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S1 The MERLIN approach

S1.1 Statistical model for MERLIN

The MERLIN framework employs a linear structural model to define the relationship between an
exposure X and an outcome Y. For a given individual 4, this model incorporates M genetic variants
(Gj, for 5 =1,..., M SNPs), an environmental modifier E;, and an unmeasured common confounder
U;. The individual-level model is specified as: without loss of generality, we denote X; and Y; as the
covariate-adjusted exposure and outcome for individual 7. The individual-level model is specified as:

X = G D + EA + 3 GyBr D 4 Ui + ex., W

J j

Y, = Xzﬂ(A) + Z GijBJ(G) + E,Lﬂ(E) + Xz'Ezﬂ(I) + Uiy + ey, 2)
j

Apart from standard regression assumptions, the validity of MERLIN relies on the following key
assumptions.

1. Core assumptions for instrumental variables [1]:

e Confounder Independence: G; 1L U; and F; 1L U;, Vj.
e G-E Independence: G; 1L E;, Vj.
e Exposure Relevance: G; )L X, and G;E L X, Vj.

2. Distributional and centering assumptions for model simplification:
e G, and E; are mean-centered (E[G,] =0 and E[E;] = 0).
e For a discrete binary modifier, we use a standardized form (values 1/1;%, —\/15;) that

ensures E[E;] = 0 and E[E;]? = 1. Its skewness, u3 = EE}, is generally non-zero unless the
binary categories are equally frequent (p = 0.5).

e For a continuous modifier, our simplest derivations assume it has zero skewness (uz =
EE? = 0), a property of symmetric distributions like the normal distribution.

S1.2 Distribution of summary statistics for the exposure

We aim to establish the approximate distribution for the vector of estimated genetic effects on exposure,
4 = (%9 T,4ED T Here, 4, are the estimated main effects of SNPs (G;) on X, and 4G are
estimated G; x E interaction effects on X. These are typically obtained as marginal (single-predictor
or interaction-term-specific) ordinary least square (OLS) estimates from GWAS and GWIS regressions,
respectively.

Let W = [G,GE] be the n x 2M matrix of genetic predictors of interest (where G is n x M and
GE is n x M, with its j-th column being G;;E;). Let v = (7T ~(ED.TYT he the vector of true
effects of these predictors from the structure model for exposure (Equation 1), which can be written
in matrix form as:

X =W+ Ey® ¢, (3)

where the residual term is e, = Unx + ex from Equation (1).

The vector of marginal OLS estimates 4 is given by 4 = Dy, W X, where Dy = diag(W,] Wy) is
a diagonal matrix with the sum of squares of each predictor Wy, (column of W). Substituting Equation
3): 4= DI;}WTW"/ + D;VIWTEW(E) + D;V1WTEQE. We assume that the genetic predictors W are
exogenous with respect to the full residual ¢,. Specifically, E[W Te,] = 0. This holds if: (i) G; and E;
are independent of unmeasured confounders U;, and (ii) G; and E; are independent of the errors ex;.
Under these conditions, the expectation of 4 is E[§] = Dy, W W~ + Dy W T Ey(5).

The asymptotic distribution of \/n(4 —E[4]) can be derived using the multivariate Lindeberg-Levy
Central Limit Theorem for ﬁWng and Slutsky’s Theorem for the product with the scaling term



nD;[,l. The term nDI;,1 converges in probability to By = diag_l(J%Vk), where J%,Vk is the population
variance of the kth predictor Wj. Assuming Var(e,) = 021, this yields:

Va(d —ER]) % N(0, BwEw Bwo?),

where Xy = E[%WTW] is the population covariance matrix of the predictors in W, which can
be written as Xy = diag(ow, )Rwdiag(ow, ), with Ry being the population correlation matrix of
predictors.

Under the stated conditions for E (independent of G and E[E;] = 0), Ry simplifies to a block
diagonal matrix Ry = diag(Rpp,Rrp), where Ry p is the linkage disequilibrium (LD) matrix of
G. We note that the block structure of the asymptotical covariance implies that 4, and 45 are
asymptotically independent.

. 1 _1
Now we express E[J] and Var[9] using summary statistics. Let Ry = Dy (W TW)Dy* be the
sample correlation matrix of W. Under the assumption that G L E, D;V1WTE 2, 0. Then

E[4§] &~ Dy? Dy W WDy? Dy = Dy R Diy .

Let Sy = diag(S1,.53) contains standard errors se(%;;) and se(%3;). For marginal regression, S%V,kk A

2

O

2 1
(D) (e, ﬁ) [2]. This impels Sy ~ 0, Dy,”. Using these approximations:

E[f] = (Swo, ) Rw (Sy/00)y = SwRw Syl
As BwXwBy, = BéVRWBéV, it can be approximated by n1/2D;V1/2RWn1/2D;V1/2. Using these
approximations:

%szwBWo'i ~ (Swdgl)Rw(Swo’;I)di = SwRWsW

In practice, Ry is replaced by diag(R, R), where R is an LD matrix from a suitable reference

panel. Let S; and S5 be diagonal matrices of standard errors for ’y(G) (@D

final approximate distributions are:

and 4 respectively. The

4O |y AN(S1RST'YD) | S1RSy),
G | 4 AN (S2RS; 4G Sy RSy).

S1.3 Distribution of summary statistics in the outcome

We now derive the approximate distribution of GWAS and GWIS summary statistics for the outcome,
[ = (D@7 DENDTT where (@) are the estimated main effects of SNPs (G;) on outcome Y, and
I'(ED are the estimated G; x E interaction effects on Y. We assume summary statistics are from
cohorts with no overlap with exposure cohorts (see Supplementary Note S2 for overlap adjustments).

Let Z = [G,GE] be the N x 2M matrix of genetic predictors used in modeling the outcome.
It is assumed here that the outcome cohort (from which Z is derived) does not overlap with the
exposure cohort (associated with the predictor matrix W), although Z is formed using the same set
of M SNPs and the modifier E as used in W. The true underlying composite genetic effects that
these summary statistics aim to capture are I' = (F(G)’T,I‘(GU’T)T, where T'(6) = gA)~(G) 4 ,B(A),
@D = pA~(ED) 4 3UN~(E) | By substituting equation (1) into equation (2), the full structural model
for the outcome can be written in matrix form as:

Y = 2T + GE2RD~(CD | B(BMAE) 1 gE)) 4 p2a(0~(E) 4 ¢ (4)

where E? is an element-wise squaring of the vector E (or a vector of E?), and GE? has elements
GijEiz. The residual term €, comprises all terms from the full reduced form not explicitly dependent
on G, GE, or GE?:

ey = EUnx B + U(nx BN +ny) + ex BN + Bex D + ey



Under conditions for E stated previously, we have E[e,] = 0,Varle,] = 021y, and E[ZTe,] = 0.
Let Dz = diag(Z[ Z)) be the diagonal matrix of sums of squares for columns Z, of Z. The marginal
OLS estimates [' = DngTY. Thus, the mean

E[l] = D;'Z" 2T + D' 2T GE*SN~ D + D1 2T B(3A4E) 4 gy 4 Dtz T B2 300~ (F)
The term N(I' — E[I]) = (ND,!

statistics (Lindeberg-Levy CLT for -=ZTe,; ND;' & B, = diag~'(62%,); Slutsky’s Theorem), we
VN Yy z Z,

)(ﬁZTsy). Following similar arguments as for the exposure

have
VN —E[f]) 4 N(0, BsS2Bz0?),

where Y7 = E[%ZTZ] is the population covariance matrix of predictors in Z. As G; 1L Ej, then
Yz = diag(¥z1,¥22). This implies

1
NBZZZBZUE ~ SzRZsz,

where Sz = diag(Ss,S4) contains standard errors se(I‘( )) and se(I‘EGI)), and Ry is correlation
matrix of Z (approximated by diag(Rzp, Rrp)). We note that, based on the block structure of the
asymptotical covariance, GWAS F(G) and GWIS I'GD) for the outcome are asymptotically independent.

The crucial step is to define E[I'] using summary statistics. Given E[G;] = 0 and E[E;] = 0, term
like Dng TE and Dng TE? will converge to zero with probability one, simplifying

Ef)~ D,'Z" 2T + D' 2T GE*p~ED,

The first term D,'Z7ZT ~ S;R;S,'T. The second term D,'ZTGE?BD~(G) can be written
D, GTGE?
D,,GETGE?

can be approximated as

in block form as [ } BIO~ED | The lower block D,3GETGE? involves E[E}] = 3, and
D;AGETGE? ~ ND;1% 25E[E}]

= ND BB, *Y 1B, > B 13

~ S2S; RS ps.

Approximations of these blocks depend on the nature of E.

S1.3.1 Discrete binary environment

For the discrete standardized Bernoulli modifier F; (values ,/1%”, —y/155), we have E[E;] = 0,
E[E?] =1 and p3 = ——2—.
(Bl =and s = 7525
Since E[E?] = 1, +GTGE? % £ E[E?] = £z;. So the upper block DG GE? can be approxi-
mated using summary statistics and the LD reference matrix R as S3RS; 1
Consequently, for large IV, the mean for I' when F is binary is approximately:

SSRS?,lr(G)} 5(”{ S3RS; ] @

Bl ~ {S4RS;1F<GI ) 13825 ' RS

Thus, the approximate distribution are

D |y & N(S3RS; (1) + pNA(ED) S3RSy), (5)
. 5
PED |4 4 N <S4RS4‘1F(GI) + 13D 287 RS 1D, S4RS4) .

If p=0.5 (e.g., the male and female have similar sample size), then F; € {£1}, u3 = 0, and the
distribution of I" simplifies:

I |y 2 N(S3RS; (@) + pD~ED) 83 RS;),
D@D |y A N(S4RS;TED | S, RS,).



S1.3.2 Continuous environment

Note that the sample correlation matrix of GE is D;Z% GTGEQDEE = D;Z%GETGEDEZ% ~ R and

1
Sz ~o,D,*. Based on these approximation, we can estimate DngTGE2 using summary statistics
as follows:

~ [ 38, RS }

D, GETGE? 13525, RS T 1155255 LRS!

With this derivation, the approximate distributions are:

oot e lDEiDégRD%

P | 4 & N(S3RS; T + 528, RS DG S3RS3),
DD |y 2% N (SaRSTTED + 11580 5355 RSy S, RS,).
For continuous F, we assume p3 = 0, then the approximate distributions simplifies:
PO |y & N(S3RS;T@) + 8257 RS, DO, 53 RS,y),
1@D |y A N(S4RS;TED | S,RS,).

S1.4 Assumption on the Skewness of the Modifier E

In our derivation for the distribution of the outcome GWIS summary statistics (D(ED) we showed
that the mean, E[T'(“D)], contains a term dependent on the third moment (skewness) of the modifier
L

E[0(@D] ~ SRS TN 4 11580 825, RS 14(CD).

For simplicity in our primary analyses and simulations, particularly when estimating the magnitude
of non-zero effects and assessing statistical power, we assumed that F has zero skewness (u3 = 0),
as is the case for any symmetrically distributed modifier (e.g., a standardized normal distribution for
continuous E, or a balanced binary distribution where p = 0.5).

However, it is critical to note that the term involving skewness is a product: ps x B, Therefore,
under the null hypothesis of no interaction effect (Hy : () = 0), this entire term vanishes regardless of
the value of uz. Consequently, the MERLIN test for the presence of an interaction effect (ﬁ(l ) = 0) is
expected to maintain a correctly calibrated Type I error rate (i.e., not generate excess false positives)
even if the modifier E is skewed.

While the significance test for 3(/) = 0 is robust to skewness in F, obtaining an unbiased point
estimate of S(!) when it is truly non-zero does require accounting for us. For the analyses presented
in this paper involving a continuous modifier (age), we proceeded under the simplifying and common
assumption that the modifier’s distribution is approximately symmetric (uz = 0). The MERLIN
framework could be extended to incorporate a known non-zero ugz for unbiased point estimation in
settings with skewed modifiers. For discrete binary modifiers where the categories are not balanced
(p # 0.5), our full likelihood derivation (Eq. (5)) explicitly accounts for the non-zero us.

S2 Addressing sample overlap in summary statistics

In practice, summary statistics from Genome-Wide Association Studies (GWAS) and Genome-Wide
Interaction Studies (GWIS) may be derived from distinct cohorts that have partially overlapping
participants. This section details the derivation of covariance terms between different sets of summary
statistics due to such sample overlap. We assume the standard conditions for the environmental
modifier E (independent of genotypes G, and mean-centered E[E;] = 0) hold, which simplifies several
cross-product expectations involving F.

S2.1 Covariance between Exposure GWAS and Exposure GWIS Statistics
from Partially Overlapping Cohorts

Let ’yElc)) be the exposure GWAS estimates (main G effects on X) from cohort 1 (size N7) and ﬁ/g’;l)

be the exposure GWIS estimates (GXE effects on X) from cohort 2 (size Ns), with dq2 overlapping



individuals. The relevant residuals for exposure X, after accounting for systematic genetic effects
(G~E), GE~(ED) and the main effect of E (Ey(F)), are €z,(c) = Ueynx + €x,(c) for cohort c.
From the general form 4 — E[§] = D;;) W e, the terms contributing to the covariance are:

(G (G — T
A5y — EW S = Dgl Gy Tew 1),

~(GI ~(GI - T
7%2) ) - E[’\/EQ) )] = DGlE(2)GE(2) Eza(2)'
where D¢, = diag((G(1)) " G(1)) and D¢e,,, = diag((GE(2)) "GE(2)). The residuals €, (1) and ¢, (3
are from the true underlying model for cohort 1 and 2 respectively (i.e. €, () = Ue)nx + €x,(c))-

The covariance between ’y( ) ) and ’yEG; ) (conditional on true effects «, genotypes G, and modifier
E) is:

Cov(3(),45") = D!, Gy Cov( )GE(2 D!
Vi) 7’7(2) = Yau,B@) YOV (1),Ex,(2) @G )

The N; x N matrix Cov(ey,(1),€q,(2)) describes the covariance of residuals between individuals in
cohort 1 and cohort 2. If an individual ¢ from cohort 1 is the same as individual i’ from cohort 2
(i.e., they are in the overlap of size di2), then Cov(e, (1),645,2)) = o2, If individuals ¢ and i’ are
different, this covariance is 0 (assuming independence of residuals across distinct individuals). Thus,
Cov(ea, (1), €x,(2)) is @ matrix that is 0214,,. Therefore, we have

Cov(3(5) ., 4l5) = 02Dg! Gy GEw) DG,

—1/2 1/2 ~1/2 1/2 T —1/2 ~1/2 —1/2 1/2
= UwDG(lé DG(1/) DG/(O)DG / Glo) GE(0)Dg / DG/( )DG(2/> DG@/) Tz

— . Gy xGok \ p. 5. di20%
For large N1, N3, and dy2, we have D ' Da = diag M = diag e = diz )
G () ~r G(1) G ).k Wi N

and D(_;(lo/)QG( GE(O)D /2 — 0.
Consequently, the covarlance term is approximately zero:

GI
COV("/(l))y 'YE 2) )) 0.

This indicates that exposure GWAS and exposure GWIS summary statistics can be treated as
approximately uncorrelated, even if derived from partially overlapping cohorts, provided G 1L E and
E is mean-centered. If derived from completely nonoverlapping cohorts (d12 = 0), this covariance is
exactly zero.

S2.2 Covariance between Exposure Statistics and Outcome Statistics with
Overlap

et vy enote an exposure vector (either < rom cohort A using predictors W4 = G 4y, or <
Let 4 (gap) d ither 4(5) f hort A usi dictors W = G(a), or 43
from cohort A using predictors W4 = GE(4).

Let f‘(out) denote an outcome vector (either f‘g% from cohort B using predictors W = G(p), or
fggf) from cohort B using predictors Wp = GE(p,).

The general covariance form due to dap overlapping individuals is:

Cov(Y (eap)s T outy) = Dyt aWa, (o) T Cov(Es (0)s €4.(0)) W, (0) Dyt

where Cov(ey, (o), €y,(0)) = 020ypay is generally non-zero due to shared unmeasured confounders U;
and the propagation of exposure-specific errors ex; into &, (o).

1. Exposure GWAS vs. Outcome GWAS: Wa = G (), Wp = G (3),

G — _
Cov(4(y),T(5)) = 020y pay DG, [(Go)) Gio)] DG

1/2=1/2p1/2 1/2 -r 1/2 71/2 —1/2 5—1/2
- pmyazDGu) DG(1> DG( ) Gy G DG DG( >DG(3> DG(::) Ty
~ patyd13

~ ———S81RS;.
NN, 1S3



(@)
A9 1) ~ 0.

3. Exposure GWIS vs. Outcome GWAS: Wy = GE 3y, Wp = G3), Cov(’y@) D Fg))) 0.
4. Exposure GWIS vs. Outcome GWIS: W4 = GE(2), W = GEy),

2. Exposure GWAS vs. Outcome GWIS: W4 = G (1), Wp = GE(), Cov(¥

GI GI - _
COV( ( : FE4) )) = UraypzyDG}J(m [(GE(O))TGE(O)] DG}%)

—1/2 1/2 1/2 1/2 1/2 1/2 —1/2 1/2
= pmyUUDDGE/@)DGE/(Q)DG/E() E/( )GE(O) GE(O)DGE/( )DG/E(O) GE/(4)DGE/(4) Ty

~ pzyd24

= VNoN,

S2.3 Covariance between Outcome GWAS and Outcome GWIS Statistics
from Partially Overlapping Cohorts

S2RS4.

Wa = G(3), W = GE), as shown previously,

(GI) ~(GI)y _ 2p17-1 T —1 ~
COV( 2) 7F(4) ) - UyDG(g) [(G(o)) GE(O)] DGE(4) ~ 0.

S2.4 Likelihood Function for MERLIN

Based on the derivations outlined in previous sections, we construct the approximate joint variance-
covariance matrix for the full set of four input summary statistic vectors V' = ('SIT, I'")T. Its approx-
imate variance-covariance matrix is a key component of the MERLIN likelihood function and is given
by:

S1RS; 0 P1 S1RS3 0
" 0 So RSy 0 P252RS4
COV[V] - plisS:), 0 SgRS3 0
0 P2 SQRS4 0 S4RS4
where p; = £ “;\yfld;\;'s and py = \’;”Nyiﬂ The two scalars p; and ps quantify the impact of sample overlap,

and can be estimated using summary statistics among independent variants with no associations to
both exposure and outcome. R is the LD correlation matrix among the M SNPs, typically estimated
from a reference panel.

The MERLIN likelihood function assumes that the vector of observed summary statistics V' fol-
lows a multivariate normal distribution, conditional on the true underlying genetic effects and causal
parameters:

V A NE[V], Cov[V]), (7)

where E[V] is the vector of expected values for the summary statistics derived in previous sections,
which are functions of 4, I, and thus ultimately of the model parameters 54, B(G) and ). This
likelihood is utilized within the Bayesian hierarchical model when all four sets of summary statistics
D = {ﬁ(G),Sl;'?(GI),SQ;f‘(G), Sg;f‘(GI),S4} are available and sample overlap between exposure and
outcome studies is accounted for through p; and pa.

S2.5 Estimation of correlation parameters accounting for sample overlap

The parameters p; and po in MERLIN likelihood’s covariance matrix quantify the correlation between
summary statistics arising from sample overlap. These are estimated empirically using summary
statistics from a set of independent "null” genetic variants, i.e., SNPs not associated with either the
exposure or the outcome traits involved in the specific covariance term.

To estimate p1, we consider the joint distribution of z-scores for SNP j using the following truncated
bivariate normal distribution [3]:

(G
(;%G)/%) | (D =0,0() =0) % TN (1, %, a,b),
) /g



where g = (0,0) T, and covariance matrix

s | & pac
P16162 <22

The truncation points as well as lower and upper truncation points are fixed at @ = (—1.96,—1.96) T,
and b = (1.96,1.96) T are used to select SNPs that are not significantly associated with neither the
exposure nor the outcome at a nominal p-value threshold (e.g., P = 0.05). This parameter p; is esti-
mated from a set of LD-pruned "null” SNPs using a Gibbs sampler suitable for truncated multivariate
normal distributions [4]. A similar approach is employed to estimate ps.

S3 Parameter Estimation and Statistical Inference for MER-

LIN

We model the joint log-likelihood for the observed summary statistics, D, using the approximate
multivariate normal distribution described in the preceding sections. To simplify notation and improve
readability, we set 4(¢) = ~,,4(6D) = 44 T(®) =T, 1(ED = T3, ) = g, D = 3, B9 = 3, For
a MERLIN model with a balanced binary E and sample overlap, the full log-likelihood function, which
incorporates the assigned prior distributions for the true per-SNP genetic effects, is given by:

_ Y1\ S1RST 'y, S1RS1  p1S1RS3

":)’3 . 52R52_173 S2RSQ p252RS4 (8)
log N <(F3>’<S4RS41I‘3 \puS2RS:  SiRS: )

+1og N (71;0,071) + log NV (By; 0, 031) + log N (73; 0, 031).

We estimate the model parameters § = (51, 34) using an efficient Gibbs sampling algorithm. This
iterative method generates samples whose distribution converges to the target distribution as the
sample size increases.

S3.1 Gibbs sampler for MERLIN with sample overlaps

We present the details on deriving Gibbs sampler for MERLIN.
The full conditional distribution of < can be written as

IOgPI'(’)/"A)’7f, ﬁ17ﬂ27ﬁ4a 0%70570-%’ Ui, 0-'3)

O(lOgPI‘(IA‘,"AY ‘ s 517/@27647 O.QQL" 0'12/) + 10gPI'(")’ | U%? 0'92,)
’3’1 SlRSfl‘Yl SlRSl plisS;g
:logN( = 5 —1 ’ )
Iy SsRS5 ™ (T'1 + Bavys) p1S1RS3  S3RS3
?3 . S2RS;173 SQRSQ p252RS4
+log N( <r3) ’ <S4RS4‘1F3 \poSoRS)  SiRS; )

+1log N (v4;0,0%0) + log N (3 0, a§1)



It follows that the full conditional distribution of ~1; is
Y1 . S1RST 'y, S1RS1  p1S1RS3
IOgN( S 3 —1 ) )
Iy SsRS; " (I'1 + Bays) p1S1RS3  S3RS3
":}’3 . SQRSQ_1’73 SQRSQ ,02S2RS4
+log N( <r3) ’ (S4RS41F3 \p22RS:  SiRS, )

+1og N (71;0,071) + log N (75 0, 031)
1

= gy ST RS = 2SS A 201 (0 80v5) 5 ST + 200 85 ]
~ S 2 O + Berd)S5 RSy — 20 + B85 T
- ﬁ[(ﬂ + Bavs )S5 ' RS5 (T + Bays)]
- ﬁ(*?@%‘ls{% +2po03 S5 1S s + 3 S5 LRSS ;)
- ﬁ@pgf; Sy LSy s — 2paTg Sy LRSy by — 20§18, s + T S; 1 RS, 'Ts)
il
202
X — ﬁ(’)’?sflRS{l’h — 2018171 S5 'RST 'y, + Biv] S RS;My,)
. 2(1;7p%)(2”15”1TS3715171§1 —207] S5 Ty — 29 ] 878 + 20 S5 1S )

1 3 - o o - - —_ —
_ m(—mﬂ;& YRSy, — 2018474 S5 RST y, + 28171 S5 RSB, + 281 847y1 S5 RS; M y,)
1

- ﬁ(ﬁiVISZIRSZI71 + 2028471 S5 ' Si A5 — 2Bav1 Si1S; ')
1 Ta—1pa—l To-1pa—1 7%j
- Q(Tpg)@ﬁlﬂfh Sy RSy v3 —2p2f4v1 S5 RSy v3) — 2?2
_ 1 [(SflRSfl)jj _201B1(S5 ' RST )5 | BR(STRSTY);;  BR(STTRS )y, L
20 (1-p3) (1—-p7) (1—p7) (1-p3) ot
X (STRST iy N 20101 252 (S5  RST ) jirmy B Y502 (S5 P RSS ) jim;

]’Y%j
(1—p?) (1-p?) - (1-p?)
LI A1 (S7 1S5 )i N B> D1y (857185 1) iy
(1 - p7) (1=p7)
> A (STEST gy ey Tagr (ST S5
(1-p?) - (1—p3)
e > Bajr (ST RST )i N p1BaY 5 3 (ST RS ) iy
(1—p7) (1—p7)
B1Y 0 Bajr (S5 RSy )iy BiBad vsy (S T RS5 )y
N (1=p?) - (1—p?)
B (SRS iy p2Ba Xy A (83 Si i N Ba Yoy Doy (S50 jim;
(1—p3) (1—p3) (1—p3)
 BiBa X s (Si RS )iy N paBad ;35 (Sy ' RS iy
(1—p3) (1—p3) '

Let © denote all the latent variables. The conditional posterior distribution of each 7;; given the
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other parameters in the model is, v1; | Q\y1; ~ N (11, ij), where

1 [(Sflefl)jj 2B (S5 RS BR(S5 RSy BR(STRSTY) L ]
20%; 2° (1-p}) (1—p}) (1—p}) (1—p3) or’
My _ >z (STIRSTY) e N 20101 351 (S5 ' RSTDjimyr BT Xy 45(S5 RS5)jiny
i (1—p}) (1—pd) (1—p3)
B g (ST S5 ) N By, Ty (S5 S5 )05
(1—p) (1=pi)
Yy (SIS i Ty (8718505
(1—=p7) (1=p7)
p1Y 5 Bajr (STTRST ) N p1BaY s a0 (ST TRST) jrj
(1-p7) (1—p7)
B Bay (S5 RSy )i BuBadsy vsi (S5 RSy )
(1—p?) - (1—p?)
B (ST RST iy p2Ba Yo Asir (S Si g N Ba > Ty (S8 )5
(1—p3) (1—p3) (1—p3)
 BuBa Xy s (i RSy )y paBa Xy v (S RSy
(1—p3) (1—p3) '
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It follows that the full conditional distribution of vs; is
logN( SlRSfl’)’l 7 Slel p151R53 )
S3RS3 (1 + Bavys) p1S1RS3  S3RS3
SQRSQ V3 SQRSQ ,02S2RS4
* 10gN(< ) (S4RS ity )\ p22RS:  SuRS, )
+ 10gN(’71§07U1 )+ 10g/\f('73;070§1)
1

= oy (1 SURST = 291 S8 A+ 201 (T 4 By )55 ST+ 20,17 S5 1571 ,)
1

1 - - — _ A
— oy 2P+ B075) S5 RS oy = 20T + g S5 55 T
1

Sy T+ A8 RS T + )]

1 . RN - -1z — —
- m(ibg% 1Sy 143 + 20913 S5 1Sy s + v3 Sy L RSy M)
2
1 )
~ 5Ty 223 S S s — 20015 Sy RSy yy — 205 S Sy Dy 4T S RSTs) i

1 2 Ta-1lpa-1
& — = (824 S5 RSy 'v,) —
51— p) 1 55 R85 s)

20§
2(%@(2/)1647;8515;1&1 — 28474 S5 155 'Ty)
B ;p?(_%ﬁ”; STURST Y, + 261 By ] S5 RSy vy + 28481 S5 RS yy)
’ng

= 52y (V3 S5 RSy vy = 2p0f1ys S5 RS vy + B Sy RS vs) — 55
3

2(1-p3)

1 5 N q - p—
N 2(17_/,@(2025172{52 LS 4, — 281ys S 18 s — 294 S5 1S5 145 + 2peTa S5 1S M)

A 2028071 S5 RSy M vs + 261 84v] Si RS s)

=218 <53(1R55 )m + (52(113552;);'3‘ _ 2p2ﬁ1(<1521;)541m + ﬂ%<5('411RpS;)1>jj %
1 - P2 - P2 - P2
B i Ejf¢j(S§1RS§_1)jj’73j'73j _pibBadly ?1;"(51_21551)3‘/]"733' Bad I'1/(S5 253_ )5757V3
(1-p1) (1—=p1) (1=p1)
N p1Bad 71(;1(51_1:;?551)1'/]‘731 BBy 71(31(5;?551)3‘7733‘ _ Bady 521;25315)53_1)1"3‘731'
—p —p —p
B Zj/#(sz_lRSz_l)ljj'%j'%j N 221 Zj/#(sz_lRS}l)jj%j’%J BE 312 (Sa 1R;4_1)jj’73j'73j

]73]

(1—p3) (1—p3) (1—p3)
paBi Y Ay (S5 S ) rvss B Dy Dy (ST ST s
B 1= 03) i - 73
> A (8218 v P2y Tayr (S5 S0 )53
(1—p3) (1—p3)
N p2Ba Yy g (Sy RSy )jiivas BiBa Dy vy (Sy RS s .

A=) =)
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The conditional posterior distribution is, 735 | Q\vs; ~ N (us;,03;), where

L 5 (S5 RS3 )5 | (S5 RSy )5 2p2Bi(Sy ' RS )y BE(ST RS Y R
203, 2% (1-p3) (1—p3) (1—p3) (1—p3) o3
pp  yzi(Ss RS Divsy pBaXsy A (SIS D | BaXsy D1y (S5 S5 )05
o3 (1-p}) (1-p}) (1-p})
p1Ba Xy 11y (ST RS i BiBa Xy (S5 RS5 )y Ba Xy Bayr (S5 RS5 )
(1—p) (1-p) (1—p)
(ST RS s 20281 35045 (S3 RSy )i vsir BR300y (SRS jirss
(1—p3) (1—p3) (1—p3)
2B Y s (S5 ST )i N B Y, Tay (S0S0)r5
(1—p3) (1—p3)
> s (8385 i p2 iy a0 (5510 s
(1—p3) (1—p3)
p2Bs Yy 1y (S3 ' RST )i BiBa Xy ny (STTRST)
(1—p3) (1—p3) '

The full conditional distribution of 3; is
log N ( (’?1) . < S1RS; 'y, ) < S1RS, P151Rss))
[1) " \S3RS; (L1 + Bavs)) ' \p1S1RSs  S3RSs

. —1
+log N ( (73> : (52352 73) ’ ( S2RS; P252RS4>) +log Pr(B1)

I3 SiRS, T3 p252 RS, S4RS,
1 1 . - A — -1 - — —
o — W[’YISI 1R51 1’)/1 — 2’7?51 151 1,.),1 + 2P1(FI + 547;)53 151 l,y1 + 2p1FISS 151 171]
1
1 — — _ RIS
- W[—%(FI + Bay3 )STIRST y, — 2(] + Bava )S5 15511 ]
1
1 _— —_
5 (O + Biv3)S5 RS (D + Bay)
1
1 N —15 - -1~ — —
- m(—%;% 155 4 + 2paT3 S5 S 45 + 74 S5 RSy 1)
2
1 [ S . N - — —17 — —
- W(QPQF;SQ 1514 173 - 2[)21—‘;32 1RS4 1')/3 — 2]:‘;54 154 1F3 + F;S4 1RS4 11—13)
2
o 1[7I551355171 7;{5;135;173]6%
20 (I-pi) (1—2)
]85S — 4] 858 T
2 B1
(1— P1)
_ =Sy RSy + T SRS By + Byl S RS s
(1—pP)
p2va S5 'Sy Ay — 4 Sy ST
- 2 B1
(1—p3)
_ —p2v3 S5 RSy s + 54715;11%54—1735
(1-p3) v
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The conditional posterior distribution is, 81 | Q\B1 ~ N (pp1, 02, ), where

R }['YTS?RS?% 7§521352173]
200, 20 (1-pi) 1-p3) 7
Mo p1v1 S5 ST A — 1 S5 1S5 Ty
0'131 - (1- p%)
Y1 S5 RSy, + (S5 ' RST By + Bayi S5 RS3 s
(1=pi)
p2v3 Sy 'S5 =3 S ST
(1-p3)
_ —p2v3 S5 RSy 'ys + Bav{ Sp RSy s
(1—p3) '

The full conditional distribution of 35; is

Y1 S1RST 'y, S1RS1 p1S1RS3 2
1 I 1 ; I
o (<F1>’<53RS§1(F1+64'73) \pusims,  Syms, ) TlosN (820020

(i STTRST 'y, — 291 STUSTM A + 201(0] + Bavs )S5 1St A + 20 D] S5t ST ]

2(1—p3)
1 — — _ _ A
oy 2P By ) Sy RSy — 2T Buys )y S5 ]
1
1
- m[(ﬂ + Bav4)S5 RSy Ty + Bavs)]
B
203
1 Tao-1pa—1
x——— (B S;'RS; '
21— p7) P25 B85 02
1 TN 4 1=a
- 2(17—@)(2[)1'6;53 'Sy — 28, 85185 ')
1 o e e
- W(—%wf% YRST'B, + 28177 S5 RS; ' By + 26483 S5 RST '5)
1
B
20%
1.(S5'RS3 )5 1,0
_ L8 RS, b
- A
. Zj/;ﬁj(s?lesgl)jj/B%’ﬂ%
(1-p)
. P1 Z]/ '?1]/(51715371)]’]/82‘] n Z]’ Fljf(S?le?:l)j/JBQJ
(1=p1) (1—p?)
P13y 1y (ST RSy iy B 3sy v (S5 RSy )yiBay  Ba Xy vy (Sy RSy ) 3B
(1-pi) (1-pi) (1-pi) '
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The conditional posterior distribution is, Ba; | Q\B2; ~ N (tp2, 02,), where

_1 l(m i)
207, 2 (1-p1) 05"
e 2y (S5 RST )i Bay
Thy ; (1-p})
Yy (S8 D Xy Ly (95195 1)
(1-p7) (1—p7)
P13y (ST RSy g BuYs vy (S5 RSs Y BaXsy s (S5 RS5 )
(1—p) (1 - p7) (1—p7) '

The full conditional distribution of 3, is
Y1 S1RS; 'y, S1RS1  p1S1RS3
log N(( 11) 1 : )
Iy S3RS3 (' + Bays) p1S1RS3  S3RS3
":)’3 . SQRSQ_1’73 SQRSQ pQSQRS4
+log N'( (r3> ’ <S4Rs4lr3 \paSoRSy  SiRS, ) TloePr(By)
1

o~ gy M ST RST = 2 ST A+ 201 (0] By ) Sy Sy + 200D S5 S ]
1

1 - — _ . A
- W[—QP(FI + B4v3 )S5 ' RST yy — 2(T] + Bary3 )S5 1S5 1T
1

1 — —
sy [+ Bd)Ss RS (T B
1
1 - Y — 12 — _
B W(_%’g% 1S5 s 4 20003 S5 ST s + v S5 RS Tys)
2

1 AT e _ _ a1 _ _
- W(zpzrgs2 LSty — 2poT3 So YRS My, — 210 S 1S s + 13 S, RS, Ts)
2

B }[7:?551355173 ¥1 S: 'RS; v

62
21— ) (i)
P13 S ST A1 — 3 S5 1S5 T
- 2 64
(1—p7)
—p173 S5 'RST 'y + Bivi S5 ' RSy '3 + B S5 ' RSy ', 8
- 2 4
(I—=p1)
pavi S5 'Sy A — 1 81 1S, T
- 2 ﬁ4
(1- Pz)
—p2v] S5 "RS; 'vs + Byl Sy RS, s
- 2 /84-
(1 - /)2)
The conditional posterior distribution is, 84 | Q\B4 ~ N (pip4, 02,), where
_ 1 LS RSyl (SRS
207, 20 (1-p}) (1—p3) 7
ma _ p1vd Sy ST — 3 85 1S T
054 (1- P%)
_ —p173 S5 RSy + Biv] S5 RS5 ' vs + B S5 RSy v
(1-p?)
vl Sy 'S s — vl i ST
(1—p3)
=Pl S5 RSy + Biv] Sy RS s
(1—p3)
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The full conditional distribution of o7 is

log Pr(vy|o?,03) + log Pr(o?)

-
Y171 s b1 p 2
_ 20% —(al—f—l)lOgUl—;%_ilOgO'l
T 2b
x — Lgl — (a1 +2 + 1) log of.
207 2

So the posterior distribution of o7 is

T
o? | Q\o? ~ Inv-Gamma(a; + g, by + 71271)
The full conditional distribution of o3 is
log Pr(v|ot, 3) + log Pr(o3)
T
Y33 o by p 2
_ 202 —(ag+1)logos — 0—?2) — §log03
T
Y3 s+ 2b3 p 2
X — T — (a3—|— 5 + 1)10g0'3.
So the posterior distribution of o3 is
.
o2 | Q\o2 ~ Inv-Gamma(as + g, bs + 73273)
Similarly, the posterior distribution of o3 is
.
o3 | Q\o3 ~ Inv-Gamma(ay + g, by + '622ﬁ2 ).

S3.2 Gibbs sampler for MERLIN without sample overlap

If there is no sample overlap, the correlation between the exposure and outcome variables due to that
overlap is zero; thus, p; = p2 = 0.

S3.3 Gibbs sampler for MERLIN with an unbalanced binary E
The full log-likelihood function is

_ Y. S1RST 'y, S1RS1  p1S1RS3
L(9|D) —10g/\/( (F1> ) <S3R331(F1 + 6473) ) ,0151RS3 SgRSg )

logn(( 72 S2RS5 'y, S:RS:  p2SaRSs)y  (9)
8NN3 ) T\ SuRS; T + p3Bs5255 ' RS; 'y, ) "\ p292 RSy S4RS,

+1og N'(71;0,071) + log N (B4; 0, 031) + log N (v3; 0, 031)

The Gibbs sampler can be derived using a similar approach.

S3.4 Gibbs sampler for MERLIN with a continuous E
The full log-likelihood function is

_ 1Y . S1RSy 'y SiRS1  p1S1RS;
L(6|D) =log N (<F1>’(53R531F1+S§S41RS415473 \ oS RSs  S3RSs )

"A)’g . SQRSZ_LY:;) SQRSQ ,DQSQRS4 (10)
+ IOgN( (fg) ’ (S4RS41F3 ’ pQSQRS4 S1RSy )

+1log NV (7130, 0%1) + log N (B,; 0, 031) + log N(74; 0, o31)

The Gibbs sampler can be derived using a similar approach, too.
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S4 Parameter Estimation and Statistical Inference for MER-
LIN(p)

When phenotypic outcome data are difficult to obtain for a particular GWIS, we provide MER-
LIN(part) algorithms that still require exposure-GWIS data but can be used without outcome-GWIS
data.While yielding unbiased estimates and controlled Type I error for 51 and 84, MERLIN(part) has
less power than full MERLIN (Supplementary Fig. S14, Supplementary Notes as below for model de-
tails). The same as MERLIN, we set ~(G) = 'yl,'y(G” = 73,F(G) =TI,,06ED =15, 84 = g, 1) =
61,8 = B,.

The distribution of the available summary statistics is

’?1 1 SlRS;l"Yl Slel 0 p151R53
Y3 | v~ N SyRS; 'y, , 0 SoRS, 0
Iy SgRS;S_I(Fl + 54")’3) p151RS3 0 S3RS3

It follows that the full conditional distribution of ~1; is
Y1), S1RST vy, S1RS1  p1S1RSs 0 -2 O A2
IOgN((I‘l) ’ (SBngl(Fl +ﬂ4’73) ’ plisSB SgRSg )+10gN(71a03011)+10gN(’Y3aOaUSI)

1 _ _ IR IV AT ] o
IS1 1RS1 1’71 - 2’7’?51 151 1’71 + 2%’1(1?r + 547;)53 151 1’71 + 2011—?53 151 1"1’1)

N
50—
(—2p(T{ + Bavd ) S5 "RST vy — 2(T] + Bay4 )S5 'S5 'y + (T + Bavq ) S5 ' RS M (T1 + Bays))

X —

1
2(1—p})
'7%]’

20%
W(’YISfIRSfI’h —2p1817] S5 ' RST My + 511 S5 T RS; My,)
1
1 et e . o
- W@Plﬁl’)’ISg 151 4, - 251’)’153 153 Ty - 2’)’1TS1 1Sl 4+ QPlrlTS?, 1Sl 'v1)
1
1 o e e e
- W(_Ql)lﬂ;% 1RSl by — 201ﬁ4'7z;r53 1RSl by + Zﬂl’hTSg 1RS?, By + 2ﬁ154’)’1T53 1RS:; 173)
1
T
20%
_ 1((51_1351_1)1‘.1  2p1B1(S5 " RST )5 n BT (S5 ' RS3 )5 + L
20 (1-p7) (1-p) (1-p?) o
Xy (STIRST iy N 20181 351y (S5 ' RST Doy via BY 5 (Ss ' RS5 imyng
(1—p7) (1=p7) (1=p7)
p1B Yy g (S8 )i N B> Ty (S5 185 ) iy
(1—p7) (1—=p7)
>y A (STUST s ey Tay (1785 ) 0imy
(1—p7) (1—p7)
L >0 Bajr (ST RSy )i N 181> 5 35 (ST RS ) iy
(1—p7) (1—p7)
 BiYy Bey (S5 RSy )iy BuBa Xy s (S5 RS )i

(1—p3) (1—pi)

Let Q denote all the latent variables. Obviously, the conditional posterior distribution is ~q; |

)’712j

17



Q\’)’lj ~ ./\/(,ulj,afj), where

1

T 5.2
201j

_ }((SflRSII)jj 2pBi(Sy RS BE(Ss RS i)
20 (1-p7) (1-p?) (1-p?) ot
py (SRS N 20101 351 (S5 ' RSTDjimyr BT Xy 45(S5 RS5)jiny
ot (1—p3) (1—p3) (1—p7)
B g (ST S5 ) N By, Ty (S5 S5 )05
(1—p) (1=pi)
Yy (SIS i Ty (8718505
(1—=p7) (1=p7)
p1Y 5 Bajr (STTRST ) N p1BaY s a0 (ST TRST) jrj
(1-p7) (1—p7)
B Bay (S5 RSy )i BuBadsy vsi (S5 RSy )
(1—p7) (1—p7) '

It follows that the full conditional distribution of v3; is

SlRSfl’)/l Slel p151R83 L. -1
10gN(< ) (S3RS (Fl +ﬁ4'73) ) P151R53 S3RS3 )+10gN(73a52R52 73aS2RS2)

+1og N (713 0,011) + log N (v3; 0, 031)

1 _ _ IR TR 11~ - 1o
o — W(VI& "RST Yy = 290 STST AL + 200 (T + Bays )95 'S A 42D S5 ST )
1
1 _ _ 1 e1n _ _
- m(—%(ﬂ +Bav3)S5 'RST My, — 2(T] 4 Bav3 )85 1S5 1Ty + (U] + Bayy ) S5 ' RS (T + Bays))
1
[P SN TirTy—1z 3
- 5(([/2 ) A3 — Uays) (L) 5 — Uzvyg) — % 2
o3
1 _ A _ _1a
- m@ﬂlﬁé’)’;% 'S4 — 2843 S5 195 ')
1 _ _ _ _ _ _
- W(—Ql-)l@?’;ss "RST Y1+ 26184v] S5 ' RSy vs + 28485 S5 RSy 'y3)
1
LooTry—is T/rTy—1z 3
- *((Lz ) Y3 = Uavs) (L) 45— Uzvg) — 292
3
1
RS;D),, 1
(54% + =+ Z(Uz)?'j)%%j
( pl) o3 j’
iy > 52 (S5 RSTY) i385
! (1-p?)
B Xy g (ST 85 )i N B> Ty (S5185 1) s,
(1—p?) (1—p1)
N p1Ba Yoy 11y (ST RS5 )jeivsi BiBa Xy iy (S5 RS5 jrivsi Ba Xy Bayr (S5 RS3 )i
(1-pi) (1= pi) (1-pi)
Z’YS] U2 j] ’73; Z Z U2 jj U2 Jj”'73j”'73j
J’ J'3r#d
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The conditional posterior distribution is ys; | 2\ys; ~ N (us;, 03;), where

1 (55" RS; ),
A L e A ADSLR)
H3j _ Zj/;éj(ss_lRSS )jj"YSj’
092,;' (1-p})
p1Ba X (51185 )i N Ba Y Ty (8515 )05
(1—p) (1—pP)
p1Ba Yy My (S RSg ) BuBadsy (S5 RSy i Badsy Bayr (S5 RSy )
(1= p?) (1—p}) (1—p})
2733 Uz)j5) Z Z Uz) 1 (Uz)jrjryzjo

‘/ //;éj

The full conditional distribution of 3; is

Slel_l’)’l Slel p1S1R53
log A (< ) (ngS Ty + Biva)) \piSiRSs  SyRS, ) TP

1 1 . L A - —15 - — —
= gy (1 ST RS = 20 ST 201 (0 + By ST + 2000 858 )
1
1 3 1 - - I —_ —
= sy (2T +Bd)ST RSy = AT+ BirD)S S T+ (U o+ By )8y RS+ feya)
1
TS RSy My, | s
xX——(——— ﬂ
i
vl S5 ST ﬂSngglrlB
(1-pi) !
_ —p171 S5 RSy 'Yy + 41 S5 ' RS; ' By + Bav{ S5 ' RS5 Ty

(1—pP)
The conditional posterior distribution is 31 | Q\B1 ~ N (up1, 07;), where

R ﬂS;lRS;lvl)
2‘7?1 2 (1- P%) ’
a2 N 7 4 5 S 51 Y1 — 1TS3_153_1f1
Ugl (1- P1)
=1 S5 RSy + 41 S5 RSy By + Bay] S5 RSy vy
(1- p1) .
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The full conditional distribution of B; is

SlRSfl'yl S1 RS, p151 RS i 2
s M(E2): (550t b)) (bt Sy )+ s (820,031
1

o — m(v?SﬁRSflm — 291 STUSTIAL + 201 (0] + a3 )83 ST 41 + 200 S5 57 1)
1 _ _ a1 _ _
- m(—%(ﬂ + Bav3 )3 ' RST 'y = 2(T] + Bavs )S5 'S5 Ty + (T + Bary3 )85 RS3H(T1 + Burys))
1
BQ_]
202
x — 2(1 — )(,32 5 RSy By)
1 I
- m@ﬂlﬂz S5 ST 4, — 28, S5 155 'Th)
1 I e e
_ m(_zplﬂsg YRS'B, + 28171 S5 RSBy + 28485 Sy RSy M)
62]
203
:_7((53 1RS?:1)J' i)ﬁ
) 3
B ij#(S:)TIRS?,_l)jj'ﬁ%'ﬁzj
(1-pi)
P g (ST S5 )i N 32 Dijr(S51851) 15 5o,
(1-p?) (1—p)
. Y (STIRSE ) riBaj B Xy e (Sg RSy )jiBay Ba XSy vsir (S5 ' RS5 ) jiBa
(1=p7) (1—p7) (1=p7) '

The conditional posterior distribution is, B2, | 2\Ba2; ~ N (e2, 02,), where

B l(m + 24
207, 20 (1-p}) a3
e LS5 RS3 )i Bay
Ohy (1—p7)
P 3 A (8118 ) Py L1 (8585 )irs
(1= p%) (1 =p%)
P13y (STURSs Dy By na (S5 RSg D Ba Xy s (S5 RS5 g
(1=pi) (1=pi) (1=pi)
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The full conditional distribution of 8, is

SlRSfl’h S1RS1  p1S1RSs
10gN(< ) (S3RS (Fl + Bavs) ) \p1S1RSs  S3RS3 ) +log Pr(f4)
1
2(1—p?)

1 o - - - - —_ —
i 2T BT RS AT iS5 S5 B T )55 RS+ i)

1

I L e
gy

P13 S 51 Y1 — ;,rS?,_lss_lfl

(v{ ST RSy 'y, — 297 STSTM A + 201(D] + Bays )S5 ' ST A + 200 S5 ST yy)

o —

5
(1-03) !

_ —pvi Sy YRS 'y, + Biv] S5 RS My, + By S; RSS! 735
(1_.01)

The conditional posterior distribution is, 84 | Q\B4 ~ N (pa, 02,), where

0 aadstaste
A L
Moa P13 S 51 Y1 — ;,rs?rlszs_lfl
iy - (1—pP)
P13 3 S5 'RST 'y, + Biy] S5 'RS; 'y + 8y S5 RSy Ts

(1_:01)

The posterior distribution of 03, 03, 0% is the same as MERLIN above.

S5 Modeling direct SNP XE effects in the outcome
We extend the outcome model to incorporate direct SNP xE effects:

Y; = X;8W + ZGz‘jﬁj(-G) + ZGijEiﬁ]('GI) +EBP) + X;EBD + Uiny + ey,
J J

where BJ(-GI) represents the horizontal pleiotropic interaction effect. Consequently, the total SNPxE
effect on Y (i.e., the parameter estimated by an outcome GWIS), denoted as T's,, is given by:

Ty, = BAy(CD) 4 gDA(G) | g(@D)

Under this specification, the likelihood (8) of the observed data can be written as follows:

S1RS( Y1 S1RS1 p151R53
L) = logN(< ) <83RS Ty + 287 RS Bavs ) T \p1SiRSs  S3RSs )
SQRSQ Y3 SQRSQ p252RS4 (11)
+log N <( ) <S4RS4 Ty, ) '\ p2S2RS,  SiRS, )
+log N(7130,031) + log N'(B; 0, 031) + log N (v3; 0, 031) + log N (B“"); 0, o31).
Analogous to 7, 85, and 75, we assume ﬂ ) follows a normal prior with mean 0 and variance o31.

These derivations extend naturally to scenarios involving sample overlap or continuous environmental
variables.
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S6 MERLIN for binary traits

Here, we show that the MERLIN framework is applicable to binary traits in case—control studies.
Following Hu et al. (2022)[5], we detail the scenarios that involve either a binary exposure or a binary
outcome.

We begin with the linear structural full model for the continuous exposure z; and outcome y; for
individual 7:

2i = Bow + C Beova + 3 Gty + 3 Gy B\ + BEAP +Uim, + €, (12)
J J

Yi = Boy + C Beovy + 2B + 3 Gii Y + EiBE) 4w, EipD + Uiy + ¢y, (13)
J

where g, and By, denote the intercept, C; represents the covariate vector with corresponding effects
Beov,e and Beov,y. Gi denotes a centered genotype, E; is the centered environmental variable, U; is
the unmeasured confounder common to both & and y, and is assumed to be independent of GG; and
E;, v'%) is the average effect of SNPs on exposure x, 7(F) is the average effect of environment E
on exposure x, 7(¢1) is the GF interaction effect of SNPs on exposure x, 3(4) is the average causal
interaction effect of & on y, A(%) is the horizontal pleiotropic effect of SNPs on outcome y, 57 is
the average effect of modifier £ on outcome gy, ) is the causal interaction effect of & x E on vy,
representing how the effect of © on y is modified by E, n, and n, are the effects of U; on « and y,
respectively, €, and €, are independent random errors and are assumed independent of other terms in
their respective equations.

Case 1: a continuous exposure (z) and a binary outcome (y).

For binary outcome traits y, we assume the following probit model and insert (12) into it [6]:

p(yi = 1| Gy, B;, Cy) (14)

=(3, + C] By, + 2B+ 3G + B 2, BB + U + ¢y, (15)
J

=By + C] Bl + 3 Gy (B4 4 gL
i

+ 3G B (BN 4 B8N 4 NG B2 Y o + Eifly + E2BYs +ey,), (16)
J J
=0(B5+ CJ Bl + D G\ 3" GUETY + 3" Gy B2 e + Eifly + E2Bhe +2y,), (17)
J J J

where ®() is the cumulative distribution function of the standard normal distribution. In equation
(15), represents the probit model for phenotype y. Each term in ®() has a meaning similar to that
in Equation (13), but the superscript ‘b’ denotes that these are the true causal and genetic effects on
the liability scale. Substituting x; into (15) yields equation (16), which simplifies to equation (17),
where 85 = 5, + BB, and BY,, = By, + B Beove. The parameters 82,0, 8%, 8Y, are
the effect sizes of the corresponding variables. It is noteworthy that the parameters () and 8%
capture conceptually different effects. The parameter 5(F)? quantifies the direct association between
the environment variable E and the outcome y in the structural model for y, whereas ﬁ% represents the
resulting coefficient of E in the outcome model after substituting the structural equation of x into that
of y and algebraically simplifying the expression. The error term ¢,, = E;Un, 8D +U; (1,89 +1y) +
Emﬁ(A)'f'EiEmﬁ(I)"‘Gy. For clarity, let FgG)’b = B(A)’b7§G)+B§G)’b, and FgGI)’b = ﬁ(A)’b7§GI)+5(I)’b'yJ(»G).
Applying the known results in [6, 7], we have a linear approximation of p(y; = 1| Gy, E;) as

o A= E)(BY) T (G).b (GI)b
ply; = 1| Gy, Ey) =~k + KO- K) (Ci Beow + zj:Giij + ;GijEiFj

+ Z G”E?ﬁg];z + EzﬁbE + EfﬁbE2 + Eyi)a
J

where k and K represent the proportions of the cases in the ascertained case-control sample and the
population, respectively. This implies that the effect sizes estimated by the linear model, F§G) and
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@D

; 7, can be transformed into the liability scale by

r@s_  K(l-K) D@ and D(EN0 K(1-K) n@n
g KI-k)p(ay) + K1 —k)p(3)

Consequently, we have

K(1-K) () and BIP — K(-K)
R mep)” T S R me)

This direct proportionality means that a hypothesis test for the null effect on the observed scale
(e.g. Hy : BY) = 0) is equivalent to a test for the null effect on the liability scale (Hy : ()0 = 0).
Therefore, the significance tests for the main and heterogeneity effects produced by MERLIN can be
directly interpreted as tests for the existence of these causal effects on the underlying liability to the
phenotype.

Case 2: a binary exposure and a continuous outcome.

For a binary exposure @, we again consider the following probit model:

B(A),b — 5(1)'

p(ml =1 ‘ Gij? El) (60 T CTﬂcov T + Z Glj7§G) b + Z GijEz’Y](GI) b + Ef}/(E)’b + Uﬂ?g + Er,;)a
J J

where each term in ®() corresponds to the same interpretation as the phenotype x; described in
equation (12), but add the superscript ‘b’ to indicate that these are the true causal and genetic effects
on the liability scale.

With the above preparation, we can apply the known results in [6, 7] to obtain an approximation
of p(z; =11 Gyj, E;) as

k(1 — k)o(55) GI)b
p(xi =1 | Gz’j, Ez) ~k+ T},{)O C’T fou z T ZGZJ’YJ + XJ: GijEi'Yj(‘ ) + Ei’}/(E)’b + 5%‘)’

(18)

where k and K represent the proportionb of the cases in the ascertained case-control sample and the
population, respectively. ,, = Uin® + ¢,,. Equation (18) implies that the estimates of W(G) and W(GI)
using a linear model can be transformed into the liability scale by
(@b _ K(1-K) (O any _ KA -K) (@)
! k(1 —k)o(55) k(1 - k)p(B5) 7

Plugging (18) into a continuous y (13), we have

and 7](-

yi ~ Bo+ CJ Beow + Y GZJFEG) =Y GijEiF;GI)’b + Y GiiE;Bape + EiBE + E} Bp2 + ¢y,
J J J
G),b G),b G GI)b
where B0 = Boy + ky Beov = Beovy + k(}((f)(ﬁ(ﬁo B A)ﬂrov x> F( W= ﬂ(A)fY]( ) + 6]( )a F§ "=
b
5(A)7§G1)’b + 5(1)7§G)7ba5yi = 716(;;(?)_(@((?0) x BipDe,, + 7(}((5)_(#](5)0 * BAe,. + Uiny + €,.The other
parameters carry meanings analogous to those in (13).

Case 3: a binary exposure and a binary outcome.
Similarly, for binary exposure x and outcome y, we consider the probit model as follows:

( =1 | Gl.ﬂ ) (BO T + CT cov,T + Z G’LJ’Y] + Z GijEifyj('GI)’b + El’Y(E)J) + Ewi)

~ by BRI o DGy 4 T Bl B ),

2(1
K1 K.) j
(19)
p(yi =1 | Gi, El) (BO vt CT covy T ziB(A)’b + Z Gij5§G)7b + Eiﬁ(E)’b + ziEiﬂ(I)’b + UZUZ + eyi)’
J
(20)
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Equations (19) and Equations (18), Equations (20) and Equations (15) are mathematically equiv-
alent, respectively. However, to distinguish the notation, we represent k as k, and k,, respectively.
Plugging (19) into (20), we obtain the following.

p(yi = 1] Gi, B) = ®(B) + C] B, + > Gy T + 3 Gy BT
i i

+ Y GyE}Bepe + Eify + Bl B + ¢y,),
J
ks G).b ke ()b,
where 60 = ﬂo y+5 (4, bkma cov Bcov y+ Kl : (1 )I(?(ﬂO)ﬁ(A) bﬂcov ) F; ) = I((l : (1 )¢’(ﬂ0)5(A) ’ >
5(G GI) b _ %(5(1‘1))%]@”) by Db j(,G) o) BY 2, B, Bho are the coefficients Of the

K;(1-K;)
. _ b
PR 5 B Dy, 4 B« g0, 4
Uiny + €4. A similar approach to the previous one, we can obtain

variables that correspond to each other. ¢, =

@ _ K01 - Ky P(®) and 1@ = Ky(1=Ky) pon.
’ ky (1 —ky)o(B5) "7 ’ key(1 = ky)0(58) 7

BANE — MB(A) and gt Mﬂ(l
ey (1 — Ky )$(5) ky (1 = Ky )$(50)
Based on the derivation above, the causal effect estimated using linear models remains meaningful
and interpretable in all three scenarios.

S7 Evaluating bias in standard MR average effect estimates
under real-data heterogeneity

Our primary simulations (Results Section 2.2) demonstrate that standard MR methods can produce
biased estimates of the average causal effect in the presence of causal heterogeneity (84, # 0). To
demonstrate this phenomenon in a real-world context, we examined the SCZ—IDP.0664 assocation,
which our main analysis identified as having a significant sex-specific effects.

A challenge in real data is that the true average effect (51) is unknown. We therefore derived a more
robust proxy for the true average effect by first performing sex-stratified MR analyses to obtain male-
specific (By) and female-specific (By) causal estimates, and then averaging them: 81 = 0.5(3um + fr).
This approach is expected to be less biased than a naive combined-sex analysis because it explicitly
accounts for the identified heterogeneity.

We then compared the estimates from standard MR (applied directly to combined-sex summary
statistics) with this sex-stratified combined estimate (Supplementary Fig. S15a). Across all four
comparator methods (IVW, MR-Egger, RAPS, MR-LDP), the standard MR, estimates (green lines)
were systematically different from the corresponding sex-stratified combined estimates (blue lines).

To verify that this observed divergence represents bias in the standard MR approach, we conducted
a targeted simulation study using parameters informed by the real-data analysis (setting the true
and (4 to the values obtained from MERLIN). The results (Supplementary Fig. S15b) confirm this
hypothesis. The boxplots for the standard MR methods are clearly biased (shifted away from the true
value indicated by the dashed line), while the boxplots for the sex-stratified combined MR, approach
are closer to the true average effect.

This real-data example, supported by targeted simulation, therefore provides strong evidence that
applying standard MR methods to combined data in the presence of significant sex heterogeneity can
lead to biased estimation of the average effect. This highlights the critical importance of using methods
that can appropriately model such heterogeneity effects.

S8 Supplementary Discussion: Biological Context of Causal
Findings in Section 2.6

Here, we provide a more detailed interpretation of our significant MR findings, connecting them with
existing neurobiological literature.
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S8.1 Causal Effect of Cerebellar Volume on Schizophrenia Risk

Our forward MR finding, indicating that increased volume of the left cerebellar cortex (IDP.0194)
elevates SCZ risk, aligns with the cerebellum’s recognized role in cognitive and emotional processes
disrupted in SCZ. This involvement is highlighted by functional neuroimaging studies [8, 9] and concep-
tualized within frameworks such as cognitive dysmetria, which implicates cortico-cerebellar-thalamo-
cortical (CCTC) circuits in the pathophysiology of the disorder [10]. While reports on cerebellar volume
changes in SCZ have been varied across studies, with some finding decreases and others increases or
no change, our specific causal finding points to a potentially pathogenic role for volumetric increases
in this specific cerebellar subregion, warranting further investigation into circuit-level disruptions.

S8.2 Causal Effects of Schizophrenia Liability on Brain Structure

Conversely, our analyses show that SCZ liability exerts causal effects on multiple sensorimotor do-
mains. The finding of reduced cortical surface area in the left paracentral lobule (IDP.0664) aligns
with evidence suggesting early neurodevelopmental deficits in somatomotor integration in individuals
with SCZ [11]. Furthermore, we observed microstructural alterations in the cerebral peduncles, marked
by a decreased orientation dispersion index (IDP.1991, IDP.1992) and an elevated mode of anisotropy
(IDP.1541, right). The cerebral peduncles contain major corticofugal tracts (e.g., corticospinal, corti-
cobulbar). These findings likely reflect white matter reorganization within these pathways, consistent
with diffusion tensor imaging studies reporting widespread white matter alterations in both first-
episode [12] and treatment-resistant [13] SCZ, which may also involve hemispheric asymmetries [14].
Such diffusion metric alterations may point towards progressive axonal changes (e.g., changes in density
or myelination) and could underlie both motor coordination deficits (via disrupted efferent signaling)
and cognitive disorganization (via impaired cortico-subcortical communication) [12, 14].

S8.3 Sex-Specific Causal Effects of Schizophrenia Liability

Our most striking findings were the significant sex differences in the causal effects of SCZ on the
surface area of the left paracentral lobule (IDP.0664) and the volume of the left nucleus accumbens
(IDP.0015). These sex-specific patterns are highly plausible given the extensive literature documenting
sex differences in brain structure, cognition, and clinical presentation in SCZ [15]. Our results suggest
that schizophrenia may exert more detrimental effects on neural circuits relevant to cognition and
behavior in males. The paracentral lobule is critical for sensorimotor function, and its alteration
may relate to motor abnormalities often seen in SCZ. The nucleus accumbens is a core component
of the brain’s reward system, and its dysfunction is linked to negative symptoms and motivational
deficits. The more pronounced volume reduction in males could contribute to observed sex differences
in these clinical features or associated cognitive impairments [16]. This provides a potential causal
neurobiological underpinning for why males often experience an earlier onset and more severe course
of illness.
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Figure S1. Simulation performance of MERLIN and standard MR methods for estimating
the average causal effect (f“). Simulation assumed a true average and interaction effect
pW = pM = 0.3 and were based on 500 replicates. Standard MR methods included MR-LDP,
RAPS, IVW, and MR-Egger. Boxplots of average effect estimates (4)) are shown across
varying proportions of exposure variance explained by GXE effects (h}z,(c,) = 0.1,0.15,0.3) and
varying correlations between GWAS and GWIS instrument effects (p,_,; x-axis within each plot:
0, 0.4, 0.8), with horizontal pleiotropy (hz,(a) = 0,0.05,0.1). Dashed red lines indicate the true @
values.
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Figure S2. Simulation performance of MERLIN and standard MR methods for estimating
the average causal effect (8). All simulations assumed a true interaction effect S =0
and were based on 500 replicates. Standard MR methods included MR-LDP, RAPS, IVW, and
MR-Egger. (a) Boxplots of average effect estimates () from MERLIN and standard MR
methods. Performance is shown across varying proportions of exposure variance explained by



GxE effects h)Z,(G,) = 0.1,0.15,0.3) and varying correlations between GWAS and GWIS
instrument effects (p(4_); x-axis within each plot: 0, 0.4,0.8). Scenarios are presented for true
B = 0 with horizontal pleiotropy (hz(g) = 0,0.05,0.1). Dashed red lines indicate the true g

values. (b) Type | error rates for testing S = 0, corresponding to the simulation conditions in
panel (a). The dashed red line indicates the nominal 0.05 significance level. (c, d) Statistical
power to detect B4 = 0 as a function of the true £ magnitude, assuming p,_, = 0, with

hz,(a) =0 and 0.1, respectively. The plot also shows type | error at g = 0. Solid lines

represent performance for all methods with h}z,(a,) = 0.1. Dashed lines illustrate MERLIN's
performance with stronger GxE signals for exposure h’p, = 0.15,0.3.
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Figure S3. Simulation performance of MERLIN and standard MR methods for estimating
the average causal effect (f“). Simulation assumed a true average and interaction effect
pW =03, B9 =0 and were based on 500 replicates. Standard MR methods included MR-
LDP, RAPS, IVW, and MR-Egger. Boxplots of average effect estimates (84)) are shown across
varying proportions of exposure variance explained by GXE effects (h}z,(c,) = 0.1,0.15,0.3) and
varying correlations between GWAS and GWIS instrument effects (p,_,; x-axis within each plot:
0, 0.4, 0.8) with horizontal pleiotropy (hz,@ = 0,0.05,0.1). Dashed red lines indicate the true g™
values.
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Figure S4. MERLIN accurately estimates interaction effects () and demonstrates
superior statistical power in simulations. All simulations assumed a true average effect
B = 0.3 and were based on 500 replicates. (a) Performance is shown across varying GXE
signal strengths for exposure (hf,m,); columns), correlations between GWAS and GWIS



instrument effects (p,_;; x-axis of boxplots), and levels of horizontal pleiotropy (h%); rows).

B
Dashed red lines indicate the true % = 0. Box plots show the unbiasedness of interaction
effect estimates (8(°) from MERLIN and sex-stratified standard MR methods when the true
B = 0. (b) Power comparison among MERLIN and sex-stratified standard MR methods in the
detection of () = 0 for a discrete modifier in scenarios with no GWAS-GWIS correlation
(p4—; = 0) for varying horizontal pleiotropy (hi:@) and GxE signal strengths (h}z,(a,)). All methods
control type | error (at true B = 0). (c) Power comparison as in (b) but in the presence of
GWAS-GWIS correlation (p,_; = 0.4). MERLIN shows a power advantage. (d) Box plots show
the unbiasedness of ) (true B = 0) for a continuous modifier across conditions analogous
to those in panel (a). (e) Statistical power of MERLIN in the detection of g # 0 for a
continuous modifier. Power increases with true ¢ magnitude and GXE signal strength (h}z,(g,)),

with type | error controlled, across various p,_; values (shown for h;(a) =0).
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Figure S5. MERLIN accurately estimates interaction effects (f) in simulations. All
simulations assumed a true interaction effect S0 = 0.3 and were based on 500 replicates. (a)
Box plots show unbiasedness of interaction effect estimates () from MERLIN and sex-
stratified standard MR methods when the true W = 0.3 for a discrete modifier. (b) Box plots
show unbiasedness of interaction effect estimates () from MERLIN and sex-stratified
standard MR methods when the true g = 0 for a discrete modifier. Dashed red lines in both
(a) and (b) indicate the true % = 0.3. In both (a) and (b), performance is shown across varying
GXxE signal strengths for exposure (hz(m); columns), correlations between GWAS and GWIS

instrument effects (p,_;; x-axis of boxplots), and levels of horizontal pleiotropy (hﬁ(G), rows).
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Figure S6. MERLIN demonstrates superior statistical power in simulations. (a)
Simulations assumed a true average effect 54 = 0 and were based on 500 replicates. Power
comparison between MERLIN and sex-stratified standard MR methods in detecting g # 0
for a discrete modifier in scenarios with no GWAS-GWIS correlation (p,_; = 0.8) for varying
horizontal pleiotropy (h;(a)) and GxE signal strengths (h}z,(a,)). Both methods control type | error

(at true B = 0). (b) Power comparison as in (a) but with ) = 0.3 and in the presence of

GWAS-GWIS correlation (p,_; = 0.8). MERLIN shows a power advantage.
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Figure S7. Simulation performance of MERLIN and standard MR methods for estimating
the average causal effect (8Y) and the interaction effect () when the sample is
imbalanced (the number of male samples is three times that of female samples). (a) Box
plots show the average effect estimates (54)) from MERLIN and standard MR methods when
B = 0. Performance is shown across varying proportions of exposure variance explained by
G x E effects (h)Z,(G,) = 0.1,0.15,0.3) and fixed correlations between GWAS and GWIS

instrument effects (p,_; = 0). Scenarios are presented for true g™ =0 with horizontal
pleiotropy (h;(,;) = 0). Dashed red lines indicate the true ™ values. (b) Statistical power to



detect p = 0 as a function of the true B magnitude, while varying h}z,(a,) = 0.1, 0.15, 0.3,
assuming p,_; =0, and with h;(g) = 0. The plot also shows type | error at g =0. (c)
Boxplots of the interaction effect estimates () from MERLIN and sex-stratified standard MR
methods when B = 0. The other settings are the same as in (a). (d) Power of the interaction

effect estimates (V) from MERLIN and sex-stratified standard MR methods when @ = 0.
The other settings are the same as in (b)
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Figure S8. Simulation performance of MERLIN and standard MR methods for estimating
the average causal effect (8(Y) in sample overlaps. In all simulations, sample overlaps for
males and females are each 20,000. (a) The QQ-plot of ) obtained by MERLIN and
standard MR methods when g™ = 0 in scenarios with no GWAS—-GWIS correlation (p,_;, = 0)
for varying interaction effect (3(") and GXE signal strengths (hi(c,)) (b) Estimates of g®

comparison as in (a) but the true f“ = 0.3. MERLIN shows precise estimates. (c) The power
of ™ comparison as in (a), obtained by MERLIN and standard MR methods.
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Figure S9. MERLIN accurately estimates interaction effects () and demonstrates
superior statistical power in simulations when sample-overlaps for males and females
are each 20,000. All simulations assumed a true average effect §4 = 0.3 and were based
on 500 replicates. (a) Boxplots showing unbiasedness of interaction effect estimates (8) from
MERLIN and sex-stratified standard MR methods when the true g% = 0 for a discrete modifier.
Performance is shown across varying GxE signal strengths for exposure (h}z,(c,); columns) with

no GWAS—-GWIS correlation (p,_; = 0) and fixed levels of horizontal pleiotropy (h;(c) = 0; rows).
Dashed red lines indicate the true g = 0. (b) Power comparison between MERLIN and sex-



stratified standard MR methods in detecting B # 0 for a discrete modifier in scenarios with
no GWAS-GWIS correlation (p,_; = 0) for fixed horizontal pleiotropy (h;(a) =0) and GxE
signal strengths (h}z,(a,)). All methods control type | error (at true B = 0). (c) Boxplots showing

that MERLIN provides unbiased 0 estimates (true ¢ = 0) for a continuous modifier across
conditions analogous to those in panel (a). (d) Statistical power of MERLIN to detect g # 0
for a continuous modifier. Power increases with true ) magnitude and GxE signal strength

(h;(g,)), with type | error controlled, across fixed p,_; = 0 values (shown for h;(a) =0).
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Figure S10. Sensitivity and sex-stratified analyses of MERLIN evaluated under negative
and positive control scenarios. (a) Sensitivity analyses of MERLIN estimates across different
IV selection thresholds for negative control. Across varying GWAS P value thresholds (5 x 1078,
1x1077, 5x1077), GWIS P value thresholds (5x107%, 1x 1075, 5x107%), and LD
clumping 7* thresholds (0.01,0.1,0.3), the estimates of B consistently covered 1 and those
of B consistently covered 0, as expected under the negative control setting. (b) Positive



control analysis evaluating MERLIN’s ability to detect known heterogeneity in the causal effect
of body mass index (BMI) on testosterone level. MERLIN treats sex as a modifier, directly
estimating the average effect (3¢ = —0.0512,P = 0.0083) and the sex-heterogeneity effect
(D = —0.1379, P =2.62 x 10~>*). Comparator methods provide overall average effects
(column “Average”) and sex-stratified estimates (columns “Male”, “Female”). The MERLIN-
derived sex-specific effects are consistent with these stratified results and published reports,
demonstrating successful detection of the significant moderation by sex. All data are presented
as effect estimates (P value) with 95% Cls. (c) Sensitivity analyses of MERLIN estimates across
different IV selection thresholds for the positive control. Across varying GWAS P value
thresholds (5x 1078, 1x 1077, 5x 10~7), GWIS P value thresholds (5 x 107%, 1 x 1075,
5% 107%), and LD clumping r* thresholds (0.01,0.1,0.3), the estimates of B remained
consistent and systematically deviated from the null, demonstrating significant sex-related
heterogeneity. The estimates of B4 were also relatively stable within the same r? threshold
and became increasingly significant as the selection cutoffs grew more stringent (i.e., as the
number of IVs decreased).
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Figure S11. Genetic correlation, bidirectional MR testing, and MERLIN-based effect
estimation between schizophrenia (SCZ) and brain imaging—derived phenotypes (IDPs).
(a) Tissue and measurement distribution of brain IDPs after genetic correlation analyses. (b)
Quantile—quantile plot of P values from the bidirectional Mendelian randomization analysis
between SCZ and 49 brain IDPs. Average effects were estimated using IVW, MR-Egger, RAPS,
MR-LDP, and MERLIN, whereas the heterogeneity effect could be estimated solely via MERLIN.
IVW and MR-Egger were underpowered, whereas MERLIN provided more reliable estimates
for both the average and heterogeneity effects. (c) MERLIN estimated significant average
effects in IDP.0194-SCZ, SCZ-IDP.1992, and SCZ-IDP.1541. In the scatter plots, each data
point corresponds to an individual SNP instrument. Each plot displays outcome GWAS (I'®)
and GWIS (T'(¢D) effects versus exposure GWAS (@) and GWIS (p¢D) effects; the slope of
the regression line corresponds to the average effect estimate, §4.
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Figure S12. Summary of MERLIN-identified causal effects and sex-specific heterogeneity
between schizophrenia (SCZ) and brain imaging—derived phenotypes (IDPs). (a) Forrest
plots displaying five Bonferroni-corrected significant causal average effects identified by
MERLIN involving schizophrenia (SCZ) and specific brain imaging-derived phenotypes (IDPs:
IDP.0194, IDP.0664, IDP.1991, IDP.1992, IDP.1541). For each association, MERLIN’s average
effect estimates (84)) are shown alongside those from comparator MR methods (IVW, MR-
Egger, RAPS, MR-LDP) and demonstrate directional consistency and comparable magnitudes.
Effect estimates and 95% confidence intervals (Cls) are plotted; P values are provided. (b)
Detailed analysis of two significant Bonferroni-corrected sex-heterogeneity effects identified by



MERLIN for the influence of SCZ on IDP.0664 and IDP.0015. Results are presented as effect
estimate (P value) with 95% Cls. The “Average” column displays the average effect estimates
from MERLIN and the comparator methods. The “Male” and “Female” columns display sex-
specific causal effect estimates. For MERLIN, these are derived from its unified model (8,, =
L@+ pD: . =BAW — D assuming male coded as +1 relative to the average effect); for IVW,
MR-Egger, RAPS, and MR-LDP, these are results from traditional analyses stratified by sex.
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Figure S13. Sensitivity and age/sex-heterogeneity analyses for Testosterone-BD and
BMI-CAD associations using MERLIN and comparator MR methods. (a) Comparative
analysis of testosterone’s effect on BD, with results presented as estimates (P value) and 95%
Cls. The “Average” column shows average effect estimates: for MERLIN, this is its average
effect parameter (8 = 0.1670, P = 0.1925); for IVW, MR-Egger, RAPS, and MR-LDP, these
are their respective overall average effect estimates. MERLIN also directly estimated the causal
interaction effect for BD () = 0.2894, P = 0.0047), which was statistically significant after
Bonferroni correction for six traits tested. The “Male” and “Female” columns display sex-specific
causal effect estimates: for MERLIN, these are derived from its unified model (8, = f® + f0;
Br = @ — BD assuming male coded as +1 relative to the average effect); for VW, MR-Egger,
RAPS, and MR-LDP, these are results from traditional analyses stratified by sex. (b) Sensitivity
analyses of MERLIN estimates across different IV selection thresholds for Testosterone-BD.
Across varying GWAS P value thresholds (5% 1078, 1x 1077, 5x 1077), GWIS P value
thresholds (5 x 1078, 1 x 1077, 5% 1077), and LD clumping r? thresholds (0.1,0.3,0.5), the
estimates of B remained consistent and systematically deviated from the null in both the
original and alternative settings, demonstrating significant sex-related heterogeneity. The
estimates of p“ were also relatively stable and became increasingly significant as the
selection cutoffs grew more stringent (i.e., as the number of IVs decreased). (c) Sensitivity
analyses of MERLIN heterogeneity effect estimates across different IV selection thresholds for
BMI-CAD. Across varying GWAS P value thresholds (5 x 1078, 1 x 1077, 5x 1077), GWIS P



value thresholds (5 x 107%, 1 x 107°, 5x 107%), and LD clumping 72 thresholds (0.1,0.3,0.5),
the estimates of F® remained consistent and systematically deviated from the null,
demonstrating pronounced age-related heterogeneity. (d) Coefficient of BMI on the risk of CAD
across baseline age from the logistic regression model. The graph illustrates the estimated
coefficient (log odds) of standardized BMI on CAD risk as a function of the standardized
baseline age, derived from a logistic regression model in the UKB data. The line represents the
estimated coefficient, and the shaded area shows the 95% CI. The negative slope indicates
that the positive association between BMI and CAD risk significantly attenuates with advancing
age (interaction § = —0.0294, P <3 x 1077).
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Figure S14. MERLIN accurately estimates the average effect (8)) and interaction effects
(B?) and demonstrates superior statistical power in simulations. All simulations were
based on 500 replicates. (a) Boxplots showing unbiasedness of the average effect estimates
(@) from MERLIN and MERLIN(p) when the true g™ = g = 0. Performance is shown
across varying GXE signal strengths for exposure (hi(c,); columns) with no GWAS-GWIS

correlation (p,_; = 0) and fixed levels of horizontal pleiotropy (h;(a) = 0; rows). Dashed red
lines indicate the true f“ = 0. (b) Power comparison between MERLIN and MERLIN(p)
detection of ) = 0 (when B = 0)in scenarios with no GWAS-GWIS correlation (p,_; = 0)
for fixed horizontal pleiotropy (hlz;(a) = 0) and GXxE signal strengths (h}z,(a,)). Both methods
control type | error (at true B = 0). (c) Box plots show MERLIN and MERLIN(p) estimates of

BD for the same scenario as (a). (d) Statistical power of MERLIN in the detection of g = 0
for the same scenario as (b)
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Figure S15. Bias in standard MR average effect estimation under heterogeneity for the
SCZ — IDP.0664 association. (a) In the real-data analysis, the average effect (3(4) estimates
from standard MR (green) diverged from the more robust sex-stratified combined MR estimates
(blue). (b) A targeted simulation confirmed this bias. Boxplots of estimates from standard MR
(green) show systematic bias away from the true value (dashed line, 4 =-0.065), while the
sex-stratified combined MR estimates (blue) are closer to the true average effect.
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