance matrix of the predictors in W , which can

be written as ”W = diag(ςWk)RWdiag(ςWk), with RW being the population correlation matrix of
predictors.

Under the stated conditions for E (independent of G and E[Ei] = 0), RW simplifies to a block
diagonal matrix RW = diag(RLD, RLD), where RLD is the linkage disequilibrium (LD) matrix of
G. We note that the block structure of the asymptotical covariance implies that ω̂1 and ω̂3 are
asymptotically independent.

Now we express E[ω̂] and Var[ω̂] using summary statistics. Let R̂W = D
→ 1

2
W (W↑

W )D
→ 1

2
W be the

sample correlation matrix of W . Under the assumption that G→→ E, D→1
W W

↑
E

p↔≃ 0. Then

E[ω̂] ⇐ D
→ 1

2
W D

→ 1
2

W W
↑
WD

→ 1
2

W D

1
2
Wω = D

→ 1
2

W R̂WD

1
2
Wω.

Let SW = diag(S1, S3) contains standard errors se(ω̂1j) and se(ω̂3j). For marginal regression, S2
W,kk ⇐

ς
2
x(D

→1
W )kk (i.e., ω2

x

W→
k Wk

) [2]. This impels SW ⇐ ςxD
→ 1

2
W . Using these approximations:

E[ω̂] ⇐ (SWς
→1
x )R̂W (S→1

W ςx)ω = SW R̂WS→1
W ω.

As BW”WB
↑
W = B

1
2
WRWB

1
2
W , it can be approximated by n

1/2
D

→1/2
W RWn

1/2
D

→1/2
W . Using these

approximations:

1

n
BW”WBWς

2
x ⇐ (SWς

→1
x )R̂W (SWς

→1
x )ς2

x = SW R̂WSW .

In practice, R̂W is replaced by diag(R,R), where R is an LD matrix from a suitable reference

panel. Let S1 and S2 be diagonal matrices of standard errors for ω̂(G) and ω̂(GI) respectively. The
final approximate distributions are:

ω̂(G) | ω A⇒N (S1RS
→1
1 ω(G)

, S1RS1),

ω̂(GI) | ω A⇒N (S2RS
→1
2 ω(GI)

, S2RS2).

S1.3 Distribution of summary statistics in the outcome

We now derive the approximate distribution of GWAS and GWIS summary statistics for the outcome,
#̂ = (#̂(G),↑

, #̂(GI),↑)↑, where #̂(G) are the estimated main e!ects of SNPs (Gj) on outcome Y , and

#̂(GI) are the estimated Gj ↗ E interaction e!ects on Y . We assume summary statistics are from
cohorts with no overlap with exposure cohorts (see Supplementary Note S2 for overlap adjustments).

Let Z = [G,GE] be the N ↗ 2M matrix of genetic predictors used in modeling the outcome.
It is assumed here that the outcome cohort (from which Z is derived) does not overlap with the
exposure cohort (associated with the predictor matrix W ), although Z is formed using the same set
of M SNPs and the modifier E as used in W . The true underlying composite genetic e!ects that
these summary statistics aim to capture are # = (#(G),↑

,#(GI),↑)↑, where #(G) = ϖ
(A)ω(G) + ε(A),

#(GI) = ϖ
(A)ω(GI)+ϖ

(I)ω(G). By substituting equation (1) into equation (2), the full structural model
for the outcome can be written in matrix form as:

Y = Z#+GE
2
ϖ
(I)ω(GI) + E(ϖ(A)

ω
(E) + ϖ

(E)) + E
2
ϖ
(I)

ω
(E) + ϱy, (4)

where E
2 is an element-wise squaring of the vector E (or a vector of E2

i ), and GE
2 has elements

GijE
2
i . The residual term ϱy comprises all terms from the full reduced form not explicitly dependent

on G, GE, or GE
2:

ϱy = EUεXϖ
(I) + U(εXϖ

(A) + εY ) + ϑXϖ
(A) + EϑXϖ

(I) + ϑY .

4



Under conditions for E stated previously, we have E[ϱy] = 0,Var[ϱy] = ς
2
yIN , and E[Z↑

ϱy] = 0.
LetDZ = diag(ZT

k Zk) be the diagonal matrix of sums of squares for columns Zk of Z. The marginal

OLS estimates #̂ = D
→1
Z Z

↑
Y . Thus, the mean

E[#̂] = D
→1
Z Z

↑
Z#+D

→1
Z Z

↑
GE

2
ϖ
(I)ω(GI) +D

→1
Z Z

↑
E(ϖ(A)

ω
(E) + ϖ

(E)) +D
→1
Z Z

↑
E

2
ϖ
(I)

ω
(E)

.

The term
↘
N(#̂ ↔ E[#̂]) = (ND

→1
Z )( 1↓

N
Z

↑
ϱy). Following similar arguments as for the exposure

statistics (Lindeberg-Levy CLT for 1↓
N
Z

↑
ϱy; ND

→1
Z

p↔≃ BZ = diag→1(ς2
Zk

); Slutsky’s Theorem), we

have ↘
N(#̂↔ E[#̂]) d↔≃ N (0, BZ”ZBZς

2
y),

where ”Z = E[ 1NZ
↑
Z] is the population covariance matrix of predictors in Z. As Gj →→ Ei, then

”Z = diag(”Z1,”Z2). This implies

1

N
BZ”ZBZς

2
y ⇐ SZRZSZ ,

where SZ = diag(S3, S4) contains standard errors se(#̂(G)
j ) and se(#̂(GI)

j ), and RZ is correlation
matrix of Z (approximated by diag(RLD, RLD)). We note that, based on the block structure of the
asymptotical covariance, GWAS #̂(G) and GWIS #̂(GI) for the outcome are asymptotically independent.

The crucial step is to define E[#̂] using summary statistics. Given E[Gj ] = 0 and E[Ei] = 0, term
like D

→1
Z Z

↑
E and D

→1
Z Z

↑
E

2 will converge to zero with probability one, simplifying

E[#̂] ⇐ D
→1
Z Z

↑
Z#+D

→1
Z Z

↑
GE

2
ϖ
(I)ω(GI)

.

The first term D
→1
Z Z

↑
Z# ⇐ SZRZS

→1
Z #. The second term D

→1
Z Z

↑
GE

2
ϖ
(I)ω(GI) can be written

in block form as

[
D

→1
Z1G

↑
GE

2

D
→1
Z2GE

↑
GE

2

]
ϖ
(I)ω(GI). The lower block D

→1
Z2GE

↑
GE

2 involves E[E3
i ] = µ3, and

can be approximated as

D
→1
Z2GE

↑
GE

2 ⇐ ND
→1
Z2”Z2E[E3

i ]

= ND
→1
Z2B

1/2
Z1 B

→1/2
Z1 ”Z2B

→1/2
Z1 B

1/2
Z1 µ3

⇐ S
2
4S

→1
3 RS

→1
3 µ3.

Approximations of these blocks depend on the nature of E.

S1.3.1 Discrete binary environment

For the discrete standardized Bernoulli modifier Ei (values
√

1→p
p ,↔

√
p

1→p ), we have E[Ei] = 0,

E[E2
i ] = 1 and µ3 = 1→2p↘

p(1→p)
.

Since E[E2
i ] = 1, 1

NG
↑
GE

2 p↔≃ ”Z1E[E2
i ] = ”Z1. So the upper block D

→1
Z1G

↑
GE

2 can be approxi-
mated using summary statistics and the LD reference matrix R as S3RS

→1
3 .

Consequently, for large N , the mean for #̂ when E is binary is approximately:

E#̂ ⇐
[
S3RS

→1
3 #(G)

S4RS
→1
4 #(GI)

]
+ ϖ

(I)

[
S3RS

→1
3

µ3S
2
4S

→1
3 RS

→1
3

]
ω(GI)

.

Thus, the approximate distribution are

#̂(G) | ω A⇒ N (S3RS
→1
3 (#(G) + ϖ

(I)ω(GI)), S3RS3),

#̂(GI) | ω A⇒ N
(
S4RS

→1
4 #(GI) + µ3ϖ

(I)
S
2
4S

→1
3 RS

→1
3 ω(GI)

, S4RS4

)
.

(5)

If p = 0.5 (e.g., the male and female have similar sample size), then Ei ⇑ {±1}, µ3 = 0, and the
distribution of #̂ simplifies:

#̂(G) | ω A⇒ N (S3RS
→1
3 (#(G) + ϖ

(I)ω(GI)), S3RS3),

#̂(GI) | ω A⇒ N (S4RS
→1
4 #(GI)

, S4RS4).
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S1.3.2 Continuous environment

Note that the sample correlation matrix of GE is D
→ 1

2
Z2

G
↑
GE

2
D

→ 1
2

Z2
= D

→ 1
2

Z2
GE

↑
GED

→ 1
2

Z2
⇐ R and

SZ ⇐ ςyD
→ 1

2
Z . Based on these approximation, we can estimate D

→1
Z Z

↑
GE

2 using summary statistics
as follows: [

D
→1
Z1G

↑
GE

2

D
→1
Z2GE

↑
GE

2

]
⇐

[
D

→1
Z1D

1
2
Z2RD

1
2
Z2

µ3S
2
4S

→1
3 RS

→1
3

]
⇐

[
S
2
3S

→1
4 RS

→1
4

µ3S
2
4S

→1
3 RS

→1
3

]

With this derivation, the approximate distributions are:

#̂(G) | ω A⇒ N (S3RS
→1
3 #(G) + S

2
3S

→1
4 RS

→1
4 ϖ

(I)ω(GI)
, S3RS3),

#̂(GI) | ω A⇒ N (S4RS
→1
4 #(GI) + µ3ϖ

(I)
S
2
4S

→1
3 RS

→1
3 ω(GI)

, S4RS4).

For continuous E, we assume µ3 = 0, then the approximate distributions simplifies:

#̂(G) | ω A⇒ N (S3RS
→1
3 #(G) + S

2
3S

→1
4 RS

→1
4 ϖ

(I)ω(GI)
, S3RS3),

#̂(GI) | ω A⇒ N (S4RS
→1
4 #(GI)

, S4RS4).
(6)

S1.4 Assumption on the Skewness of the Modifier E

In our derivation for the distribution of the outcome GWIS summary statistics (#̂(GI)), we showed
that the mean, E[#̂(GI)], contains a term dependent on the third moment (skewness) of the modifier
E:

E[#̂(GI)] ⇐ S4RS
→1
4 #(GI) + µ3ϖ

(I)
S
2
4S

→1
3 RS

→1
3 ω(GI)

.

For simplicity in our primary analyses and simulations, particularly when estimating the magnitude
of non-zero e!ects and assessing statistical power, we assumed that E has zero skewness (µ3 = 0),
as is the case for any symmetrically distributed modifier (e.g., a standardized normal distribution for
continuous E, or a balanced binary distribution where p = 0.5).

However, it is critical to note that the term involving skewness is a product: µ3 ↗ ϖ
(I). Therefore,

under the null hypothesis of no interaction e!ect (H0 : ϖ(I) = 0), this entire term vanishes regardless of
the value of µ3. Consequently, the MERLIN test for the presence of an interaction e!ect (ϖ(I) = 0) is
expected to maintain a correctly calibrated Type I error rate (i.e., not generate excess false positives)
even if the modifier E is skewed.

While the significance test for ϖ
(I) = 0 is robust to skewness in E, obtaining an unbiased point

estimate of ϖ(I) when it is truly non-zero does require accounting for µ3. For the analyses presented
in this paper involving a continuous modifier (age), we proceeded under the simplifying and common
assumption that the modifier’s distribution is approximately symmetric (µ3 ⇐ 0). The MERLIN
framework could be extended to incorporate a known non-zero µ3 for unbiased point estimation in
settings with skewed modifiers. For discrete binary modifiers where the categories are not balanced
(p ↓= 0.5), our full likelihood derivation (Eq. (5)) explicitly accounts for the non-zero µ3.

S2 Addressing sample overlap in summary statistics

In practice, summary statistics from Genome-Wide Association Studies (GWAS) and Genome-Wide
Interaction Studies (GWIS) may be derived from distinct cohorts that have partially overlapping
participants. This section details the derivation of covariance terms between di!erent sets of summary
statistics due to such sample overlap. We assume the standard conditions for the environmental
modifier E (independent of genotypes G, and mean-centered E[Ei] = 0) hold, which simplifies several
cross-product expectations involving E.

S2.1 Covariance between Exposure GWAS and Exposure GWIS Statistics

from Partially Overlapping Cohorts

Let ω̂(G)
(1) be the exposure GWAS estimates (main G e!ects on X) from cohort 1 (size N1) and ω̂(GI)

(2)

be the exposure GWIS estimates (G↗E e!ects on X) from cohort 2 (size N2), with d12 overlapping

6



individuals. The relevant residuals for exposure X, after accounting for systematic genetic e!ects
(Gω(G)

, GEω(GI)) and the main e!ect of E (Eω
(E)), are ϱx,(c) = U(c)εX + ϑX,(c) for cohort c.

From the general form ω̂ ↔ E[ω̂] = D
→1
W W

↑
ϱx, the terms contributing to the covariance are:

ω̂(G)
(1) ↔ E[ω̂(G)

(1) ] = D
→1
G(1)

G(1)
↑
ϱx,(1),

ω̂(GI)
(2) ↔ E[ω̂(GI)

(2) ] = D
→1
GE(2)

GE(2)
↑
ϱx,(2).

where DG(1)
= diag((G(1))

↑
G(1)) and DGE(2)

= diag((GE(2))
↑
GE(2)). The residuals ϱx,(1) and ϱx,(3)

are from the true underlying model for cohort 1 and 2 respectively (i.e. ϱx,(c) = U(c)εX + ϑX,(c)).

The covariance between ω̂(G)
(1) and ω̂(GI)

(2) (conditional on true e!ects ω, genotypes G, and modifier

E) is:

Cov(ω̂(G)
(1) , ω̂

(GI)
(2) ) = D

→1
G(1)

G(1)
↑Cov(ϱx,(1), ϱx,(2))GE(2)D

→1
G(2)

.

The N1 ↗ N2 matrix Cov(ϱx,(1), ϱx,(2)) describes the covariance of residuals between individuals in
cohort 1 and cohort 2. If an individual i from cohort 1 is the same as individual i↔ from cohort 2
(i.e., they are in the overlap of size d12), then Cov(ϱx,(1), ϱx,(2)) = ς

2
x. If individuals i and i

↔ are
di!erent, this covariance is 0 (assuming independence of residuals across distinct individuals). Thus,
Cov(ϱx,(1), ϱx,(2)) is a matrix that is ς2

xId12 . Therefore, we have

Cov(ω̂(G)
(1) , ω̂

(GI)
(2) ) = ς

2
xD

→1
G(1)

G(o)
↑
GE(o)D

→1
G(2)

= ςxD
→1/2
G(1)

D
→1/2
G(1)

D
1/2
G(o)

D
→1/2
G(o)

G(o)
↑
GE(o)D

→1/2
G(o)

D
1/2
G(o)

D
→1/2
G(2)

D
→1/2
G(2)

ςx

For large N1, N2, and d12, we have D
→1
G(1)

DG(o)
= diag

(
d12
d12

G→
(0),kG(0),k

N1
N1

G→
(1),k

G(1),k

)
p↔≃ diag

(
d12ω

2
Wk

N1ω2
Wk

= d12
N1

)
,

and D
→1/2
G(o)

G(o)
↑
GE(o)D

→1/2
G(o)

p↔≃ 0.

Consequently, the covariance term is approximately zero:

Cov(ω̂(G)
(1) , ω̂

(GI)
(2) ) = 0.

This indicates that exposure GWAS and exposure GWIS summary statistics can be treated as
approximately uncorrelated, even if derived from partially overlapping cohorts, provided G→→ E and
E is mean-centered. If derived from completely nonoverlapping cohorts (d12 = 0), this covariance is
exactly zero.

S2.2 Covariance between Exposure Statistics and Outcome Statistics with

Overlap

Let ω̂(exp) denote an exposure vector (either ω̂(G)
(A) from cohort A using predictors WA = G(A), or ω̂

(GI)
(A)

from cohort A using predictors WA = GE(A).

Let #̂(out) denote an outcome vector (either #̂(G)
(B) from cohort B using predictors WB = G(B), or

#̂(GI)
(B) from cohort B using predictors WB = GE(B).
The general covariance form due to dAB overlapping individuals is:

Cov(ω̂(exp), #̂(out)) = D
→1
WAWA,(o)

↑Cov(ϱx,(o), ϱy,(o))WB,(o)D
→1
WB ,

where Cov(ϱx,(o), ϱy,(o)) = ςxςyφxy is generally non-zero due to shared unmeasured confounders Ui

and the propagation of exposure-specific errors ϑXi into ϱx,(o).

1. Exposure GWAS vs. Outcome GWAS: WA = G(1), WB = G(3),

Cov(ω̂(G)
(1) , #̂

(G)
(3) ) = ςxςyφxyD

→1
G(1)

[
(G(o))

↑
G(o)

]
D

→1
G(3)

= φxyςxD
→1/2
G(1)

D
→1/2
G(1)

D
1/2
G(o)

D
→1/2
G(o)

G(o)
↑
G(o)D

→1/2
G(o)

D
1/2
G(o)

D
→1/2
G(3)

D
→1/2
G(3)

ςy

⇐ φxyd13↘
N1N3

S1RS3.
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2. Exposure GWAS vs. Outcome GWIS: WA = G(1), WB = GE(4), Cov(ω̂
(G)
(1) , #̂

(GI)
(4) ) ⇐ 0.

3. Exposure GWIS vs. Outcome GWAS: WA = GE(2), WB = G(3), Cov(ω̂
(GI)
(2) , #̂(G)

(3) ) ⇐ 0.

4. Exposure GWIS vs. Outcome GWIS: WA = GE(2), WB = GE(4),

Cov(ω̂(GI)
(2) , #̂(GI)

(4) ) = ςxςyφxyD
→1
GE(2)

[
(GE(o))

↑
GE(o)

]
D

→1
GE(4)

= φxyςxD
→1/2
GE(2)

D
→1/2
GE(2)

D
1/2
GE(o)

D
→1/2
GE(o)

GE(o)
↑
GE(o)D

→1/2
GE(o)

D
1/2
GE(o)

D
→1/2
GE(4)

D
→1/2
GE(4)

ςy

⇐ φxyd24↘
N2N4

S2RS4.

S2.3 Covariance between Outcome GWAS and Outcome GWIS Statistics

from Partially Overlapping Cohorts

WA = G(3), WB = GE(4), as shown previously,

Cov(ω̂(GI)
(2) , #̂(GI)

(4) ) = ς
2
yD

→1
G(3)

[
(G(o))

↑
GE(o)

]
D

→1
GE(4)

⇐ 0.

S2.4 Likelihood Function for MERLIN

Based on the derivations outlined in previous sections, we construct the approximate joint variance-
covariance matrix for the full set of four input summary statistic vectors V̂ = (ω̂↑

, #̂↑)↑. Its approx-
imate variance-covariance matrix is a key component of the MERLIN likelihood function and is given
by:

Cov[V ] ⇐





S1RS1 0 φ1S1RS3 0
0 S2RS2 0 φ2S2RS4

φ1S1RS3 0 S3RS3 0
0 φ2S2RS4 0 S4RS4



 .

where φ1 = εxyd13↓
N1N3

and φ2 = εxyd24↓
N2N4

. The two scalars φ1 and φ2 quantify the impact of sample overlap,

and can be estimated using summary statistics among independent variants with no associations to
both exposure and outcome. R is the LD correlation matrix among the M SNPs, typically estimated
from a reference panel.

The MERLIN likelihood function assumes that the vector of observed summary statistics V fol-
lows a multivariate normal distribution, conditional on the true underlying genetic e!ects and causal
parameters:

V̂
A⇒ N (E[V̂ ],Cov[V̂ ]), (7)

where E[V̂ ] is the vector of expected values for the summary statistics derived in previous sections,
which are functions of ω, #, and thus ultimately of the model parameters ϖ

(A), ε(G) and ϖ
(I). This

likelihood is utilized within the Bayesian hierarchical model when all four sets of summary statistics
D = {ω̂(G)

, S1; ω̂
(GI)

, S2; #̂(G)
, S3; #̂(GI)

, S4} are available and sample overlap between exposure and
outcome studies is accounted for through φ1 and φ2.

S2.5 Estimation of correlation parameters accounting for sample overlap

The parameters φ1 and φ2 in MERLIN likelihood’s covariance matrix quantify the correlation between
summary statistics arising from sample overlap. These are estimated empirically using summary
statistics from a set of independent ”null” genetic variants, i.e., SNPs not associated with either the
exposure or the outcome traits involved in the specific covariance term.

To estimate φ1, we consider the joint distribution of z-scores for SNP j using the following truncated
bivariate normal distribution [3]:


ω̂(G)
j /s1j

#̂(G)
j /s3j


| (ω(G)

j = 0,#(G)
j = 0)

A⇒ T N (µ,”,a, b) ,
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where µ = (0, 0)↑, and covariance matrix

” =

[
↼
2
1 φ1↼1↼2

φ1↼1↼2 ↼
2
2

]
.

The truncation points as well as lower and upper truncation points are fixed at a = (↔1.96,↔1.96)↑,
and b = (1.96, 1.96)↑ are used to select SNPs that are not significantly associated with neither the
exposure nor the outcome at a nominal p-value threshold (e.g., P = 0.05). This parameter φ1 is esti-
mated from a set of LD-pruned ”null” SNPs using a Gibbs sampler suitable for truncated multivariate
normal distributions [4]. A similar approach is employed to estimate φ2.

S3 Parameter Estimation and Statistical Inference for MER-

LIN

We model the joint log-likelihood for the observed summary statistics, D, using the approximate
multivariate normal distribution described in the preceding sections. To simplify notation and improve
readability, we set ω(G) = ω1,ω

(GI) = ω3,#
(G) = #1,#(GI) = #3,ϖ

(A) = ϖ1,ϖ
(I) = ϖ4,ε

(G) = ε2. For
a MERLIN model with a balanced binary E and sample overlap, the full log-likelihood function, which
incorporates the assigned prior distributions for the true per-SNP genetic e!ects, is given by:

L(↽|D) = logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
)

+ logN (ω1;0,ς
2
1I) + logN (ε2; 0,ς

2
2I) + logN (ω3;0,ς

2
3I).

(8)

We estimate the model parameters ↽ = (ϖ1,ϖ4) using an e$cient Gibbs sampling algorithm. This
iterative method generates samples whose distribution converges to the target distribution as the
sample size increases.

S3.1 Gibbs sampler for MERLIN with sample overlaps

We present the details on deriving Gibbs sampler for MERLIN.
The full conditional distribution of ω can be written as

log Pr(ω|ω̂, #̂,ϖ1,ε2,ϖ4,ς
2
1 ,ς

2
2 ,ς

2
3 ,ς

2
x,ς

2
y)

⇓ log Pr(#̂, ω̂ | ω,ϖ1,ε2,ϖ4,ς
2
x,ς

2
y) + log Pr(ω | ς2

1 ,ς
2
3)

= logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
)

+ logN (ω1;0,ς
2
1I) + logN (ω3;0,ς

2
3I)
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It follows that the full conditional distribution of ω1j is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
)

+ logN (ω1;0,ς
2
1I) + logN (ω3;0,ς

2
3I)

⇓↔ 1

2(1↔ φ
2
1)
[ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1]

↔ 1

2(1↔ φ
2
1)
[↔2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1]

↔ 1

2(1↔ φ
2
1)
[(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3)]

↔ 1

2(1↔ φ
2
2)
(↔2ω↑

3 S
→1
2 S

→1
2 ω̂3 + 2φ2#

↑
3 S

→1
2 S

→1
4 ω̂3 + ω↑

3 S
→1
2 RS

→1
2 ω3)

↔ 1

2(1↔ φ
2
2)
(2φ2#̂

↑
3 S

→1
2 S

→1
4 ω3 ↔ 2φ2#

↑
3 S

→1
2 RS

→1
4 ω3 ↔ 2#↑

3 S
→1
4 S

→1
4 #̂3 + #↑

3 S
→1
4 RS

→1
4 #3)

↔
ω
2
1j

2ς2
1

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2φ1ϖ1ω

↑
1 S

→1
3 RS

→1
1 ω1 + ϖ

2
1ω

↑
1 S

→1
3 RS

→1
3 ω1)

↔ 1

2(1↔ φ
2
1)
(2φ1ϖ1ω

↑
1 S

→1
3 S

→1
1 ω̂1 ↔ 2ϖ1ω

↑
1 S

→1
3 S

→1
3 #̂1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
(↔2φ1ε

↑
2 S

→1
3 RS

→1
1 ω1 ↔ 2φ1ϖ4ω

↑
3 S

→1
3 RS

→1
1 ω1 + 2ϖ1ω

↑
1 S

→1
3 RS

→1
3 ε2 + 2ϖ1ϖ4ω

↑
1 S

→1
3 RS

→1
3 ω3)

↔ 1

2(1↔ φ
2
2)
(ϖ2

4ω
↑
1 S

→1
4 RS

→1
4 ω1 + 2φ2ϖ4ω

↑
1 S

→1
2 S

→1
4 ω̂3 ↔ 2ϖ4ω

↑
1 S

→1
4 S

→1
4 #̂3)

↔ 1

2(1↔ φ
2
2)
(2ϖ1ϖ4ω

↑
1 S

→1
4 RS

→1
4 ω3 ↔ 2φ2ϖ4ω

↑
1 S

→1
2 RS

→1
4 ω3)↔

ω
2
1j

2ς2
1

=↔ 1

2
[
(S→1

1 RS
→1
1 )jj

(1↔ φ
2
1)

↔ 2φ1ϖ1(S
→1
3 RS

→1
1 )jj

(1↔ φ
2
1)

+
ϖ
2
1(S

→1
3 RS

→1
3 )jj

(1↔ φ
2
1)

+
ϖ
2
4(S

→1
4 RS

→1
4 )jj

(1↔ φ
2
2)

+
1

ς
2
1

]ω2
1j

↔


j↑ ↗=j(S
→1
1 RS

→1
1 )jj↑ω1j↑ω1j

(1↔ φ
2
1)

+
2φ1ϖ1


j↑ ↗=j(S

→1
3 RS

→1
1 )jj↑ω1j↑ω1j

(1↔ φ
2
1)

↔
ϖ
2
1


j↑ ↗=j(S

→1
3 RS

→1
3 )jj↑ω1j↑ω1j

(1↔ φ
2
1)

↔
φ1ϖ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑jω1j

(1↔ φ
2
1)

+
ϖ1


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑jω1j

(1↔ φ
2
1)

+


j↑ ω̂1j↑(S

→1
1 S

→1
1 )j↑jω1j

(1↔ φ
2
1)

↔
φ1


j↑ #̂1j↑(S

→1
1 S

→1
3 )j↑jω1j

(1↔ φ
2
1)

+
φ1


j↑ ϖ2j↑(S

→1
1 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω3j↑(S

→1
1 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

↔
ϖ1


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

↔
ϖ
2
4


j↑ ↗=j(S

→1
4 RS

→1
4 )jj↑ω1j↑ω1j

(1↔ φ
2
2)

↔
φ2ϖ4


j↑ ω̂3j↑(S

→1
2 S

→1
4 )j↑jω1j

(1↔ φ
2
2)

+
ϖ4


j↑ #̂3j↑(S

→1
4 S

→1
4 )j↑jω1j

(1↔ φ
2
2)

↔
ϖ1ϖ4


j↑ ω3j↑(S

→1
4 RS

→1
4 )j↑jω1j

(1↔ φ
2
2)

+
φ2ϖ4


j↑ ω3j↑(S

→1
2 RS

→1
4 )j↑jω1j

(1↔ φ
2
2)

.

Let % denote all the latent variables. The conditional posterior distribution of each ω1j given the
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other parameters in the model is, ω1j | %\ω1j ⇒ N (µ1j ,ς
2
1j), where

↔ 1

2ς2
1j

=↔ 1

2
[
(S→1

1 RS
→1
1 )jj

(1↔ φ
2
1)

↔ 2φ1ϖ1(S
→1
3 RS

→1
1 )jj

(1↔ φ
2
1)

+
ϖ
2
1(S

→1
3 RS

→1
3 )jj

(1↔ φ
2
1)

+
ϖ
2
4(S

→1
4 RS

→1
4 )jj

(1↔ φ
2
2)

+
1

ς
2
1

],

µ1j

ς
2
1j

=↔


j↑ ↗=j(S
→1
1 RS

→1
1 )jj↑ω1j↑

(1↔ φ
2
1)

+
2φ1ϖ1


j↑ ↗=j(S

→1
3 RS

→1
1 )jj↑ω1j↑

(1↔ φ
2
1)

↔
ϖ
2
1


j↑ ↗=j(S

→1
3 RS

→1
3 )jj↑ω1j↑

(1↔ φ
2
1)

↔
φ1ϖ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+
ϖ1


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑j

(1↔ φ
2
1)

+


j↑ ω̂1j↑(S

→1
1 S

→1
1 )j↑j

(1↔ φ
2
1)

↔
φ1


j↑ #̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1


j↑ ϖ2j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω3j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ
2
4


j↑ ↗=j(S

→1
4 RS

→1
4 )jj↑ω1j↑

(1↔ φ
2
2)

↔
φ2ϖ4


j↑ ω̂3j↑(S

→1
2 S

→1
4 )j↑j

(1↔ φ
2
2)

+
ϖ4


j↑ #̂3j↑(S

→1
4 S

→1
4 )j↑j

(1↔ φ
2
2)

↔
ϖ1ϖ4


j↑ ω3j↑(S

→1
4 RS

→1
4 )j↑j

(1↔ φ
2
2)

+
φ2ϖ4


j↑ ω3j↑(S

→1
2 RS

→1
4 )j↑j

(1↔ φ
2
2)

.
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It follows that the full conditional distribution of ω3j is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
)

+ logN (ω1;0,ς
2
1I) + logN (ω3;0,ς

2
3I)

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
[↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1]

↔ 1

2(1↔ φ
2
1)
[(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3)]

↔ 1

2(1↔ φ
2
2)
(↔2ω↑

3 S
→1
2 S

→1
2 ω̂3 + 2φ2#

↑
3 S

→1
2 S

→1
4 ω̂3 + ω↑

3 S
→1
2 RS

→1
2 ω3)

↔ 1

2(1↔ φ
2
2)
(2φ2#̂

↑
3 S

→1
2 S

→1
4 ω3 ↔ 2φ2#

↑
3 S

→1
2 RS

→1
4 ω3 ↔ 2#↑

3 S
→1
4 S

→1
4 #̂3 + #↑

3 S
→1
4 RS

→1
4 #3)↔

ω
2
3j

2ς2
3

⇓↔ 1

2(1↔ φ
2
1)
(ϖ2

4ω
↑
3 S

→1
3 RS

→1
3 ω3)↔

1

2(1↔ φ
2
1)
(2φ1ϖ4ω

↑
3 S

→1
3 S

→1
1 ω̂1 ↔ 2ϖ4ω

↑
3 S

→1
3 S

→1
3 #̂1)

↔ 1

2(1↔ φ
2
1)
(↔2φ1ϖ4ω

↑
3 S

→1
3 RS

→1
1 ω1 + 2ϖ1ϖ4ω

↑
1 S

→1
3 RS

→1
3 ω3 + 2ϖ4ε

↑
2 S

→1
3 RS

→1
3 ω3)

↔ 1

2(1↔ φ
2
2)
(ω↑

3 S
→1
2 RS

→1
2 ω3 ↔ 2φ2ϖ1ω

↑
3 S

→1
2 RS

→1
4 ω3 + ϖ

2
1ω

↑
3 S

→1
4 RS

→1
4 ω3)↔

ω
2
3j

2ς2
3

↔ 1

2(1↔ φ
2
2)
(2φ2ϖ1ω

↑
3 S

→1
2 S

→1
4 ω̂3 ↔ 2ϖ1ω

↑
3 S

→1
4 S

→1
4 #̂3 ↔ 2ω↑

3 S
→1
2 S

→1
2 ω̂3 + 2φ2#̂

↑
3 S

→1
2 S

→1
4 ω3)

↔ 1

2(1↔ φ
2
2)
(↔2φ2ϖ4ω

↑
1 S

→1
2 RS

→1
4 ω3 + 2ϖ1ϖ4ω

↑
1 S

→1
4 RS

→1
4 ω3)

=↔ 1

2
[ϖ2

4
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
(S→1

2 RS
→1
2 )jj

(1↔ φ
2
2)

↔ 2φ2ϖ1(S
→1
2 RS

→1
4 )jj

(1↔ φ
2
2)

+
ϖ
2
1(S

→1
4 RS

→1
4 )jj

(1↔ φ
2
2)

+
1

ς
2
3

]ω2
3j

↔
ϖ
2
4


j↑ ↗=j(S

→1
3 RS

→1
3 )jj↑ω3j↑ω3j

(1↔ φ
2
1)

↔
φ1ϖ4


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑jω3j

(1↔ φ
2
1)

+
ϖ4


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑jω3j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑jω3j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑jω3j

(1↔ φ
2
1)

↔
ϖ4


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑jω3j

(1↔ φ
2
1)

↔


j↑ ↗=j(S
→1
2 RS

→1
2 )jj↑ω3j↑ω3j

(1↔ φ
2
2)

+
2φ2ϖ1


j↑ ↗=j(S

→1
2 RS

→1
4 )jj↑ω3j↑ω3j

(1↔ φ
2
2)

↔
ϖ
2
1


j↑ ↗=j(S

→1
4 RS

→1
4 )jj↑ω3j↑ω3j

(1↔ φ
2
2)

↔
φ2ϖ1


j↑ ω̂3j↑(S

→1
2 S

→1
4 )j↑jω3j

(1↔ φ
2
2)

+
ϖ1


j↑ #̂3j↑(S

→1
4 S

→1
4 )j↑jω3j

(1↔ φ
2
2)

+


j↑ ω̂3j↑(S

→1
2 S

→1
2 )j↑jω3j

(1↔ φ
2
2)

↔
φ2


j↑ #̂3j↑(S

→1
2 S

→1
4 )j↑jω3j

(1↔ φ
2
2)

+
φ2ϖ4


j↑ ω1j↑(S

→1
2 RS

→1
4 )j↑jω3j

(1↔ φ
2
2)

↔
ϖ1ϖ4


j↑ ω1j↑(S

→1
4 RS

→1
4 )j↑jω3j

(1↔ φ
2
2)

.
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The conditional posterior distribution is, ω3j | %\ω3j ⇒ N (µ3j ,ς
2
3j), where

↔ 1

2ς2
3j

=↔ 1

2
[ϖ2

4
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
(S→1

2 RS
→1
2 )jj

(1↔ φ
2
2)

↔ 2φ2ϖ1(S
→1
2 RS

→1
4 )jj

(1↔ φ
2
2)

+
ϖ
2
1(S

→1
4 RS

→1
4 )jj

(1↔ φ
2
2)

+
1

ς
2
3

],

µ3j

ς
2
3j

=↔


j↑ ↗=j(S
→1
3 RS

→1
3 )jj↑ω3j↑

(1↔ φ
2
1)

↔
φ1ϖ4


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+
ϖ4


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ4


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔


j↑ ↗=j(S
→1
2 RS

→1
2 )jj↑ω3j↑

(1↔ φ
2
2)

+
2φ2ϖ1


j↑ ↗=j(S

→1
2 RS

→1
4 )jj↑ω3j↑

(1↔ φ
2
2)

↔
ϖ
2
1


j↑ ↗=j(S

→1
4 RS

→1
4 )jj↑ω3j↑

(1↔ φ
2
2)

↔
φ2ϖ1


j↑ ω̂3j↑(S

→1
2 S

→1
4 )j↑j

(1↔ φ
2
2)

+
ϖ1


j↑ #̂3j↑(S

→1
4 S

→1
4 )j↑j

(1↔ φ
2
2)

+


j↑ ω̂3j↑(S

→1
2 S

→1
2 )j↑j

(1↔ φ
2
2)

↔
φ2


j↑ #̂3j↑(S

→1
2 S

→1
4 )j↑j

(1↔ φ
2
2)

+
φ2ϖ4


j↑ ω1j↑(S

→1
2 RS

→1
4 )j↑j

(1↔ φ
2
2)

↔
ϖ1ϖ4


j↑ ω1j↑(S

→1
4 RS

→1
4 )j↑j

(1↔ φ
2
2)

.

The full conditional distribution of ϖ1 is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
) + log Pr(ϖ1)

⇓↔ 1

2(1↔ φ
2
1)
[ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1]

↔ 1

2(1↔ φ
2
1)
[↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1]

↔ 1

2(1↔ φ
2
1)
[(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3)]

↔ 1

2(1↔ φ
2
2)
(↔2ω↑

3 S
→1
2 S

→1
2 ω̂3 + 2φ2#

↑
3 S

→1
2 S

→1
4 ω̂3 + ω↑

3 S
→1
2 RS

→1
2 ω3)

↔ 1

2(1↔ φ
2
2)
(2φ2#̂

↑
3 S

→1
2 S

→1
4 ω3 ↔ 2φ2#

↑
3 S

→1
2 RS

→1
4 ω3 ↔ 2#↑

3 S
→1
4 S

→1
4 #̂3 + #↑

3 S
→1
4 RS

→1
4 #3)

⇓↔ 1

2
[
ω↑
1 S

→1
3 RS

→1
3 ω1

(1↔ φ
2
1)

+
ω↑
3 S

→1
4 RS

→1
4 ω3

(1↔ φ
2
2)

]ϖ2
1

↔ φ1ω↑
1 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

1 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

ϖ1

↔ ↔φ1ω↑
1 S

→1
3 RS

→1
1 ω1 + ω↑

1 S
→1
3 RS

→1
3 ε2 + ϖ4ω↑

1 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

ϖ1

↔ φ2ω↑
3 S

→1
2 S

→1
4 ω̂3 ↔ ω↑

3 S
→1
4 S

→1
4 #̂3

(1↔ φ
2
2)

ϖ1

↔ ↔φ2ω↑
3 S

→1
2 RS

→1
4 ω3 + ϖ4ω↑

1 S
→1
4 RS

→1
4 ω3

(1↔ φ
2
2)

ϖ1.
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The conditional posterior distribution is, ϖ1 | %\ϖ1 ⇒ N (µb1,ς
2
b1), where

↔ 1

2ς2
b1

=↔ 1

2
[
ω↑
1 S

→1
3 RS

→1
3 ω1

(1↔ φ
2
1)

+
ω↑
3 S

→1
4 RS

→1
4 ω3

(1↔ φ
2
2)

],

µb1

ς
2
b1

=↔ φ1ω↑
1 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

1 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

↔ ↔φ1ω↑
1 S

→1
3 RS

→1
1 ω1 + ω↑

1 S
→1
3 RS

→1
3 ε2 + ϖ4ω↑

1 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

↔ φ2ω↑
3 S

→1
2 S

→1
4 ω̂3 ↔ ω↑

3 S
→1
4 S

→1
4 #̂3

(1↔ φ
2
2)

↔ ↔φ2ω↑
3 S

→1
2 RS

→1
4 ω3 + ϖ4ω↑

1 S
→1
4 RS

→1
4 ω3

(1↔ φ
2
2)

.

The full conditional distribution of ϖ2j is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
) + logN (ε2;0,ς

2
2I)

⇓↔ 1

2(1↔ φ
2
1)
[ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1]

↔ 1

2(1↔ φ
2
1)
[↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1]

↔ 1

2(1↔ φ
2
1)
[(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3)]

↔
ϖ
2
2j

2ς2
2

⇓↔ 1

2(1↔ φ
2
1)
(ε↑

2 S
→1
3 RS

→1
3 ε2)

↔ 1

2(1↔ φ
2
1)
(2φ1ε

↑
2 S

→1
3 S

→1
1 ω̂1 ↔ 2ε↑

2 S
→1
3 S

→1
3 #̂1)

↔ 1

2(1↔ φ
2
1)
(↔2φ1ω

↑
1 S

→1
3 RS

→1
1 ε2 + 2ϖ1ω

↑
1 S

→1
3 RS

→1
3 ε2 + 2ϖ4ε

↑
2 S

→1
3 RS

→1
3 ω3)

↔
ϖ
2
2j

2ς2
2

=↔ 1

2
[
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
2

]ϖ2
2j

↔


j↑ ↗=j(S
→1
3 RS

→1
3 )jj↑ϖ2j↑ϖ2j

(1↔ φ
2
1)

↔
φ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

+


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

+
φ1


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

↔
ϖ1


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

↔
ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

.
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The conditional posterior distribution is, ϖ2j | %\ϖ2j ⇒ N (µb2,ς
2
b2), where

↔ 1

2ς2
b2

=↔ 1

2
(
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
2

),

µb2

ς
2
b2

=↔


j↑ ↗=j(S
→1
3 RS

→1
3 )jj↑ϖ2j↑

(1↔ φ
2
1)

↔
φ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

.

The full conditional distribution of ϖ4 is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
) + log Pr(ϖ1)

⇓↔ 1

2(1↔ φ
2
1)
[ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1]

↔ 1

2(1↔ φ
2
1)
[↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1]

↔ 1

2(1↔ φ
2
1)
[(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3)]

↔ 1

2(1↔ φ
2
2)
(↔2ω↑

3 S
→1
2 S

→1
2 ω̂3 + 2φ2#

↑
3 S

→1
2 S

→1
4 ω̂3 + ω↑

3 S
→1
2 RS

→1
2 ω3)

↔ 1

2(1↔ φ
2
2)
(2φ2#̂

↑
3 S

→1
2 S

→1
4 ω3 ↔ 2φ2#

↑
3 S

→1
2 RS

→1
4 ω3 ↔ 2#↑

3 S
→1
4 S

→1
4 #̂3 + #↑

3 S
→1
4 RS

→1
4 #3)

⇓↔ 1

2
[
ω↑
3 S

→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

+
ω↑
1 S

→1
4 RS

→1
4 ω1

(1↔ φ
2
2)

]ϖ2
4

↔ φ1ω↑
3 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

3 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

ϖ4

↔ ↔φ1ω↑
3 S

→1
3 RS

→1
1 ω1 + ϖ1ω↑

1 S
→1
3 RS

→1
3 ω3 + ε↑

2 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

ϖ4

↔ φ2ω↑
1 S

→1
2 S

→1
4 ω̂3 ↔ ω↑

1 S
→1
4 S

→1
4 #̂3

(1↔ φ
2
2)

ϖ4

↔ ↔φ2ω↑
1 S

→1
2 RS

→1
4 ω3 + ϖ1ω↑

1 S
→1
4 RS

→1
4 ω3

(1↔ φ
2
2)

ϖ4.

The conditional posterior distribution is, ϖ4 | %\ϖ4 ⇒ N (µb4,ς
2
b4), where

↔ 1

2ς2
b4

=↔ 1

2
[
ω↑
3 S

→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

+
ω↑
1 S

→1
4 RS

→1
4 ω1

(1↔ φ
2
2)

],

µb4

ς
2
b4

=↔ φ1ω↑
3 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

3 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

↔ ↔φ1ω↑
3 S

→1
3 RS

→1
1 ω1 + ϖ1ω↑

1 S
→1
3 RS

→1
3 ω3 + ε↑

2 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

↔ φ2ω↑
1 S

→1
2 S

→1
4 ω̂3 ↔ ω↑

1 S
→1
4 S

→1
4 #̂3

(1↔ φ
2
2)

↔ ↔φ2ω↑
1 S

→1
2 RS

→1
4 ω3 + ϖ1ω↑

1 S
→1
4 RS

→1
4 ω3

(1↔ φ
2
2)

.
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The full conditional distribution of ς2
1 is

log Pr(ω|ς2
1 ,ς

2
3) + log Pr(ς2

1)

⇓↔ ω↑
1 ω1

2ς2
1

↔ (a1 + 1) log ς2
1 ↔

b1

ς
2
1

↔ p

2
log ς2

1

⇓↔ ω↑
1 ω1 + 2b1

2ς2
1

↔ (a1 +
p

2
+ 1) log ς2

1 .

So the posterior distribution of ς2
1 is

ς
2
1 | %\ς2

1 ⇒ Inv-Gamma(a1 +
p

2
, b1 +

ω↑
1 ω1

2
)

The full conditional distribution of ς2
3 is

logPr(ω|ς2
1 ,ς

2
3) + log Pr(ς2

3)

⇓↔ ω↑
3 ω3

2ς2
3

↔ (a3 + 1) log ς2
3 ↔

b3

ς
2
3

↔ p

2
log ς2

3

⇓↔ ω↑
3 ω3 + 2b3

2ς2
3

↔ (a3 +
p

2
+ 1) log ς2

3 .

So the posterior distribution of ς2
3 is

ς
2
3 | %\ς2

3 ⇒ Inv-Gamma(a3 +
p

2
, b3 +

ω↑
3 ω3

2
)

Similarly, the posterior distribution of ς2
2 is

ς
2
2 | %\ς2

2 ⇒ Inv-Gamma(a2 +
p

2
, b2 +

ε↑
2 ε2

2
).

S3.2 Gibbs sampler for MERLIN without sample overlap

If there is no sample overlap, the correlation between the exposure and outcome variables due to that
overlap is zero; thus, φ1 = φ2 = 0.

S3.3 Gibbs sampler for MERLIN with an unbalanced binary E

The full log-likelihood function is

L(↽|D) = logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3 + µ3ϖ4S

2
4S

→1
3 RS

→1
3 ω3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
)

+ logN (ω1;0,ς
2
1I) + logN (ε2; 0,ς

2
2I) + logN (ω3;0,ς

2
3I)

(9)

The Gibbs sampler can be derived using a similar approach.

S3.4 Gibbs sampler for MERLIN with a continuous E

The full log-likelihood function is

L(↽|D) = logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 #1 + S

2
3S

→1
4 RS

→1
4 ϖ4ω3

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
)

+ logN (ω1;0,ς
2
1I) + logN (ε2; 0,ς

2
2I) + logN (ω3;0,ς

2
3I)

(10)

The Gibbs sampler can be derived using a similar approach, too.
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S4 Parameter Estimation and Statistical Inference for MER-

LIN(p)

When phenotypic outcome data are di$cult to obtain for a particular GWIS, we provide MER-
LIN(part) algorithms that still require exposure-GWIS data but can be used without outcome-GWIS
data.While yielding unbiased estimates and controlled Type I error for ϖ1 and ϖ4, MERLIN(part) has
less power than full MERLIN (Supplementary Fig. S14, Supplementary Notes as below for model de-
tails). The same as MERLIN, we set ω(G) = ω1,ω

(GI) = ω3,#
(G) = #1,#(GI) = #3,ϖ

(A) = ϖ1,ϖ
(I) =

ϖ4,ε
(G) = ε2.

The distribution of the available summary statistics is




ω̂1

ω̂3

#̂1



 | ω A⇒ N








S1RS

→1
1 ω1

S2RS
→1
2 ω3

S3RS
→1
3 (#1 + ϖ4ω3)



 ,




S1RS1 0 φ1S1RS3

0 S2RS2 0
φ1S1RS3 0 S3RS3







 .

It follows that the full conditional distribution of ω1j is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
) + logN (ω1;0,ς

2
1I) + logN (ω3;0,ς

2
3I)

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
(↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1 + (#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3))

↔
ω
2
1j

2ς2
1

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2φ1ϖ1ω

↑
1 S

→1
3 RS

→1
1 ω1 + ϖ

2
1ω

↑
1 S

→1
3 RS

→1
3 ω1)

↔ 1

2(1↔ φ
2
1)
(2φ1ϖ1ω

↑
1 S

→1
3 S

→1
1 ω̂1 ↔ 2ϖ1ω

↑
1 S

→1
3 S

→1
3 #̂1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
(↔2φ1ε

↑
2 S

→1
3 RS

→1
1 ω1 ↔ 2φ1ϖ4ω

↑
3 S

→1
3 RS

→1
1 ω1 + 2ϖ1ω

↑
1 S

→1
3 RS

→1
3 ε2 + 2ϖ1ϖ4ω

↑
1 S

→1
3 RS

→1
3 ω3)

↔
ω
2
1j

2ς2
1

=↔ 1

2
(
(S→1

1 RS
→1
1 )jj

(1↔ φ
2
1)

↔ 2φ1ϖ1(S
→1
3 RS

→1
1 )jj

(1↔ φ
2
1)

+
ϖ
2
1(S

→1
3 RS

→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
1

)ω2
1j

↔


j↑ ↗=j(S
→1
1 RS

→1
1 )jj↑ω1j↑ω1j

(1↔ φ
2
1)

+
2φ1ϖ1


j↑ ↗=j(S

→1
3 RS

→1
1 )jj↑ω1j↑ω1j

(1↔ φ
2
1)

↔
ϖ
2
1


j↑ ↗=j(S

→1
3 RS

→1
3 )jj↑ω1j↑ω1j

(1↔ φ
2
1)

↔
φ1ϖ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑jω1j

(1↔ φ
2
1)

+
ϖ1


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑jω1j

(1↔ φ
2
1)

+


j↑ ω̂1j↑(S

→1
1 S

→1
1 )j↑jω1j

(1↔ φ
2
1)

↔
φ1


j↑ #̂1j↑(S

→1
1 S

→1
3 )j↑jω1j

(1↔ φ
2
1)

+
φ1


j↑ ϖ2j↑(S

→1
1 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω3j↑(S

→1
1 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

↔
ϖ1


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑jω1j

(1↔ φ
2
1)

.

Let % denote all the latent variables. Obviously, the conditional posterior distribution is ω1j |
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%\ω1j ⇒ N (µ1j ,ς
2
1j), where

↔ 1

2ς2
1j

=↔ 1

2
(
(S→1

1 RS
→1
1 )jj

(1↔ φ
2
1)

↔ 2φ1ϖ1(S
→1
3 RS

→1
1 )jj

(1↔ φ
2
1)

+
ϖ
2
1(S

→1
3 RS

→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
1

),

µ1j

ς
2
1j

=↔


j↑ ↗=j(S
→1
1 RS

→1
1 )jj↑ω1j↑

(1↔ φ
2
1)

+
2φ1ϖ1


j↑ ↗=j(S

→1
3 RS

→1
1 )jj↑ω1j↑

(1↔ φ
2
1)

↔
ϖ
2
1


j↑ ↗=j(S

→1
3 RS

→1
3 )jj↑ω1j↑

(1↔ φ
2
1)

↔
φ1ϖ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+
ϖ1


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑j

(1↔ φ
2
1)

+


j↑ ω̂1j↑(S

→1
1 S

→1
1 )j↑j

(1↔ φ
2
1)

↔
φ1


j↑ #̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1


j↑ ϖ2j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω3j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

.

It follows that the full conditional distribution of ω3j is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
) + logN (ω̂3;S2RS

→1
2 ω3, S2RS2)

+ logN (ω1;0,ς
2
1I) + logN (ω3;0,ς

2
3I)

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
(↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1 + (#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3))

↔ 1

2
((L↑

2 )
→1ω̂3 ↔ U2ω3)

↑((L↑
2 )

→1ω̂3 ↔ U2ω3)↔
ω
2
3j

2ς2
3

⇓↔ 1

2(1↔ φ
2
1)
(ϖ2

4ω
↑
3 S

→1
3 RS

→1
3 ω3)

↔ 1

2(1↔ φ
2
1)
(2φ1ϖ4ω

↑
3 S

→1
3 S

→1
1 ω̂1 ↔ 2ϖ4ω

↑
3 S

→1
3 S

→1
3 #̂1)

↔ 1

2(1↔ φ
2
1)
(↔2φ1ϖ4ω

↑
3 S

→1
3 RS

→1
1 ω1 + 2ϖ1ϖ4ω

↑
1 S

→1
3 RS

→1
3 ω3 + 2ϖ4ε

↑
2 S

→1
3 RS

→1
3 ω3)

↔ 1

2
((L↑

2 )
→1ω̂3 ↔ U2ω3)

↑((L↑
2 )

→1ω̂3 ↔ U2ω3)↔
ω
2
3j

2ς2
3

=↔ 1

2
(ϖ2

4
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
3

+
∑

j↑

(U2)
2
j↑j)ω

2
3j

↔ ϖ
2
4


j↑ ↗=j(S

→1
3 RS

→1
3 )jj↑ω3j↑ω3j

(1↔ φ
2
1)

↔
φ1ϖ4


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑jω3j

(1↔ φ
2
1)

+
ϖ4


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑jω3j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑jω3j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑jω3j

(1↔ φ
2
1)

↔
ϖ4


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑jω3j

(1↔ φ
2
1)

+ (
∑

j↑

ω̃3j↑(U2)j↑j)ω3j ↔
∑

j↑

∑

j↑↑ ↗=j

(U2)j↑j(U2)j↑j↑↑ω3j↑↑ω3j .
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The conditional posterior distribution is ω3j | %\ω3j ⇒ N (µ3j ,ς
2
3j), where

↔ 1

2ς2
3j

=↔ 1

2
(ϖ2

4
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
3

+
∑

j↑

(U2)
2
j↑j),

µ3j

ς
2
3j

=↔


j↑ ↗=j(S
→1
3 RS

→1
3 )jj↑ω3j↑

(1↔ φ
2
1)

↔
φ1ϖ4


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+
ϖ4


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1ϖ4


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1ϖ4


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ4


j↑ ϖ2j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

+ (
∑

j↑

ω̃3j↑(U2)j↑j)↔
∑

j↑

∑

j↑↑ ↗=j

(U2)j↑j(U2)j↑j↑↑ω3j↑↑ .

The full conditional distribution of ϖ1 is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
) + log Pr(ϖ1)

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
(↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1 + (#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3))

⇓↔ 1

2
(
ω↑
1 S

→1
3 RS

→1
3 ω1

(1↔ φ
2
1)

)ϖ2
1

↔ φ1ω↑
1 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

1 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

ϖ1

↔ ↔φ1ω↑
1 S

→1
3 RS

→1
1 ω1 + ω↑

1 S
→1
3 RS

→1
3 ε2 + ϖ4ω↑

1 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

ϖ1.

The conditional posterior distribution is ϖ1 | %\ϖ1 ⇒ N (µb1,ς
2
b1), where

↔ 1

2ς2
b1

=↔ 1

2
(
ω↑
1 S

→1
3 RS

→1
3 ω1

(1↔ φ
2
1)

),

µb1

ς
2
b1

=↔ φ1ω↑
1 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

1 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

↔ ↔φ1ω↑
1 S

→1
3 RS

→1
1 ω1 + ω↑

1 S
→1
3 RS

→1
3 ε2 + ϖ4ω↑

1 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

.
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The full conditional distribution of ϖ2j is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
) + logN (ε2;0,ς

2
2I)

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
(↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1 + (#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3))

↔
ϖ
2
2j

2ς2
2

⇓↔ 1

2(1↔ φ
2
1)
(ε↑

2 S
→1
3 RS

→1
3 ε2)

↔ 1

2(1↔ φ
2
1)
(2φ1ε

↑
2 S

→1
3 S

→1
1 ω̂1 ↔ 2ε↑

2 S
→1
3 S

→1
3 #̂1)

↔ 1

2(1↔ φ
2
1)
(↔2φ1ω

↑
1 S

→1
3 RS

→1
1 ε2 + 2ϖ1ω

↑
1 S

→1
3 RS

→1
3 ε2 + 2ϖ4ε

↑
2 S

→1
3 RS

→1
3 ω3)

↔
ϖ
2
2j

2ς2
2

=↔ 1

2
(
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
2

)ϖ2
2j

↔


j↑ ↗=j(S
→1
3 RS

→1
3 )jj↑ϖ2j↑ϖ2j

(1↔ φ
2
1)

↔
φ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

+


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

+
φ1


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

↔
ϖ1


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

↔
ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑jϖ2j

(1↔ φ
2
1)

.

The conditional posterior distribution is, ϖ2j | %\ϖ2j ⇒ N (µb2,ς
2
b2), where

↔ 1

2ς2
b2

=↔ 1

2
(
(S→1

3 RS
→1
3 )jj

(1↔ φ
2
1)

+
1

ς
2
2

),

µb2

ς
2
b2

=↔


j↑ ↗=j(S
→1
3 RS

→1
3 )jj↑ϖ2j↑

(1↔ φ
2
1)

↔
φ1


j↑ ω̂1j↑(S

→1
1 S

→1
3 )j↑j

(1↔ φ
2
1)

+


j↑ #̂1j↑(S

→1
3 S

→1
3 )j↑j

(1↔ φ
2
1)

+
φ1


j↑ ω1j↑(S

→1
1 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ1


j↑ ω1j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

↔
ϖ4


j↑ ω3j↑(S

→1
3 RS

→1
3 )j↑j

(1↔ φ
2
1)

.
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The full conditional distribution of ϖ4 is

logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 (#1 + ϖ4ω3)

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
) + log Pr(ϖ4)

⇓↔ 1

2(1↔ φ
2
1)
(ω↑

1 S
→1
1 RS

→1
1 ω1 ↔ 2ω↑

1 S
→1
1 S

→1
1 ω̂1 + 2φ1(#

↑
1 + ϖ4ω

↑
3 )S

→1
3 S

→1
1 ω̂1 + 2φ1#̂

↑
1 S

→1
3 S

→1
1 ω1)

↔ 1

2(1↔ φ
2
1)
(↔2φ(#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
1 ω1 ↔ 2(#↑

1 + ϖ4ω
↑
3 )S

→1
3 S

→1
3 #̂1 + (#↑

1 + ϖ4ω
↑
3 )S

→1
3 RS

→1
3 (#1 + ϖ4ω3))

⇓↔ 1

2
(
ω↑
3 S

→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

)ϖ2
4

↔ φ1ω↑
3 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

3 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

ϖ4

↔ ↔φ1ω↑
3 S

→1
3 RS

→1
1 ω1 + ϖ1ω↑

1 S
→1
3 RS

→1
3 ω3 + ε↑

2 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

ϖ4.

The conditional posterior distribution is, ϖ4 | %\ϖ4 ⇒ N (µb4,ς
2
b4), where

↔ 1

2ς2
b4

=↔ 1

2
(
ω↑
3 S

→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

),

µb4

ς
2
b4

=↔ φ1ω↑
3 S

→1
3 S

→1
1 ω̂1 ↔ ω↑

3 S
→1
3 S

→1
3 #̂1

(1↔ φ
2
1)

↔ ↔φ1ω↑
3 S

→1
3 RS

→1
1 ω1 + ϖ1ω↑

1 S
→1
3 RS

→1
3 ω3 + ε↑

2 S
→1
3 RS

→1
3 ω3

(1↔ φ
2
1)

.

The posterior distribution of ς2
1 ,ς

2
2 ,ς

2
3 is the same as MERLIN above.

S5 Modeling direct SNP×E e!ects in the outcome

We extend the outcome model to incorporate direct SNP×E e!ects:

Yi = Xiϖ
(A) +

∑

j

Gijϖ
(G)
j +

∑

j

GijEiϖ
(GI)
j + Eiϖ

(E) +XiEiϖ
(I) + UiεY + ϑYi ,

where ϖ
(GI)
j represents the horizontal pleiotropic interaction e!ect. Consequently, the total SNP×E

e!ect on Y (i.e., the parameter estimated by an outcome GWIS), denoted as #3↘, is given by:

#3↘ = ϖ
(A)ω(GI) + ϖ

(I)ω(G) + ε(GI)
.

Under this specification, the likelihood (8) of the observed data can be written as follows:

L(↽|D) = logN (

(
ω̂1

#̂1

)
;

(
S1RS

→1
1 ω1

S3RS
→1
3 #1 + S

2
3S

→1
4 RS

→1
4 ϖ4ω3

)
,

(
S1RS1 φ1S1RS3

φ1S1RS3 S3RS3

)
)

+ logN (

(
ω̂3

#̂3

)
;

(
S2RS

→1
2 ω3

S4RS
→1
4 #3↘

)
,

(
S2RS2 φ2S2RS4

φ2S2RS4 S4RS4

)
)

+ logN (ω1;0,ς
2
1I) + logN (ε2; 0,ς

2
2I) + logN (ω3;0,ς

2
3I) + logN (ε(GI); 0,ς2

4I).

(11)

Analogous to ω1,ε2, and ω3, we assume ε(GI) follows a normal prior with mean 0 and variance ς
2
4I.

These derivations extend naturally to scenarios involving sample overlap or continuous environmental
variables.
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S6 MERLIN for binary traits

Here, we show that the MERLIN framework is applicable to binary traits in case–control studies.
Following Hu et al. (2022)[5], we detail the scenarios that involve either a binary exposure or a binary
outcome.

We begin with the linear structural full model for the continuous exposure xi and outcome yi for
individual i:

xi = ϖ0,x +C↑
i ϖcov,x +

∑

j

Gijω
(G)
j +

∑

j

GijEiω
(GI)
j + Eiω

(E)
,+Uiεx + ϑxi , (12)

yi = ϖ0,y +C↑
i ϖcov,y + xiϖ

(A) +
∑

j

Gijϖ
(G)
j + Eiϖ

(E) + xiEiϖ
(I) + Uiεy + ϑyi , (13)

where ϖ0,x and ϖ0,y denote the intercept, Ci represents the covariate vector with corresponding e!ects
ϖcov,x and ϖcov,y. Gi denotes a centered genotype, Ei is the centered environmental variable, Ui is
the unmeasured confounder common to both x and y, and is assumed to be independent of Gi and
Ei, ω(G) is the average e!ect of SNPs on exposure x, ω(E) is the average e!ect of environment E
on exposure x, ω(GI) is the GE interaction e!ect of SNPs on exposure x, ϖ(A) is the average causal
interaction e!ect of x on y, ϖ(G) is the horizontal pleiotropic e!ect of SNPs on outcome y, ϖ(E) is
the average e!ect of modifier E on outcome y, ϖ(I) is the causal interaction e!ect of x ↗ E on y,
representing how the e!ect of x on y is modified by E, εx and εy are the e!ects of Ui on x and y,
respectively, ϑx and ϑy are independent random errors and are assumed independent of other terms in
their respective equations.

Case 1: a continuous exposure (x) and a binary outcome (y).
For binary outcome traits y, we assume the following probit model and insert (12) into it [6]:

p(yi = 1 | Gij , Ei,Ci) (14)

=&(ϖb
0,y +C↑

i ϖ
b
cov,y + xiϖ

(A),b +
∑

j

Gijϖ
(G),b
j + Eiϖ

(E),b + xiEiϖ
(I),b + Uiε

b
y + ϑyi) (15)

=&(ϖb
0 +C↑

i ϖ
b
cov +

∑

j

Gij(ϖ
(A),b

ω
(G)
j + ϖ

(G),b
j )

+
∑

j

GijEi(ϖ
(A),b

ω
(GI)
j + ϖ

(I),b
ω
(G)
j ) +

∑

j

GijE
2
i ϖ

b
GE2 + Eiϖ

b
E + E

2
i ϖ

b
E2 + ϱyi), (16)

=&(ϖb
0 +C↑

i ϖ
b
cov +

∑

j

Gij#
(G),b
j +

∑

j

GijEi#
(GI),b
j +

∑

j

GijE
2
i ϖ

b
GE2 + Eiϖ

b
E + E

2
i ϖ

b
E2 + ϱyi), (17)

where &() is the cumulative distribution function of the standard normal distribution. In equation
(15), represents the probit model for phenotype y. Each term in &() has a meaning similar to that
in Equation (13), but the superscript ‘b’ denotes that these are the true causal and genetic e!ects on
the liability scale. Substituting xi into (15) yields equation (16), which simplifies to equation (17),
where ϖ

b
0 = ϖ

b
0,y + ϖ

(A),b
ϖ0,x, and ϖ

b
cov = ϖ

b
cov,y + ϖ

(A),b
ϖcov,x. The parameters ϖ

b
GE2 ,ϖ

b
E ,ϖ

b
E2 are

the e!ect sizes of the corresponding variables. It is noteworthy that the parameters ϖ
(E),b and ϖ

b
E

capture conceptually di!erent e!ects. The parameter ϖ(E),b quantifies the direct association between
the environment variable E and the outcome y in the structural model for y, whereas ϖb

E represents the
resulting coe$cient of E in the outcome model after substituting the structural equation of x into that
of y and algebraically simplifying the expression. The error term ϱyi = EiUiεxϖ

(I)+Ui(εxϖ(A)+εy)+

ϑxϖ
(A)+Eiϑxϖ

(I)+ϑy. For clarity, let #
(G),b
j = ϖ

(A),b
ω
(G)
j +ϖ

(G),b
j , and #(GI),b

j = ϖ
(A),b

ω
(GI)
j +ϖ

(I),b
ω
(G)
j .

Applying the known results in [6, 7], we have a linear approximation of p(yi = 1 | Gij , Ei) as

p(yi = 1 | Gi, Ei) ⇐k +
k(1↔ k)⇀(ϖb

0)

K(1↔K)
(C↑

i ϖ
b
cov +

∑

j

Gij#
(G),b
j +

∑

j

GijEi#
(GI),b
j

+
∑

j

GijE
2
i ϖ

b
GE2 + Eiϖ

b
E + E

2
i ϖ

b
E2 + ϱyi),

where k and K represent the proportions of the cases in the ascertained case-control sample and the

population, respectively. This implies that the e!ect sizes estimated by the linear model, #(G)
j and
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#(GI)
j , can be transformed into the liability scale by

#(G),b
j =

K(1↔K)

k(1↔ k)⇀(ϖb
0)
#(G)
j and #(GI),b

j =
K(1↔K)

k(1↔ k)⇀(ϖb
0)
#(GI)
j .

Consequently, we have

ϖ
(A),b =

K(1↔K)

k(1↔ k)⇀(ϖb
0)
ϖ
(A) and ϖ

(I),b =
K(1↔K)

k(1↔ k)⇀(ϖb
0)
ϖ
(I)

.

This direct proportionality means that a hypothesis test for the null e!ect on the observed scale
(e.g. H0 : ϖ(I) = 0) is equivalent to a test for the null e!ect on the liability scale (H0 : ϖ(I),b = 0).
Therefore, the significance tests for the main and heterogeneity e!ects produced by MERLIN can be
directly interpreted as tests for the existence of these causal e!ects on the underlying liability to the
phenotype.

Case 2: a binary exposure and a continuous outcome.
For a binary exposure x, we again consider the following probit model:

p(xi = 1 | Gij , Ei) = &(ϖb
0,x +C↑

i ϖ
b
cov,x +

∑

j

Gijω
(G),b
j +

∑

j

GijEiω
(GI),b
j + Eiω

(E),b + Uiε
b
x + ϑxi),

where each term in &() corresponds to the same interpretation as the phenotype xi described in
equation (12), but add the superscript ‘b’ to indicate that these are the true causal and genetic e!ects
on the liability scale.

With the above preparation, we can apply the known results in [6, 7] to obtain an approximation
of p(xi = 1 | Gij , Ei) as

p(xi = 1 | Gij , Ei) ⇐ k +
k(1↔ k)⇀(ϖb

0)

K(1↔K)
(C↑

i ϖ
b
cov,x +

∑

j

Gijω
(G),b
j +

∑

j

GijEiω
(GI),b
j + Eiω

(E),b + ϱxi),

(18)

where k and K represent the proportions of the cases in the ascertained case-control sample and the

population, respectively. ϱxi = Uiε
b
x + ϑxi . Equation (18) implies that the estimates of ω(G)

j and ω
(GI)
j

using a linear model can be transformed into the liability scale by

ω
(G),b
j =

K(1↔K)

k(1↔ k)⇀(ϖb
0)
ω
(G)
j and ω

(GI),b
j =

K(1↔K)

k(1↔ k)⇀(ϖb
0)
ω
(GI)
j .

Plugging (18) into a continuous y (13), we have

yi ⇐ ϖ0 +C↑
i ϖcov +

∑

j

Gij#
(G),b
j +

∑

j

GijEi#
(GI),b
j +

∑

j

GijE
2
i ϖGE2 + EiϖE + E

2
i ϖE2 + ϱyi ,

where ϖ0 = ϖ0,y + k, ϖcov = ϖcov,y + k(1→k)ϑ(ϖ0)
K(1→K) ϖ

(A)
ϖcov,x, #(G),b

j = ϖ
(A)

ω
(G),b
j + ϖ

(G)
j , #(GI),b

j =

ϖ
(A)

ω
(GI),b
j + ϖ

(I)
ω
(G),b
j , ϱyi = k(1→k)ϑ(ϖb

0)
K(1→K) ⇔ Eiϖ

(I)
ϱxi +

k(1→k)ϑ(ϖb
0)

K(1→K) ⇔ ϖ
(A)

ϱxi + Uiεy + ϑy.The other

parameters carry meanings analogous to those in (13).
Case 3: a binary exposure and a binary outcome.
Similarly, for binary exposure x and outcome y, we consider the probit model as follows:

p(xi = 1 | Gij , Ei) = &(ϖb
0,x +C↑

i ϖ
b
cov,x +

∑

j

Gijω
(G),b
j +

∑

j

GijEiω
(GI),b
j + Eiω

(E),b + ϱxi)

⇐ kx +
kx(1↔ kx)⇀(ϖb

0)

Kx(1↔Kx)
(C↑

i ϖ
b
cov,x +

∑

j

Gijω
(G),b
j +

∑

j

GijEiω
(GI),b
j + Eiω

(E),b + ϱxi),

(19)

p(yi = 1 | Gi, Ei) = &(ϖb
0,y +C↑

i ϖ
b
cov,y + xiϖ

(A),b +
∑

j

Gijϖ
(G),b
j + Eiϖ

(E),b + xiEiϖ
(I),b + Uiε

b
y + ϑyi),

(20)
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Equations (19) and Equations (18), Equations (20) and Equations (15) are mathematically equiv-
alent, respectively. However, to distinguish the notation, we represent k as kx and ky, respectively.
Plugging (19) into (20), we obtain the following.

p(yi = 1 | Gi, Ei) = &(ϖb
0 +C↑

i ϖ
b
cov +

∑

j

Gij#
(G),b
j +

∑

j

GijEi#
(GI),b
j

+
∑

j

GijE
2
i ϖ

b
GE2 + Eiϖ

b
E + E

2
i ϖ

b
E2 + ϱyi),
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E2 are the coe$cients of the

variables that correspond to each other. ϱyi =
kx(1→kx)ϑ(ϖ

b
0)
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⇔ Eiϖ

(I),b
ϱxi +
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ϱxi +
Uiεy + ϑy. A similar approach to the previous one, we can obtain

#(G),b
j =

Ky(1↔Ky)

ky(1↔ ky)⇀(ϖb
0)
#(G)
j and #(GI),b

j =
Ky(1↔Ky)

ky(1↔ ky)⇀(ϖb
0)
#(GI)
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(I)

.

Based on the derivation above, the causal e!ect estimated using linear models remains meaningful
and interpretable in all three scenarios.

S7 Evaluating bias in standard MR average e!ect estimates

under real-data heterogeneity

Our primary simulations (Results Section 2.2) demonstrate that standard MR methods can produce
biased estimates of the average causal e!ect in the presence of causal heterogeneity (ϖ4 ↓= 0). To
demonstrate this phenomenon in a real-world context, we examined the SCZ≃IDP.0664 assocation,
which our main analysis identified as having a significant sex-specific e!ects.

A challenge in real data is that the true average e!ect (ϖ1) is unknown. We therefore derived a more
robust proxy for the true average e!ect by first performing sex-stratified MR analyses to obtain male-
specific (ϖ̂M) and female-specific (ϖ̂F) causal estimates, and then averaging them: ϖ̂1 = 0.5(ϖ̂M + ϖ̂F).
This approach is expected to be less biased than a naive combined-sex analysis because it explicitly
accounts for the identified heterogeneity.

We then compared the estimates from standard MR (applied directly to combined-sex summary
statistics) with this sex-stratified combined estimate (Supplementary Fig. S15a). Across all four
comparator methods (IVW, MR-Egger, RAPS, MR-LDP), the standard MR estimates (green lines)
were systematically di!erent from the corresponding sex-stratified combined estimates (blue lines).

To verify that this observed divergence represents bias in the standard MR approach, we conducted
a targeted simulation study using parameters informed by the real-data analysis (setting the true ϖ1

and ϖ4 to the values obtained from MERLIN). The results (Supplementary Fig. S15b) confirm this
hypothesis. The boxplots for the standard MR methods are clearly biased (shifted away from the true
value indicated by the dashed line), while the boxplots for the sex-stratified combined MR approach
are closer to the true average e!ect.

This real-data example, supported by targeted simulation, therefore provides strong evidence that
applying standard MR methods to combined data in the presence of significant sex heterogeneity can
lead to biased estimation of the average e!ect. This highlights the critical importance of using methods
that can appropriately model such heterogeneity e!ects.

S8 Supplementary Discussion: Biological Context of Causal

Findings in Section 2.6

Here, we provide a more detailed interpretation of our significant MR findings, connecting them with
existing neurobiological literature.
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S8.1 Causal E!ect of Cerebellar Volume on Schizophrenia Risk

Our forward MR finding, indicating that increased volume of the left cerebellar cortex (IDP.0194)
elevates SCZ risk, aligns with the cerebellum’s recognized role in cognitive and emotional processes
disrupted in SCZ. This involvement is highlighted by functional neuroimaging studies [8, 9] and concep-
tualized within frameworks such as cognitive dysmetria, which implicates cortico-cerebellar-thalamo-
cortical (CCTC) circuits in the pathophysiology of the disorder [10]. While reports on cerebellar volume
changes in SCZ have been varied across studies, with some finding decreases and others increases or
no change, our specific causal finding points to a potentially pathogenic role for volumetric increases
in this specific cerebellar subregion, warranting further investigation into circuit-level disruptions.

S8.2 Causal E!ects of Schizophrenia Liability on Brain Structure

Conversely, our analyses show that SCZ liability exerts causal e!ects on multiple sensorimotor do-
mains. The finding of reduced cortical surface area in the left paracentral lobule (IDP.0664) aligns
with evidence suggesting early neurodevelopmental deficits in somatomotor integration in individuals
with SCZ [11]. Furthermore, we observed microstructural alterations in the cerebral peduncles, marked
by a decreased orientation dispersion index (IDP.1991, IDP.1992) and an elevated mode of anisotropy
(IDP.1541, right). The cerebral peduncles contain major corticofugal tracts (e.g., corticospinal, corti-
cobulbar). These findings likely reflect white matter reorganization within these pathways, consistent
with di!usion tensor imaging studies reporting widespread white matter alterations in both first-
episode [12] and treatment-resistant [13] SCZ, which may also involve hemispheric asymmetries [14].
Such di!usion metric alterations may point towards progressive axonal changes (e.g., changes in density
or myelination) and could underlie both motor coordination deficits (via disrupted e!erent signaling)
and cognitive disorganization (via impaired cortico–subcortical communication) [12, 14].

S8.3 Sex-Specific Causal E!ects of Schizophrenia Liability

Our most striking findings were the significant sex di!erences in the causal e!ects of SCZ on the
surface area of the left paracentral lobule (IDP.0664) and the volume of the left nucleus accumbens
(IDP.0015). These sex-specific patterns are highly plausible given the extensive literature documenting
sex di!erences in brain structure, cognition, and clinical presentation in SCZ [15]. Our results suggest
that schizophrenia may exert more detrimental e!ects on neural circuits relevant to cognition and
behavior in males. The paracentral lobule is critical for sensorimotor function, and its alteration
may relate to motor abnormalities often seen in SCZ. The nucleus accumbens is a core component
of the brain’s reward system, and its dysfunction is linked to negative symptoms and motivational
deficits. The more pronounced volume reduction in males could contribute to observed sex di!erences
in these clinical features or associated cognitive impairments [16]. This provides a potential causal
neurobiological underpinning for why males often experience an earlier onset and more severe course
of illness.
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Figure S1. Simulation performance of MERLIN and standard MR methods for estimating 
the average causal effect (!(")). Simulation assumed a true average and interaction effect 
"($) = "(%) = 0.3 and were based on 500 replicates. Standard MR methods included MR-LDP, 
RAPS, IVW, and MR-Egger. Boxplots of average effect estimates ("($)) are shown across 
varying proportions of exposure variance explained by G×E effects (ℎ&("#)' = 	0.1, 0.15, 0.3) and 
varying correlations between GWAS and GWIS instrument effects (-$(%; x-axis within each plot: 
0, 0.4, 0.8), with horizontal pleiotropy (ℎ)(")' = 0, 0.05, 0.1). Dashed red lines indicate the true "($) 
values. 
  

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

-0.25
0.00
0.25
0.50
0.75

-0.25
0.00
0.25
0.50
0.75

-0.25
0.00
0.25
0.50
0.75

h! (")
2

=
0

h! (")
2

=
0.05

h! (")
2

=
0.1

h#("$)2 = 0.1 h#("$)2 = 0.15 h#("$)2 = 0.3

!!−#

"(!)

MERLIN MR-LDP RAPS IVW MR-Egger

a



 

Figure S2. Simulation performance of MERLIN and standard MR methods for estimating 
the average causal effect (!(")). All simulations assumed a true interaction effect "(%) = 0 
and were based on 500 replicates. Standard MR methods included MR-LDP, RAPS, IVW, and 
MR-Egger. (a) Boxplots of average effect estimates ("($)) from MERLIN and standard MR 
methods. Performance is shown across varying proportions of exposure variance explained by 
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G×E effects ℎ&("#)' = 	0.1, 0.15, 0.3 ) and varying correlations between GWAS and GWIS 
instrument effects (-($(%); x-axis within each plot: 0, 0.4, 0.8). Scenarios are presented for true 
"($) = 0 with horizontal pleiotropy (ℎ)(")' = 0, 0.05, 0.1). Dashed red lines indicate the true "($) 
values. (b) Type I error rates for testing "($) = 0, corresponding to the simulation conditions in 
panel (a). The dashed red line indicates the nominal 0.05 significance level. (c, d) Statistical 
power to detect "($) ≠ 0 as a function of the true "($) magnitude, assuming -$(% = 0, with 
ℎ)(")' = 0  and 0.1, respectively. The plot also shows type I error at "($) = 0 . Solid lines 
represent performance for all methods with ℎ&("#)' = 0.1 . Dashed lines illustrate MERLIN’s 
performance with stronger G×E signals for exposure ℎ&("#)' = 0.15, 0.3. 

  



 

Figure S3. Simulation performance of MERLIN and standard MR methods for estimating 
the average causal effect (!(")). Simulation assumed a true average and interaction effect 
"($) = 0.3, 		"(%) = 0 and were based on 500 replicates. Standard MR methods included MR-
LDP, RAPS, IVW, and MR-Egger. Boxplots of average effect estimates ("($)) are shown across 
varying proportions of exposure variance explained by G×E effects (ℎ&("#)' = 	0.1, 0.15, 0.3) and 
varying correlations between GWAS and GWIS instrument effects (-$(%; x-axis within each plot: 
0, 0.4, 0.8) with horizontal pleiotropy (ℎ)(")' = 0, 0.05, 0.1). Dashed red lines indicate the true "($) 
values. 
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Figure S4. MERLIN accurately estimates interaction effects (!(*) ) and demonstrates 
superior statistical power in simulations. All simulations assumed a true average effect 
"($) = 0.3	and were based on 500 replicates. (a) Performance is shown across varying G×E 
signal strengths for exposure (ℎ&("#)' ; columns), correlations between GWAS and GWIS 
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instrument effects (-$(%; x-axis of boxplots), and levels of horizontal pleiotropy (ℎ)(")'	 ; rows). 
Dashed red lines indicate the true "(%) = 0. Box plots show the unbiasedness of interaction 
effect estimates ("(%)) from MERLIN and sex-stratified standard MR methods when the true 
"(%) = 0. (b) Power comparison among MERLIN and sex-stratified standard MR methods in the 
detection of "(%) ≠ 0 for a discrete modifier in scenarios with no GWAS–GWIS correlation 
(-$(% = 0) for varying horizontal pleiotropy (ℎ)(")'	 ) and G×E signal strengths (ℎ&("#)' ). All methods 
control type I error (at true "(%) = 0). (c) Power comparison as in (b) but in the presence of 
GWAS–GWIS correlation (-$(% = 0.4). MERLIN shows a power advantage. (d) Box plots show 
the unbiasedness of "(%) (true "(%) = 0) for a continuous modifier across conditions analogous 
to those in panel (a). (e) Statistical power of MERLIN in the detection of "(%) ≠ 0  for a 
continuous modifier. Power increases with true "(%) magnitude and G×E signal strength (ℎ&("#)' ), 

with type I error controlled, across various -$(% values (shown for ℎ)(")'	 = 0).  

  



 

Figure S5. MERLIN accurately estimates interaction effects (!(*) ) in simulations. All 
simulations assumed a true interaction effect "(%) = 0.3	and were based on 500 replicates. (a) 
Box plots show unbiasedness of interaction effect estimates ("(%)) from MERLIN and sex-
stratified standard MR methods when the true "($) = 0.3 for a discrete modifier. (b) Box plots 
show unbiasedness of interaction effect estimates ("(%) ) from MERLIN and sex-stratified 
standard MR methods when the true "($) = 0 for a discrete modifier. Dashed red lines in both 
(a) and (b) indicate the true "(%) = 0.3. In both (a) and (b), performance is shown across varying 
G×E signal strengths for exposure (ℎ&("#)' ; columns), correlations between GWAS and GWIS 

instrument effects (-$(%; x-axis of boxplots), and levels of horizontal pleiotropy (ℎ)(")'	 ; rows). 
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Figure S6. MERLIN demonstrates superior statistical power in simulations. (a) 
Simulations assumed a true average effect "($) = 0	and were based on 500 replicates. Power 
comparison between MERLIN and sex-stratified standard MR methods in detecting "(%) ≠ 0 
for a discrete modifier in scenarios with no GWAS–GWIS correlation (-$(% = 0.8) for varying 
horizontal pleiotropy (ℎ)(")'	 ) and G×E signal strengths (ℎ&("#)' ). Both methods control type I error 
(at true "(%) = 0). (b) Power comparison as in (a) but with "($) = 0.3	 and in the presence of 
GWAS–GWIS correlation (-$(% = 0.8). MERLIN shows a power advantage.  
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Figure S7. Simulation performance of MERLIN and standard MR methods for estimating 
the average causal effect (!(") ) and the interaction effect (!(*) ) when the sample is 
imbalanced (the number of male samples is three times that of female samples). (a) Box 
plots show the average effect estimates ("($)) from MERLIN and standard MR methods when 
"(%) = 0. Performance is shown across varying proportions of exposure variance explained by 
G × E effects ( ℎ&("#)' = 	0.1, 0.15, 0.3 ) and fixed correlations between GWAS and GWIS 
instrument effects ( -$(% = 0 ). Scenarios are presented for true "($) = 0  with horizontal 
pleiotropy (ℎ)(")' = 0). Dashed red lines indicate the true "($) values. (b) Statistical power to 
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detect "($) ≠ 0 as a function of the true "($) magnitude, while varying ℎ&("#)' = 0.1, 	0.15, 	0.3, 
assuming -$(% = 0 , and with ℎ)(")' = 0 . The plot also shows type I error at "($) = 0 . (c) 
Boxplots of the interaction effect estimates ("(%)) from MERLIN and sex-stratified standard MR 
methods when "($) = 0. The other settings are the same as in (a). (d) Power of the interaction 
effect estimates ("(%)) from MERLIN and sex-stratified standard MR methods when "($) = 0. 
The other settings are the same as in (b) 
  



 

Figure S8. Simulation performance of MERLIN and standard MR methods for estimating 
the average causal effect (!(")) in sample overlaps. In all simulations, sample overlaps for 
males and females are each 20,000. (a) The QQ-plot of "($)  obtained by MERLIN and 
standard MR methods when "($) = 0 in scenarios with no GWAS–GWIS correlation (-$(% = 0) 
for varying interaction effect ("(%)) and G×E signal strengths (ℎ&("#)' ) (b) Estimates of "($) 
comparison as in (a) but the true "($) = 0.3. MERLIN shows precise estimates. (c) The power 
of "($) comparison as in (a), obtained by MERLIN and standard MR methods. 
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Figure S9. MERLIN accurately estimates interaction effects (!(*) ) and demonstrates 
superior statistical power in simulations when sample-overlaps for males and females 
are each 20,000. All simulations assumed a true average effect "($) = 0.3	 and were based 
on 500 replicates. (a) Boxplots showing unbiasedness of interaction effect estimates ("(%)) from 
MERLIN and sex-stratified standard MR methods when the true "(%) = 0 for a discrete modifier. 
Performance is shown across varying G×E signal strengths for exposure (ℎ&("#)' ; columns) with 

no GWAS–GWIS correlation (-$(% = 0) and fixed levels of horizontal pleiotropy (ℎ)(")'	 = 0; rows). 
Dashed red lines indicate the true "(%) = 0. (b) Power comparison between MERLIN and sex-
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stratified standard MR methods in detecting "(%) ≠ 0 for a discrete modifier in scenarios with 
no GWAS–GWIS correlation (-$(% = 0) for fixed horizontal pleiotropy (ℎ)(")'	 = 0) and G×E 
signal strengths (ℎ&("#)' ). All methods control type I error (at true "(%) = 0). (c) Boxplots showing 
that MERLIN provides unbiased "(%) estimates (true "(%) = 0) for a continuous modifier across 
conditions analogous to those in panel (a). (d) Statistical power of MERLIN to detect "(%) ≠ 0 
for a continuous modifier. Power increases with true "(%) magnitude and G×E signal strength 
(ℎ&("#)' ), with type I error controlled, across fixed -$(% = 0 values (shown for ℎ)(")'	 = 0).  
  



 

Figure S10. Sensitivity and sex-stratified analyses of MERLIN evaluated under negative 
and positive control scenarios. (a) Sensitivity analyses of MERLIN estimates across different 
IV selection thresholds for negative control. Across varying GWAS P value thresholds (5 × 10(+, 
1 × 10(, , 5 × 10(, ), GWIS P value thresholds (5 × 10(- , 1 × 10(. , 5 × 10(. ), and LD 
clumping 1² thresholds	(0.01, 0.1, 0.3), the estimates of "($) consistently covered 1 and those 
of "(%) consistently covered 0, as expected under the negative control setting. (b) Positive 



control analysis evaluating MERLIN’s ability to detect known heterogeneity in the causal effect 
of body mass index (BMI) on testosterone level. MERLIN treats sex as a modifier, directly 
estimating the average effect ("5($) = 	 − 0.0512,8 = 0.0083) and the sex-heterogeneity effect 
("5(%) = 	 − 0.1379, 8 = 2.62 × 10(./ ). Comparator methods provide overall average effects 
(column “Average”) and sex-stratified estimates (columns “Male”, “Female”). The MERLIN-
derived sex-specific effects are consistent with these stratified results and published reports, 
demonstrating successful detection of the significant moderation by sex. All data are presented 
as effect estimates (P value) with 95% CIs. (c) Sensitivity analyses of MERLIN estimates across 
different IV selection thresholds for the positive control. Across varying GWAS P value 
thresholds (5 × 10(+ , 1 × 10(, , 5 × 10(, ), GWIS P value thresholds (5 × 10(- , 1 × 10(. , 
5 × 10(. ), and LD clumping 1²  thresholds (0.01, 0.1, 0.3) , the estimates of "(%)  remained 
consistent and systematically deviated from the null, demonstrating significant sex-related 
heterogeneity. The estimates of "($) were also relatively stable within the same r² threshold 
and became increasingly significant as the selection cutoffs grew more stringent (i.e., as the 
number of IVs decreased).  
  



 

Figure S11. Genetic correlation, bidirectional MR testing, and MERLIN-based effect 
estimation between schizophrenia (SCZ) and brain imaging–derived phenotypes (IDPs). 
(a) Tissue and measurement distribution of brain IDPs after genetic correlation analyses. (b) 
Quantile–quantile plot of P values from the bidirectional Mendelian randomization analysis 
between SCZ and 49 brain IDPs. Average effects were estimated using IVW, MR-Egger, RAPS, 
MR-LDP, and MERLIN, whereas the heterogeneity effect could be estimated solely via MERLIN. 
IVW and MR-Egger were underpowered, whereas MERLIN provided more reliable estimates 
for both the average and heterogeneity effects. (c) MERLIN estimated significant average 
effects in IDP.0194-SCZ, SCZ-IDP.1992, and SCZ-IDP.1541. In the scatter plots, each data 
point corresponds to an individual SNP instrument. Each plot displays outcome GWAS (<=(0)) 
and GWIS (<=(0*)) effects versus exposure GWAS (>?(0)) and GWIS (>?(0*)) effects; the slope of 
the regression line corresponds to the average effect estimate, "5 ($).  
  



 

Figure S12. Summary of MERLIN-identified causal effects and sex-specific heterogeneity 
between schizophrenia (SCZ) and brain imaging–derived phenotypes (IDPs). (a) Forrest 
plots displaying five Bonferroni-corrected significant causal average effects identified by 
MERLIN involving schizophrenia (SCZ) and specific brain imaging-derived phenotypes (IDPs: 
IDP.0194, IDP.0664, IDP.1991, IDP.1992, IDP.1541). For each association, MERLIN’s average 
effect estimates ("5($)) are shown alongside those from comparator MR methods (IVW, MR-
Egger, RAPS, MR-LDP) and demonstrate directional consistency and comparable magnitudes. 
Effect estimates and 95% confidence intervals (CIs) are plotted; P values are provided. (b) 
Detailed analysis of two significant Bonferroni-corrected sex-heterogeneity effects identified by 



MERLIN for the influence of SCZ on IDP.0664 and IDP.0015. Results are presented as effect 
estimate (P value) with 95% CIs. The “Average” column displays the average effect estimates 
from MERLIN and the comparator methods. The “Male” and “Female” columns display sex-
specific causal effect estimates. For MERLIN, these are derived from its unified model ("51 =
"5($) + "5 (%); "52 = "5($) − "5(%), assuming male coded as +1 relative to the average effect); for IVW, 
MR-Egger, RAPS, and MR-LDP, these are results from traditional analyses stratified by sex. 
  



 

Figure S13. Sensitivity and age/sex-heterogeneity analyses for Testosterone–BD and 
BMI–CAD associations using MERLIN and comparator MR methods. (a) Comparative 
analysis of testosterone’s effect on BD, with results presented as estimates (P value) and 95% 
CIs. The “Average” column shows average effect estimates: for MERLIN, this is its average 
effect parameter ("5($) = 0.1670, 	8 = 0.1925); for IVW, MR-Egger, RAPS, and MR-LDP, these 
are their respective overall average effect estimates. MERLIN also directly estimated the causal 
interaction effect for BD ("5 (%) = 0.2894, 	8 = 0.0047), which was statistically significant after 
Bonferroni correction for six traits tested. The “Male” and “Female” columns display sex-specific 
causal effect estimates: for MERLIN, these are derived from its unified model ("51 = "5($) + "5(%); 
"52 = "5($) − "5 (%), assuming male coded as +1 relative to the average effect); for IVW, MR-Egger, 
RAPS, and MR-LDP, these are results from traditional analyses stratified by sex. (b) Sensitivity 
analyses of MERLIN estimates across different IV selection thresholds for Testosterone-BD. 
Across varying GWAS P value thresholds (5 × 10(+ , 1 × 10(, , 5 × 10(, ), GWIS P value 
thresholds (5 × 10(+, 1 × 10(,, 5 × 10(,), and LD clumping r² thresholds (0.1, 0.3, 0.5), the 
estimates of "(%) remained consistent and systematically deviated from the null in both the 
original and alternative settings, demonstrating significant sex-related heterogeneity. The 
estimates of "($)  were also relatively stable and became increasingly significant as the 
selection cutoffs grew more stringent (i.e., as the number of IVs decreased). (c) Sensitivity 
analyses of MERLIN heterogeneity effect estimates across different IV selection thresholds for 
BMI-CAD. Across varying GWAS P value thresholds (5 × 10(+, 1 × 10(,, 5 × 10(,), GWIS P 



value thresholds (5 × 10(-, 1 × 10(., 5 × 10(.), and LD clumping 1² thresholds (0.1, 0.3, 0.5), 
the estimates of "(%)  remained consistent and systematically deviated from the null, 
demonstrating pronounced age-related heterogeneity. (d) Coefficient of BMI on the risk of CAD 
across baseline age from the logistic regression model. The graph illustrates the estimated 
coefficient (log odds) of standardized BMI on CAD risk as a function of the standardized 
baseline age, derived from a logistic regression model in the UKB data. The line represents the 
estimated coefficient, and the shaded area shows the 95% CI. The negative slope indicates 
that the positive association between BMI and CAD risk significantly attenuates with advancing 
age (interaction "5	 = −0.0294, 	8 < 3 × 10(,). 
  



 

Figure S14. MERLIN accurately estimates the average effect (!(")) and interaction effects 
(!(*)) and demonstrates superior statistical power in simulations. All simulations were 
based on 500 replicates. (a) Boxplots showing unbiasedness of the average effect estimates 
("($)) from MERLIN and MERLIN(p) when the true "($) = "(%) = 0. Performance is shown 
across varying G×E signal strengths for exposure (ℎ&("#)' ; columns) with no GWAS–GWIS 

correlation (-$(% = 0) and fixed levels of horizontal pleiotropy (ℎ)(")'	 = 0; rows). Dashed red 
lines indicate the true "($) = 0. (b) Power comparison between MERLIN and MERLIN(p) 
detection of "($) ≠ 0 (when "(%) = 0) in scenarios with no GWAS–GWIS correlation (-$(% = 0) 
for fixed horizontal pleiotropy (ℎ)(")'	 = 0) and G×E signal strengths (ℎ&("#)' ). Both methods 
control type I error (at true "(%) = 0). (c) Box plots show MERLIN and MERLIN(p) estimates of 
"(%) for the same scenario as (a). (d) Statistical power of MERLIN in the detection of "(%) ≠ 0 
for the same scenario as (b) 
  

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
0.05
0.25

0.50

0.75

1.00

-0.2

0.0

0.2

0.4

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
0.05
0.25

0.50

0.75

1.00

-0.1

0.0

0.1

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
0.05

0.25

0.50

0.75

1.00

β1
CHESS CHESS(p)

"(!)

Ty
pe

1
er
ro
r/
Po
w
er

Ty
pe

1
er
ro
r/
Po
w
er

a

b

"(#)

c

d

-0.05

0.00

0.05

MERLIN MERLIN(p)

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
0.05

0.25

0.50

0.75

1.00

β1
MERLIN MERLIN(p)

-0.05

0.00

0.05

MERLIN MERLIN(p)

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
0.05

0.25

0.50

0.75

1.00

β1
MERLIN MERLIN(p)

h#("$)2 = 0.1 h ("$)
2 = 0.15 h#("$)2 = 0.3

h#("$)2 = 0.1 h#("$)2 = 0.15 h#("$)2 = 0.3

h#("$)2 = 0.1 h#("$)2 = 0.15 h#("$)2 = 0.3

h#("$)2 = 0.1 h#("$)2 = 0.15 h#("$)2 = 0.3



 

Figure S15. Bias in standard MR average effect estimation under heterogeneity for the 
SCZ → IDP.0664 association. (a) In the real-data analysis, the average effect ("($)) estimates 
from standard MR (green) diverged from the more robust sex-stratified combined MR estimates 
(blue). (b) A targeted simulation confirmed this bias. Boxplots of estimates from standard MR 
(green) show systematic bias away from the true value (dashed line, "($) =−0.065), while the 
sex-stratified combined MR estimates (blue) are closer to the true average effect. 
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