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Section 1. Materials and Methods
[bookmark: _Hlk209079035]Materials
Ce(NO3)3·6H2O (99.99%), Zr(NO3)4·5H2O (99.99%), and anhydrous citric acid were purchased from Aladdin Industrial Corporation. XC-72R carbon black, Nafion and Nafion N115 membrane were purchased from CABOT, U.S.A. Ethylene glycol (C2H6O2, AR, ≥ 99.0%) and isopropanol (C3H8O, AR) were purchased from Tianjin Fuyu Fine Chemical Co., Ltd. H2SO4 was purchased from Sinochem Reagent Co., Ltd. All reagents were used as received without further purification. Ultrapure water (18.2 MΩ·cm) from a Milli-Q system was used in all aqueous preparations.
Electrochemical sensor testing
Gas detection tests were carried out using a static chamber method. A defined volume of standard NO2 gas was injected into a 250 mL gas collection cylinder using a precision gas-tight syringe to obtain the desired concentration. For instance, to prepare a 10 ppm NO2 mixture, 12.5 mL of 200 ppm NO2 standard gas was injected into the sealed 250 mL chamber and allowed to equilibrate for 3 min before measurement. The same approach was employed to generate NO2, NO, CH3OH, H2S, C2H5OH, CO, NH3, and CH3COCH3 atmospheres for selectivity analysis.
The calibration formula for gas concentration is detailed below
[bookmark: OLE_LINK38][bookmark: OLE_LINK21]All analytes were introduced from commercially certified standard gas mixtures supplied by Dalian Kerui Gas Co., Ltd. (China), each with a nominal concentration of 200 ppm (balance N2). The analytes tested included hydrogen sulfide (H2S), ammonia (NH3), methanol (CH4O), ethanol (C2H6O), nitric oxide (NO), acetone (C3H6O) and nitrogen dioxide (NO2).
Target concentrations were prepared using a static injection method with constant-volume replacement in a 250 mL gas-mixing bottle. Specifically, a defined volume of the standard mixture was injected while an equal volume of gas was simultaneously vented, keeping the total chamber volume constant; thus, the target concentration was calculated by

where (ppm) is the target analyte concentration in the mixing bottle,  (ppm) is the certified concentration of the standard gas mixture (200 ppm),  (mL) is the injected volume of the standard mixture, and  (mL) is the bottle volume (250 mL). During preparation, an equal volume of gas was vented while injecting , so that  remains constant and the above relation is valid. Air was used as the background gas during sensing measurements.
[bookmark: _Hlk172037396]Tests were performed under laboratory conditions (22±2 °C, 45±3% RH) using a multichannel potentiostat (CHI1030C, Shanghai Chenhua Instrument Co., Ltd.) in “i-t” mode. Long-term stability tests were conducted at room temperature (22±2 °C). We maintained the laboratory at room temperature before performing stability and other tests. We define the response current ΔI as the difference between the current values before and after exposure to the target gas: ΔI = I2 - I1, where I1 is the current value before contact with the gas and I2 is the current value after contact with the gas. The 90% value of ΔI was used to characterize the response and recovery times for adsorption and desorption. The slope obtained from a linear fit of ΔI and concentration indicated the sensitivity of the sensor. The saturated solutions of LiCl, MgCl2, Mg(NO3)2, NaCl, KCl, and KNO3 resulted in relative humidity (RH) of 11%, 33%, 54%, 75%, 85%, and 95%, respectively. 



Section 2. Morphology and Structural Characterization

X-ray diffraction (XRD) analysis revealed a systematic evolution in crystallographic structure with increasing quenching temperature. The magnified view shows that the peak near 42° first intensifies and then weakens with increasing quenching temperature, indicating a change in the phase composition.
As shown in the magnified view of Figure S11, characteristic peaks of the tetragonal phase are clearly observed around 41.8° and 41.9°. The peak intensity is highest at 600 °C, indicating the maximum tetragonal phase content at this temperature, which further validates the refinement results obtained from XRD and NPD analyses. These results support the interpretation that the metastable tetragonal phase is maximally stabilized at this temperature. The temperature-dependent phase transition underscores the critical role of kinetic arrest via rapid quenching in accessing and preserving nonequilibrium phase configurations.
[bookmark: OLE_LINK13]High-resolution XPS analysis of the Ce 3d region revealed characteristic peaks of both Ce3+ and Ce4+ oxidation states, with the Ce3+ related features centered at 885.4 and 903.9 eV. Notably, CeZrO4-600 exhibited a distinct shift of the Ce3+ peak toward lower binding energy, suggesting a modified electronic environment associated with increased oxygen vacancy concentration1. This is attributed to the formation of oxygen vacancies, which reduce neighboring Ce4+ ions to Ce3+ to maintain charge neutrality2. Oxygen vacancies can significantly influence the catalytic and electrical properties of materials3. The peaks at 529.3 eV (OL), 530.1 eV (OV), and 531.7 eV (OC) correspond to lattice oxygen, oxygen-deficient regions, and chemisorbed oxygen species, respectively4.
Nitrogen adsorption-desorption isotherms (Figure S15) showed minimal variation in BET surface area across all samples, indicating that the performance enhancement conferred by the quenching strategy arises not from increased surface area, but rather from the stabilization of metastable phases and associated lattice strain.

[image: ]
[bookmark: OLE_LINK27]Figure S1. X-ray diffraction patterns of CeZrO4, CeZrO4-S, CeZrO4-Q, CeZrO4-300, CeZrO4-600, and CeZrO4-900. The magnified view is shown on the right.


[image: ]
Figure S2. The Rietveld fitted powder X-ray diffraction pattern of CeZrO4.

Table S1
XRD Refined Structural Parameters of c-CeZrO4 
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0.25, 0.25, 0.25
	2.1(1)
2.1(1)
1.1(1)
	0.5
0.5
1


a = b = c = 5.2922(1) Å

Table S2
XRD Refined Structural Parameters of t-CeZrO4 
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0, 0.5, 0.150(5)
	0.5(1)
0.5(1)
1.7(8)
	0.5
0.5
1


a = b = 3.8190(1) Å  c = 5.3660(5) Å

[image: ]
Figure S3. The Rietveld fitted powder X-ray diffraction pattern of CeZrO4-300.

Table S3
XRD Refined Structural Parameters of c-CeZrO4 of CeZrO4-300
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0.25, 0.25, 0.25
	2.2(1)
2.2(1)
2.3(2)
	0.5
0.5
1


a = b = c = 5.2728(7) Å

Table S4
XRD Refined Structural Parameters of t-CeZrO4 of CeZrO4-300
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 2a
 2a
 4d
	0, 0, 0
0, 0, 0
0, 0.5, 0.209(2)
	0.4(1)
0.4(1)
0.5(3)
	0.5
0.5
1


a = b = 3.7466(1) Å  c = 5.3353(1) Å


[image: ]
Figure S4. The Rietveld fitted powder X-ray diffraction pattern of CeZrO4-600.


Table S5
XRD Refined Structural Parameters of c-CeZrO4 of CeZrO4-600
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0.25, 0.25, 0.25
	0.5(1)
0.5(1)
2.3(4)
	0.5
0.5
1


a = b = c = 5.3798(8) Å


Table S6
XRD Refined Structural Parameters of t-CeZrO4 of CeZrO4-600
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 2a
 2a
 4d
	0, 0, 0
0, 0, 0
0, 0.5, 0.222(1)
	1.7(1)
1.7(1)
1.7(1)
	0.5
0.5
1


a = b = 3.7439(4) Å  c = 5.2424(6) Å


[image: ]
Figure S5. The Rietveld fitted powder X-ray diffraction pattern of CeZrO4-900.


Table S7
XRD Refined Structural Parameters of c-CeZrO4 of CeZrO4-900
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0.25, 0.25, 0.25
	2.0(1)
2.0(1)
2.3(2)
	0.5
0.5
1


a = b = c = 5.2764(5) Å


Table S8
XRD Refined Structural Parameters of t-CeZrO4 of CeZrO4-900
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 2a
 2a
 4d
	0, 0, 0
0, 0, 0
0, 0.5, 0.205(2)
	0.3(1)
0.3(1)
0.8(4)
	0.5
0.5
1


a = b = 3.7455(1) Å  c = 5.3391(1) Å




[image: ]
Figure S6. The Rietveld fitted powder X-ray diffraction pattern of CeZrO4-S.


Table S9
XRD Refined Structural Parameters of c-CeZrO4 of CeZrO4-S
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0.25, 0.25, 0.25
	1.2(1)
1.2(1)
1.0(1)
	0.5
0.5
1


a = b = c = 5.2772(4) Å


Table S10
XRD Refined Structural Parameters of t-CeZrO4 of CeZrO4-S
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 2a
 2a
 4d
	0, 0, 0
0, 0, 0
0, 0.5, 0.219(3)
	0.4(2)
0.4(2)
2.3(5)
	0.5
0.5
1


a = b = 3.7964(4) Å  c = 5.3733(5) Å


[image: ]
Figure S7. The Rietveld fitted powder X-ray diffraction pattern of CeZrO4-Q


Table S11
XRD Refined Structural Parameters of c-CeZrO4 of CeZrO4-Q
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0.25, 0.25, 0.25
	1.2(1) 
1.2(1)
1.7(1)
	0.5
0.5
1


a = b = c = 5.2699(6) Å


Table S12
XRD Refined Structural Parameters of t-CeZrO4 of CeZrO4-Q
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 2a
 2a
 4d
	0, 0, 0
0, 0, 0
0, 0.5, 0.244(5)
	0.6(1)
0.6(1)
1.0(6)
	0.5
0.5
1


a = b = 3.7955(5) Å  c = 5.3744(1) Å

Table S13
NPD Refined Structural Parameters of c-CeZrO4 of CeZrO4-600
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 4a
 4a
 8c
	0, 0, 0
0, 0, 0
0.25, 0.25, 0.25
	1.2(6)
1.2(6)
0.8(4)
	0.5
0.5
0.991(4)


a = b = c = 5.3077(1) Å

Table S14
NPD Refined Structural Parameters of t-CeZrO4 of CeZrO4-600
	Atom
	 Site
	   x, y, z
	Beq (Å2)
	Occupancy

	Ce
Zr
O
	 2a
 2a
 4d
	0, 0, 0
0, 0, 0
0, 0.5, 0.217(1)
	0.4(1)
0.4(1)
1.1(1)
	0.5
0.5
0.991(4)


a = b = 3.6861(1) Å  c = 5.2349(1) Å
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[bookmark: _Hlk192691230][bookmark: _Hlk196212212]Figure S8. Variable temperature X-ray diffraction (VT-XRD) patterns of CeZrO4-600.

[image: ]
Figure S9. VT-XRD patterns of CeZrO4-600.

[image: ]
Figure S10. VT-XRD local magnified patterns of CeZrO4-600.


[image: ]
Figure S11. Peak position difference chart between cubic c-CeZrO4 (Fm-3m) and tetragonal t-CeZrO4 (P42/nmc) of CeZrO4-600.


[image: ]
Figure S12. Scanning electron microscopy (SEM) images of (a), (b) CeZrO4; (c), (d) CeZrO4-300; (e), (f) CeZrO4-600; (g), (h) CeZrO4-900.

[image: ]
Figure S13. Transmission electron microscopy (TEM) of (a) CeZrO4, (b) CeZrO4-600. The inset image is obtained using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).

[image: ]
Figure S14. Energy Dispersive X-ray Spectroscopy (EDS) mapping of CeZrO4-600.
[image: ]
Figure S15. N2 sorption isotherms and Brunauer–Emmett–Teller (BET) surface area of (a) CeZrO4; (b) CeZrO4-300; (c) CeZrO4-600; (d) CeZrO4-900.



[image: ]
Figure S16. XPS survey spectrum of (a) CeZrO4; (b) CeZrO4-S, (c) CeZrO4-Q, (d) CeZrO4-300, (e) CeZrO4-600, (f) CeZrO4-900.


[image: ]
Figure S17. XPS high-resolution Zr 3d spectra of (a) CeZrO4; (b) CeZrO4-S, (c) CeZrO4-Q, (d) CeZrO4-300, (e) CeZrO4-600, (f) CeZrO4-900.

[image: ]
[bookmark: _Hlk159350961]Figure S18. XPS high-resolution Ce 3d spectra of CeZrO4-Q and CeZrO4-S.



Table S15
The surface distribution of Ce3+ and Ce4+ in the sample
	Sample
	Ce3+/ Ce4+


	CeZrO4
	0.1575

	CeZrO4-300
CeZrO4-600
CeZrO4-900
   CeZrO4-Q
   CeZrO4-S
	0.1677
0.2629
0.1924
0.1639
0.1751



[image: ]
Figure S19. The Fourier transform spectra of the Ce L3-edge in R space for CeZrO4 and CeZrO4-600.


[image: ]
Figure S20. Wavelet transform contour plots of Ce for CeZrO4 and CeZrO4-600.


Section 3. Gas Sensing Properties

As shown in Figure 2a, exposure to 5 ppm NO2 induced markedly different current responses across the sensor series, with the CeZrO4-600 sensor exhibiting the highest response of 2926 nA. Additionally, response time, a critical factor in determining the detection efficiency of gas sensors, is highlighted in Figure 2a. CeZrO4-600 sensor shows rapid response/recovery times of 7/8 seconds. As shown in Figures 2c and S24, the sensor treated at 600 °C exhibited the best performance, with a response to 100 ppm NO2 that was ten times greater than that of the untreated CeZrO4.
[bookmark: OLE_LINK3]The electrochemical response of CeZrO4-600 for 3 ppm NO2 detection exhibits remarkable stability across a broad temperature range, demonstrating minimal temperature dependence. As the temperature varies from -25 °C to 75 °C, the response current shows only slight fluctuations, with a maximum deviation of 13.03% from the initial response at -25 °C. The slight decrease in current at 75 °C can be attributed to the partial evaporation of water, which impacts proton transport within the electrochemical cell, as typically observed in proton-conducting materials at elevated temperatures. However, this effect is minimal, and the sensor maintains robust performance even at 75 °C. The minimal variation in sensor response highlights the exceptional thermal stability of CeZrO4-600, ensuring reliable NO2 detection across a broad temperature range. The response remains stable, with a relative current change of less than 15%, demonstrating that temperature fluctuations have a negligible impact on performance. This stability is attributed to the high structural integrity of the material and the absence of significant degradation at elevated temperatures, as well as robust ionic conductivity of the sensors, which minimizes the influence of thermal effects. Such stability is vital for applications where consistent sensor performance is required in varying environmental conditions.
[bookmark: OLE_LINK29]Selectivity is a key criterion for practical gas sensors (Figure 3b). Sensors based on CeZrO4, CeZrO4-300, CeZrO4-600, and CeZrO4-900 were tested against a range of potential interfering gases, including nitrogen dioxide (1 ppm NO2), nitric oxide (200 ppm NO), methanol (200 ppm CH3OH), hydrogen sulfide (200 ppm H2S), ethanol (200 ppm C2H5OH), carbon monoxide (200 ppm CO), ammonia (200 ppm NH3), and acetone (200 ppm CH3COCH3).

[image: ]
[bookmark: _Hlk214293218]Figure S21. Baseline and current variation of CeZrO4-600 sensors after exposure to 0.05-10 ppm NO₂.

[image: ]
Figure S22. The continuous response and recovery curves to NO2 in the range of 0.05-10 ppm NO2. 


[image: ]
Figure S23. The continuous response and recovery curves to NO2 in the range of 0.5-20 ppm.



[image: ]
Figure S24. The relationship between response and the change of gas concentration of the sensors.


[image: ]
Figure S25. Temperature-dependent response of CeZrO4-600 sensor for 3 ppm NO2 detection


[image: ]
[bookmark: OLE_LINK2][bookmark: OLE_LINK8]Figure S26. 6-cycle dynamic sensing response of CeZrO4-S and CeZrO4-Q when exposed to 10 ppm NO2 at room temperature.
[bookmark: _Hlk165458910]
Section 4. Comparison of NO2 Sensing Materials and Gas Sensors for Various Fields

Table S16
[bookmark: _Hlk209545338]Comparison of the reported NO2 sensing materials at room temperature
	Sensing type
	Sensing
material
	Detection   range (ppm)
	Response*
(5 ppm)
	Stability
98% (days)
	Tempera
-ture (℃)
	LOD
(ppb)
	Ref.

	
electrochemical
sensor
	CeZrO4-600
	0.05-100
	2926
	90
	RT
	10
	This work

	
	TiN
	0.05-50
	631
	180
	RT
	2
	5

	
	In2O3 N-40min
	0.1-10
	350
	30
	RT
	10
	6

	
	C-SiO2-PTFE
	5-100
	17.5
	21
	RT
	4300
	7

	



chemiresistive
sensor
	TiOx-In2O3
	1-5
	35.8
	14
	RT
	1000
	8

	
	SiO2-SnS2-SiO2/SiO2
	0.1-15
	30
	28
	RT
	25
	9

	
	PtNR-CeO2
	0.5-40
	6
	30
	30
	20
	10

	
	SWCNT
	0.01-3
	41.2
	180
	150
	0.16
	11

	
	Au-Bix-In2-xO3
	0.1-1
	640
	14
	RT
	100
	12

	
	HIOTP-Ni
	1-100
	202.5
	10
	RT
	210
	13

	
	TiO2@NH2-MIL-125
	0.1-100
	150
	90
	RT
	1
	14

	
	MoS2/MXene
	2-20
	3
	14
	RT
	500
	15

	
	In2O3/PPy
	5-30
	60
	30
	RT 
	500
	16



Note: The table lists representative studies on advanced NO2 sensing materials published within the past three years. The limit of detection (LOD) was estimated as LOD = 3σ/S, where σ is the baseline noise and S is the sensitivity (slope).
Response*: Owing to the different calculation methods of response values in electrochemical and chemiresistive gas sensors. To more intuitively compare the response value differences between the two, for electrochemical sensors, the response* is defined as Igas /Iair. Given that the baseline currents of different electrochemical devices are inherently distinct, normalization was performed to enable consistent comparison across devices. In contrast, the response of semiconductor sensors is calculated as Rgas / Rair or Rair / Rgas. Both types of sensors evaluate changes induced by exposure to the target gas, with electrochemical sensors measuring current variation and semiconductor sensors tracking resistance changes.


[bookmark: _Hlk210746684][bookmark: _Hlk210052741]Table S17
[bookmark: _Hlk210154221]Comparison of the reported NO2 gas sensors across different fields
	Working principle
	Sensor types
	Response time
(s)
	LOD
(ppb)
	Ref.

	Optical
	BBCEAS 
	30
	0.007
	17

	
	TD-CEAS
	6
	0.09
	18

	
	LED-PA 
	70
	1
	19

	
	QEPAS
	0.1
	9
	20

	
	QCLAS
	150
	0.02
	21

	
	LSPR 
	600
	3.1
	22

	
	CAPS
	40
	0.04
	23

	
	DOAS
	300
	0.1
	24

	
	SERS
	5
	1000
	25

	
	FOS
	360
	50
	26

	Mass/Acoustic
	QCM
	30
	41
	27

	
	SAW
	80
	7.5
	28

	Electrical/Electrochemical
	MOF
	120
	500
	29

	
	FET
	240
	1.4
	30

	
	PADs
	300
	80
	31

	
	EGS (CeZrO4-600)
	7
	10
	This work



[bookmark: OLE_LINK1]Note: BBCEAS (Broadband Cavity-Enhanced Absorption Spectroscopy), TD-CEAS (Thermal Dissociation Cavity Enhanced Absorption Spectroscopy), LED-PA (Light-Emitting Diode-based Photoacoustic Spectroscopy), QEPAS (Quartz-Enhanced Photoacoustic Spectroscopy), QCLAS (Quantum Cascade Laser-based Spectrometer), LSPR (Localized Surface Plasmon Resonance), CAPS (Cavity Attenuated Phase Shift), DOAS (Differential Absorption Spectroscopy), SERS (Surface-Enhanced Raman Spectroscopy), FOS (‌Fiber Optic Sensor), QCM (Quartz Crystal Microbalance), SAW (Surface Acoustic Wave Sensor), MOF (Metal–Organic Framework), FET (Field-Effect Transistor), PADs (Paper-based Analytical Devices), EGS (Electrochemical Gas Sensor).
NO2 gas sensors can be broadly categorized according to their signal transduction mechanisms. Optical sensors (such as BBCEAS, TD-CEAS, LED-PA, QEPAS, QCLAS, LSPR, CAPS, DOAS, SERS, and FOS) rely on absorption, scattering, or photoacoustic effects to achieve ultralow detection limits and high selectivity, and have demonstrated outstanding performance in laboratory studies and atmospheric monitoring. However, their widespread deployment is hindered by system complexity and high cost. Mass and acoustic sensors (QCM, SAW) detect frequency or wave-propagation shifts induced by molecular adsorption, offering structural simplicity and good reproducibility, though with limitations in sensitivity and resistance to environmental interference. In contrast, electrochemical and electronic sensors (EGS, FET, MOF, PADs) directly convert molecular interactions with active materials into electrical signals, enabling rapid response, low power consumption, and facile integration into compact platforms. Among them, electrochemical gas sensors (EGS) have already been widely adopted in environmental monitoring and portable detection systems, and stand out as the most practically viable technology owing to their combined advantages in long-term stability, selectivity, and cost-effectiveness.
  Figure 3c data for optical analyzers were obtained from commercial BBCEAS instruments. The data cost of the electrochemical sensors encompasses the combined expenses associated with material preparation, sensor assembly, and backend hardware as detailed in this study. The volume and power consumption characteristics of the system are determined by the final backend wireless sensing module.


Table S18
Comparison of the reported NO2 gas sensors across different fields
	Working principle
	Sensor types
	Cost
(USD)
	Volume
(cm3)
	Power
(W)
	Comprehensive Factor

	Optical
	BBCEAS
	50,000
	18,000
	35
	0.907701

	
	TD-CEAS
	28,000
	330,000
	300
	0.377108

	
	LED-PA
	20,415
	90
	15
	0.968259

	
	QEPAS
	52,326
	6,250
	20
	0.931475

	
	QCLAS
	3,049
	36,000
	75
	0.889861

	
	LSPR
	487,600
	30,000
	20
	0.552736

	
	CAPS
	72,000
	45,907
	80
	0.819279

	
	DOAS
	14,000
	9439
	40
	0.940023

	
	SERS
	21,900
	62.868
	0.1
	0.981965

	Mass
	QCM
	5,500
	108
	0.00018
	0.995480

	Electrical/Electrochemical
	MOF
	69,000
	43,720
	230
	0.673729

	
	FET
	21,731
	13,029
	22
	0.948416

	
	EGS (CeZrO4-600)
	100
	9.8
	0.05
	1



Comprehensive Factor Calculation for Sensor Comparison
To compare the performance of different NO2 gas sensors, a comprehensive factor is introduced, incorporating key parameters such as cost, volume, and power. This factor enables a multi-dimensional assessment of sensor performance, with a focus on cost-effectiveness, compactness, and low power consumption. The following steps outline the calculation method used to derive the comprehensive factor, which is plotted on the z-axis of the 3D comparison plot, with response time and limit of detection (LOD) plotted on the x- and y-axes, respectively.
1. Normalization of Key Parameters
Each sensor parameter (cost, volume, power) is first normalized to remove unit differences and ensure comparability across sensors. The normalization is done using the following formula:

In the equation,  is the parameter value (cost, volume, or power consumption) for each sensor. 
and  represent the maximum and minimum values for that parameter across all sensors in the comparison set. Since lower cost, smaller volume, and lower power consumption are preferable, this formula effectively reverses the scaling, ensuring that better performing sensors (with lower cost, smaller size, and lower power) receive higher normalized values.
2. Weighted Average Calculation
Once the parameters are normalized, a weighted sum is used to calculate the comprehensive factor, which quantifies the overall performance of each sensor. The formula is as follows:

In the equation, , ,  are the weights assigned to cost, volume, and power, respectively. In this study, the weights are set as:



3. Calculation of Comprehensive Factor
The comprehensive factor is calculated for each sensor by applying the normalized values for cost, volume, and power along with the assigned weights. The sensor with the lowest cost, smallest volume, and lowest power consumption will have the highest comprehensive factor, indicating superior overall performance in terms of both performance and practical deployment.
4. Result
For the sensors evaluated, the EGS (CeZrO4-600) sensor achieves the highest comprehensive factor (1.0000), placing it at the top of the 3D comparison plot. Other sensors show lower values, which reflect their relatively inferior performance based on cost, volume, and power considerations.



Section 5. Spectroscopic Characterization

To probe the molecular-level sensing mechanism, in situ Fourier transform infrared (In situ FTIR) spectroscopy was conducted during NO2 exposure (Figure 4a, b). The characteristic absorption band at 1918 cm-1 corresponds to NO stretching vibrations, while peaks near 1339 cm-1 are assigned to ionic nitrite species32.
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[bookmark: OLE_LINK6]Figure S27. (a) UV–vis diffuse reflectance spectra (UV–vis–DRS) of CeZrO4, CeZrO4-300, CeZrO4-600, and CeZrO4-900. (b) Tauc plots of CeZrO4, CeZrO4-300, CeZrO4-600, and CeZrO4-900.



Section 6. DFT Calculation

Method
All Density Functional Theory (DFT) calculations were performed using the Vienna Ab initio Simulation Package (VASP)33,34. The exchange correlation functional was described by the Perdew-Burke-Ernzerhof (PBE) functional method. It is based on the generalized gradient approximation (GGA). The cutoff energy base on the plane wave was set to 400 eV. Using K-point grids with densities of 2 × 2 × 1 for structure relaxations. A vacuum layer of 20 Å was introduced to avoid interlayer interactions. When the force on each atom is less than 0.01 eV/Å, the geometric optimization is terminated, and the energy convergence criterion was set to 1 × 10-5 eV. Moreover, the adsorption energy (Eads) was defined by the equation (1).
 (1)
[bookmark: OLE_LINK17]Among them, Eads, Egas+slab, Eslab and Egas respectively represent the total system energy of adsorption energy, adsorbing gas cubic (Fm-3m) and tetragonal (P42/nmc) phases of CeZrO4, energy of Fm-3m and P42/nmc, and the energy before adsorption of NO2 molecules. Bader’s quantum theory of atoms in molecules (QTAIM) was used to calculate electron transfer in the system. The electron transfer (Δρ) was defined by the equation (2).
 (2)

[image: ]
[bookmark: OLE_LINK22]Figure S28. Cubic (Fm-3m) c-CeZrO4 molecular model.
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Figure S29. Tetragonal (P42/nmc) t-CeZrO4 molecular model.
Section 7. Wireless NO2 Sensing and Detection System 

Method
To assess the practical performance of the portable CeZrO4-600-based NO2 sensor under real-world conditions, field tests were conducted near vehicle exhaust outlets. The sensor was integrated with a compact back-end circuit, transmitting NO2 concentration, temperature, and relative humidity data at 1 Hz via Bluetooth to a custom smartphone application for real-time monitoring. A commercially available, manufacturer-calibrated portable NO2 analyzer was used as a reference, with its sampling inlet positioned approximately 5-10 cm from the exhaust to evaluate dilution effects. Prior laboratory calibration ensured accurate sensor response, and interference tests confirmed negligible cross-sensitivity to other common exhaust gases. Measurements captured both cold-start and post-acceleration idle conditions, enabling assessment of dynamic NO2 fluctuations and the robustness of sensors under fluctuating temperature and humidity.
Correlation to Euro 7 Emission Limits
The observed exhaust NO2 concentration (3–30 ppm) falls within the range relevant to Euro 7 real-driving emission (RDE) monitoring, where on-road nitrogen oxides (NOx, mainly nitric oxide (NO) and nitrogen dioxide (NO2)) are tightly regulated to ensure compliance with next-generation emission standards (≤60 mg km-1 for gasoline and ≤80 mg km-1 for diesel vehicles)35,36. In typical vehicle exhaust, NO constitutes approximately 70–90% of total NOx, while NO2 accounts for the remaining fraction. However, since NO is rapidly oxidized to NO2 upon exposure to oxygen and sunlight in the exhaust plume, direct NO2 monitoring provides a more reliable indicator of atmospheric impact and regulatory compliance. Translating these regulatory limits into concentration ranges under realistic exhaust flow and dilution conditions yields typical NO2 levels of several ppm to tens of ppm during transient driving or idling phases. Therefore, the detection range and precision of the CeZrO4-600 sensor are well aligned with the Euro 7 RDE regime, confirming its suitability for compliance-oriented diagnostics and potential integration into onboard or portable emission monitoring systems designed for real-world conditions.
Calculation of Relative Error
The relative error (RE) of the NO2 sensor was calculated to evaluate measurement accuracy, using the following equation:

where Cmeasured is the NO2 concentration obtained from the wireless sensing system, and Creference is the known or nominal concentration during calibration. This metric provides a quantitative assessment of the sensor's precision across the tested concentration range.
The wireless module integrates a NO2 sensor with temperature and humidity sensors. A programmable controller discriminates among the sensor signals, which are processed through a signal conversion system and the STM32 F microcontroller. Data are then transmitted via a Bluetooth module (XY-MB-026 A) for real-time display on a mobile device, enabling accurate and instantaneous monitoring of environmental conditions.


[image: ]
Figure S30. Photograph of the wireless NO2 sensing module.
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Figure S31. Photograph of real-time on-site vehicle exhaust monitoring using the wireless NO2 sensing system.
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Figure S32. Dynamic response curves of the wireless NO2 detection system based on CeZrO4-600 over a concentration range of 0.1 to 10 ppm.
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Figure S33. a) Temperature and b) humidity variation curves under three different revolutions per minute (RPM) conditions.




Section 8. ML-Assisted Processing of Exhaust Signals

Method
We process NO2 concentration time series from sensor readings. Raw signals often contain impulsive spikes and high-frequency noise. To mitigate these issues before model training, we apply a two-stage preprocessing approach. First, we use a sliding-window Hampel filter to replace samples deviating significantly from the local median, which helps suppress impulsive noise while preserving underlying trends. Second, we apply IQR Winsorization to clip values outside a specified range, reducing the impact of rare, extreme excursions without distorting the central tendency. The preprocessed data are then standardized for model input.
Since clean ground truth is unavailable, we generate a pseudo-reference curve by applying a 4th-order Butterworth low-pass filter, followed by Savitzky-Golay smoothing. This smooth curve captures low-frequency components while filtering out high-frequency fluctuations, serving as weak supervision for model training. To enhance model stability and generalization, we standardize the time series using a global StandardScaler, then slice the signals into overlapping windows. Only training windows undergo augmentation, which includes additive Gaussian noise, small amplitude scaling, linear trend perturbation, weak sinusoidal perturbation, and random spikes. The last run is reserved for validation, while the rest is used for training.
We employ a residual Temporal Convolutional Network (TCN) to predict the noise componentfrom the input , yielding a denoised output . The network consists of an input convolution projecting to 64 channels, followed by eight residual blocks with 1D convolutions and dilation rates. After applying GELU activation, dropout, GroupNorm, and residual connections, a final convolution outputs the noise estimate. This architecture is designed to predict the noise rather than the clean signal, thus helping balance low and high-frequency components. The model is trained with a weighted sum of multiple loss functions: Smooth L1 loss between the model output and pseudo-reference, spectral consistency in the low-frequency band, DC consistency, low-frequency sliding consistency, peak consistency, and gradient consistency. The Adam optimizer is used, and training runs for up to 90 epochs with early stopping and gradient clipping to stabilize convergence. For postprocessing, we apply a three-stage approach to refine the denoised output. A rolling quantile baseline is computed to remove any residual baseline drift, followed by soft thresholding to suppress small noise while preserving weak signals. A hybrid gain calibration is applied to adjust for any amplitude discrepancies, and a soft-clipping function ensures that extreme values are not over-amplified. Finally, any negative values are clamped to zero to maintain physically plausible concentration levels.
To evaluate the performance of the model, we use several metrics, including Signal-to-Noise Ratio (SNR) for both the raw and denoised signals, frequency-domain SNR, event detection measures (e.g., precision, recall), and error distributions. These metrics provide a comprehensive understanding of the performance of model across various dimensions. All experiments are implemented in Python using NumPy, SciPy, scikit-learn, and PyTorch. Random seeds are fixed for reproducibility, and automatic mixed precision (AMP) is enabled when available.
Discussion and Analysis
The comparison of the cumulative distribution functions (CDF) and error histograms between the raw and denoised data demonstrates the substantial improvement brought by the machine learning (ML) algorithm in processing the exhaust signals (Figure S35). The CDF comparison reveals a clear distinction in the data distribution between the raw and denoised datasets, emphasizing the algorithm's effectiveness. Specifically, the denoised data exhibits a smoother CDF curve compared to the raw data, suggesting that the ML algorithm has successfully mitigated large error values and noise. This results in a more concentrated data distribution, indicating a significant reduction in noise while retaining key signal features, which is crucial for precise NO2 quantification.
In the error histograms, the denoised data shows a marked reduction in the frequency of extreme error values, especially in error intervals associated with large negative errors. This visual evidence confirms that the ML algorithm effectively identifies and corrects for errors introduced by environmental noise, sensor fluctuations, or transient disturbances. Furthermore, in error intervals with smaller errors, the denoised data demonstrates an increased frequency, signifying that the algorithm preserves actual signal fluctuations that were previously obscured by noise. This balanced approach improves the signal-to-noise ratio (SNR) without distorting the true sensor response, ensuring more accurate and reliable NO2 detection.
These improvements in error distribution directly enhance the performance of sensors under the stringent conditions outlined by Euro 7 emission regulations. A cleaner and more accurate error profile leads to more reliable NO2 quantification, ensuring that the sensor meets regulatory standards and performs effectively in real-world dynamic exhaust environments.

The scatter plot intuitively illustrates the relationship between the original reference values and the denoised values obtained through the machine learning algorithm (Figure S36). Despite some degree of data dispersion, the points exhibit a clear linear trend, indicating the stability and consistency of the algorithm in signal processing. The fitted line has a slope of 1.08, an intercept of -1.03, and a coefficient of determination (R2) of 0.87. The high R2 value confirms that the model accurately captures the correlation between the reference and denoised signals, suggesting that the algorithm effectively suppresses environmental noise while preserving key signal features. As discussed in the main text, this ensures that transient characteristics remain intact while the overall signal quality is markedly enhanced.
A slope greater than unity may imply slight amplification during denoising to emphasize critical signal components, whereas the negative intercept reflects a baseline offset possibly arising from model initialization or its treatment of specific noise patterns.This machine-learning–assisted signal reconstruction approach directly addresses the challenge of achieving high-precision NO2 detection under dynamic exhaust conditions.

The short-time Fourier transform (STFT) power spectra in Figure S37 highlight the ML capability of algorithm for frequency-domain noise suppression—essential for preserving transient NO2 features under dynamic exhaust conditions. In the raw spectrum, scattered high-power artifacts appear predominantly above 0.2 Hz, corresponding to mechanical and vibrational noise from engine operation. These components mask the low-frequency (~0.01–0.1 Hz) bands that encode genuine NO2 concentration dynamics, such as the transient 15 ppm peak observed during engine start (Fig. 5f).
After denoising, the high-frequency noise is markedly attenuated, while the low-frequency signal power remains well preserved. This frequency-selective refinement exemplifies the advantage of the ML approach: unlike conventional smoothing methods that blur transient signatures, the algorithm enhances the signal-to-noise ratio (SNR) from 2.6 dB to 11 dB without compromising temporal fidelity.
Such capability is transformative for Euro 7 RDE testing, where the CeZrO4-600 sensor successfully resolves rapid NO2 transients—from ignition peaks to steady-state levels—and sustains accurate performance under fluctuating humidity (~70% RH) and temperature (~35 °C) conditions that typically challenge commercial detectors.

Under the Euro 7 emission regulations, stringent performance requirements are imposed on NO2 sensors, making detection accuracy of paramount importance (Figure S38). The precision–recall (P–R) curve serves as a key metric for evaluating model performance. By comparing the P–R curves before and after denoising, deeper insights can be gained into the role of the machine-learning algorithm in enhancing the signal processing capability of the sensor.
As shown in the P–R plots, distinct differences are observed between the raw and denoised curves, indicating that the machine-learning algorithm substantially improves model performance. When the denoised curve lies above the raw one, it signifies that, at the same recall rate, the denoised model achieves higher precision. For NO2 sensing, this translates to a greater proportion of true NO2 signals among detected events, thereby reducing false positives and enhancing reliability.
In practical exhaust monitoring, raw signals are often distorted by complex and variable noise, leading to misclassification of NO2 events. After denoising, the model can more effectively extract true signal features from background interference, improving overall detection accuracy. In regions of high recall, the pronounced increase in precision after denoising likely stems from the ability of the algorithm to eliminate non–NO2-related disturbances, allowing more accurate recognition of genuine NO2 emissions.
Together with the findings presented in the main text, these results confirm that the machine-learning–assisted denoising process not only enhances signal quality but also enables high-precision quantitative NO2 detection. This capability directly supports compliance with the demanding Euro 7 standards, offering a robust technical foundation for next-generation exhaust emission monitoring and control systems.
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Figure S34. Schematic of the machine learning workflow
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Figure S35. Histogram and empirical cumulative distribution function (CDF) of the residuals for Raw-Ref and Denoised-Ref.
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Figure S36. Calibration scatter plot.
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Figure S37. Short-Time Fourier Transform (STFT) Power Spectra of a) Raw and b) Denoised NO2 Signals
[image: ]
Figure S38. Comparison of Precision - Recall (P - R) Curves of Raw and Denoised Data.
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