

1 **Supplementary Information for:**

2 **A framework for integrating cement carbonation sink into national greenhouse gas inventories**

3 Le Niu^{1,2}, Fengming Xi^{1,3,7*}, Robbie M. Andrew⁴, Songbin Wu^{2,5}, Jianwei Xu^{3,6}, Jiaoyue Wang^{1,7*},
4 Jiajie Li³, Wei Gu⁸, Xin Zhao⁶, Wenping Yuan⁹, Shilong Piao⁹, Anlin Shao³.

5 ¹ CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese
6 Academy of Sciences, Shenyang 110016, China

7 ² College of Resources and Environment, University of Chinese Academy of Sciences, Beijing,
8 100049, China

9 ³ Institute of Mineral Resources, University of Science and Technology Beijing, Beijing, 100083,
10 China

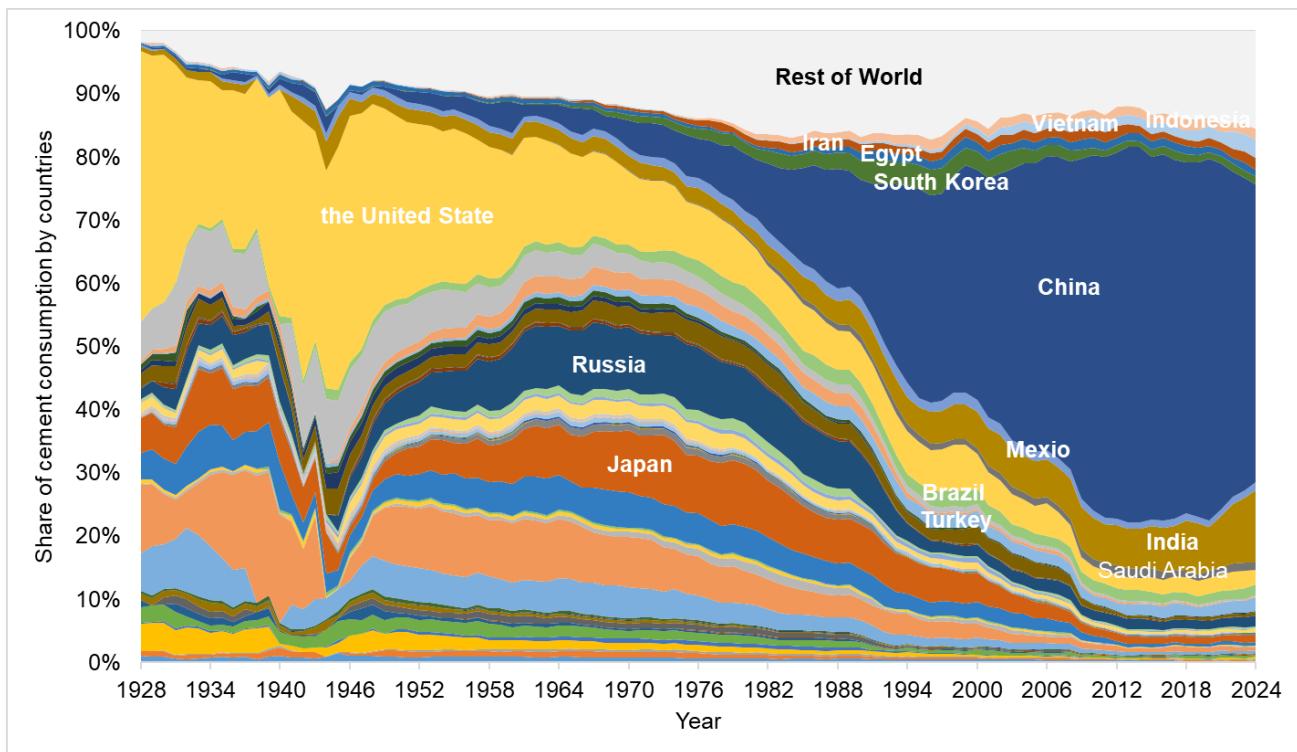
11 ⁴ CICERO Center for International Climate Research, Oslo 0349, Norway

12 ⁵ Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

13 ⁶ School of Computer & Communication Engineering, University of Science and Technology
14 Beijing, Beijing, 100083, China

15 ⁷ Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, 110016,
16 China

17 ⁸ School of Economics and Management, University of Science and Technology Beijing, Beijing,
18 100083, China


19 ⁹ Institute of Carbon Neutrality, Peking University, Beijing, 100871, China

Content

21	Supplementary Note 1: Countries covered in this study	3
22	Supplementary Note 2: The activity data in the Tier 1 and Tier 2 method.....	4
23	Supplementary Note 3: Global default absorption factors of cement carbonation in the Tier 1	
24	method	5
25	3.1 Global default carbon absorption factors in Tier 1A.	5
26	3.2 Global default carbon absorption factors in Tier 1B.....	5
27	Supplementary Note 4: The parameters for national absorption factors of cement carbonation in	
28	the Tier 2 method.	11
29	4.1 Global Parameters.....	12
30	4.1.1 CaO/MgO content in cement	12
31	4.1.2 Proportion of CaO converted to CaCO ₃	12
32	4.2 Local parameters.....	12
33	4.2.1 Input parameters in cement production stage	12
34	4.2.2 Input parameters in construction stage	13
35	4.2.3 Input parameters in service life stage.....	14
36	4.2.4 Input parameters in demolition stage.....	18
37	Supplementary Note 5: Comparison of annual cement carbonation sink derived from different	
38	activity data time spans.....	20
39	Reference	22
40		

41 **Supplementary Note 1: Countries covered in this study**

42 This study focuses on major cement consumption countries and the Annex I countries defined under
43 UNFCCC. There are 14 major cement consumption countries for which cement production data are
44 recorded annually by the United States Geological Survey (USGS)¹, including the United States of
45 America, Brazil, China, Egypt, India, Indonesia, Iran, Japan, South Korea, Mexico, Russia, Saudi
46 Arabia, Turkey, and Vietnam. The Annex I countries comprise 44 parties, and they are required to
47 submit their national GHGs inventory reports in common reporting format tables every year, with
48 consistent and high-quality time-series cement process emissions data. Among the 44 Annex I parties,
49 the European Union is not a sovereign state and does not report cement-related data as a separate entity,
50 Monaco's emissions have been combined with those of France, and Malta and Liechtenstein do not
51 have domestic cement producer, so these four parties were excluded. Therefore, the final dataset
52 comprises 50 countries in this study, the other 36 countries are: Australia, Austria, Belarus, Belgium,
53 Bulgaria, Canada, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece,
54 Hungary, Iceland, Ireland, Italy, Kazakhstan, Latvia, Lithuania, Luxembourg, Netherlands, New
55 Zealand, Norway, Poland, Portugal, Romania, Slovakia, , Slovenia, Spain, Sweden, Switzerland,
56 Turkey, Ukraine, and the United Kingdom. As shown in the Figure S1, the 50 countries coverage in
57 this study account for 88% global cement consumption.

58
59 **Fig. S1:** Share of cement consumption by 50 countries. The map highlights 14 major consumer
60 countries (77% global cement consumption). Detailed data see in Source Data.

61 **Supplementary Note 2: The activity data in the Tier 1 and Tier 2 method**

62 In the cement production stage, clinker production in reporting year is the activity data, the data should
63 prioritize official statistics or industry associations. If clinker production data is unavailable, it can be
64 calculated using the cement clinker ratio relative to cement production as following:

65
$$P_{clinker,y} = P_{cement,y} \times CKR_y$$

66 Where $P_{clinker,y}$ is clinker production in reporting year y , $P_{cement,y}$ is the cement production in
67 reporting year y , CKR_y is the clinker-to-cement ratios in year y , which defined as the mass ratio of
68 clinker consumption to cement production.

69

70 In the cement service life, demolition, and disposal stages, the activity data is the time-series of cement
71 consumption ($c_1, \dots, c_j, \dots, c_y$), corrected by clinker fraction:

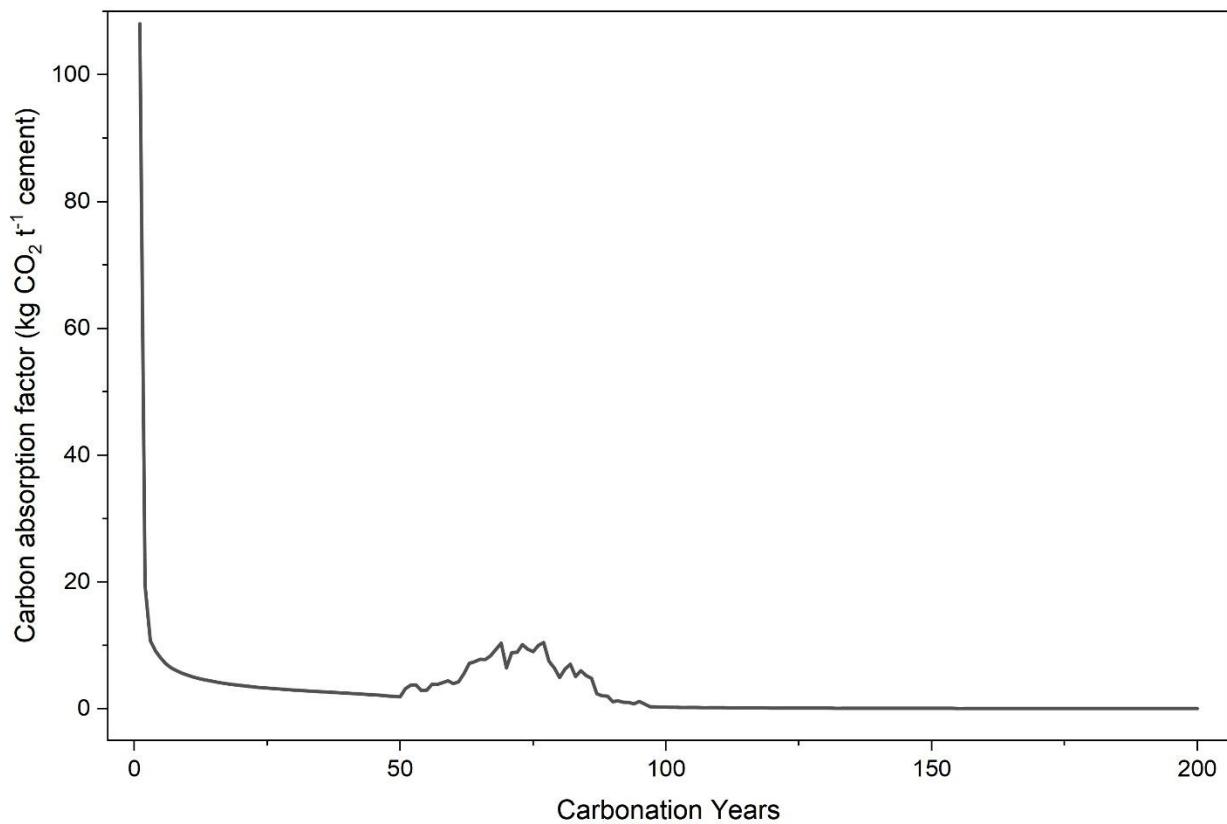
72
$$AD = C_{cement} \times F_{clinker}$$

73 AD is the activity data, C_{cement} is the cement consumption, $F_{clinker}$ is the clinker fraction in cement
74 materials.

75 Cement consumption can be can be estimated based on the cement production and trade data as
76 following:

77
$$C_{cement,y} = P_{cement,y} + Im_{cement,y} - Ex_{cement,y}$$

78 Where $C_{cement,y}$ is the cement consumption in reporting year y , $P_{cement,y}$ is the cement production
79 in year y , $Im_{cement,y}$ and $Ex_{cement,y}$ are the imports and exports of cement in year y .


80 $F_{clinker}$ is suggested to adopt a global default value of 0.95^{2,3}. If $F_{clinker}$ is not statistically analyzed,
81 it can be can be replaced by the clinker-to-cement ratios. We employed linear interpolation³ to
82 reconstruct historical clinker-to-cement ratios.

83 The source of activity data in 50 countries can be obtained in source data, and the activity data are in
84 Supplementary Table1.

85 **Supplementary Note 3: Global default absorption factors of cement carbonation in the Tier 1**
86 **method**

87 **3.1 Global default carbon absorption factors in Tier 1A.**

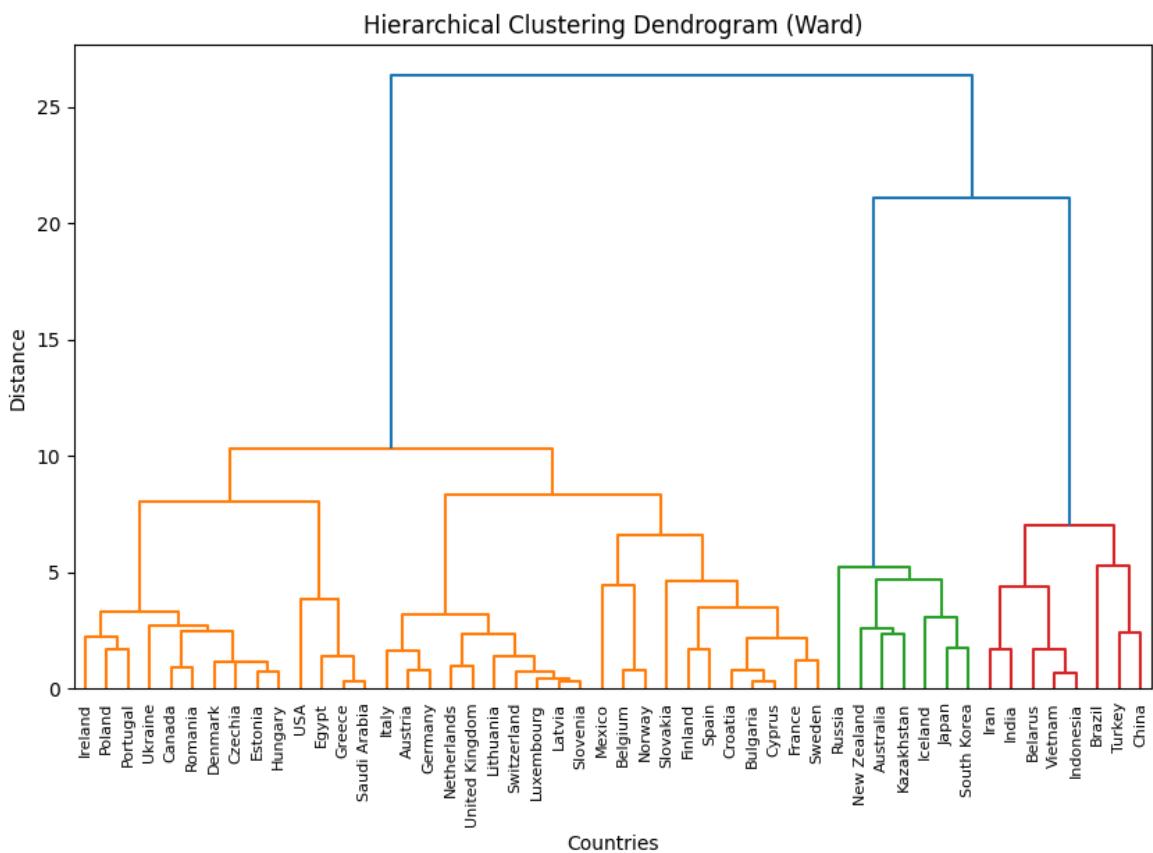
88 In the Tier 1 method, the global average absorption factors of cement carbonation (Fig. S2) were used
89 as default absorption factors. It is derived from the weighted average of cement carbon absorption
90 factors across 50 countries with the weights determined by cement consumption.

91

92 **Fig. S2:** Global default carbon absorption factor curves.

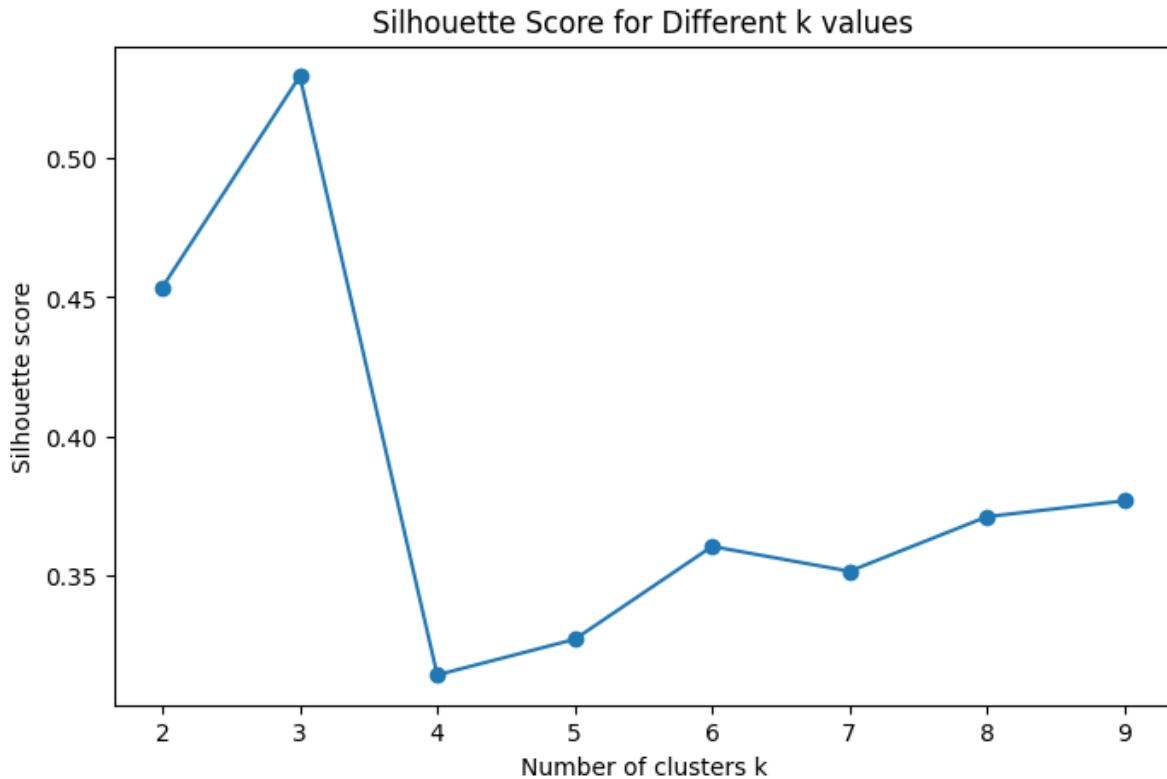
93 **3.2 Global default carbon absorption factors in Tier 1B.**

94 Principal component analysis (PCA) was applied to the five key parameters comprising 18 variables
95 to explore the dominant structural differences among 50 countries. The analysis indicates that the
96 parameter space can be effectively represented by two principal components, which explain 43.3%
97 and 28.6% of the total variance, respectively. Together, the first two principal components account for
98 71.9% of the total variance, capturing the dominant inter-country differences. Higher-order
99 components each explain less than 10% of the variance and were therefore not considered in the main
100 analysis.


101 The principal component loading matrix is presented in Table S1. The first principal component (PC1)
 102 is characterized by high positive loadings on the four particle-size distributions associated with RCA
 103 for new cement concrete, as well as on building lifespan, the third concrete strength class, and the
 104 proportion of cement used for concrete. In contrast, the particle-size distributions associated with
 105 landfill and stacking exhibit strong negative loadings on PC1. This component therefore represents a
 106 gradient from landfill-dominated disposal pathways toward intensive recycling into new cement
 107 concrete combined with longer building lifespans and higher concrete use intensity. The second
 108 principal component (PC2) shows high positive loadings on the particle-size distributions related to
 109 RCA for road base materials, while the particle-size distributions associated with landfill and stacking
 110 remain negatively loaded. PC2 thus captures the differentiation between road-base-oriented recycling
 111 pathways and landfilling practices.

112 **Table S1.** Principal component loading matrix

Carbonation parameters		Variables	PC1	PC2
Proportion of cement used for concrete		Cement_share	0.207183	0.049206
Distribution of concrete strength class	<C15	strength_1	-0.09287	-0.13692
	C16-C23	strength_2	-0.34776	-0.01134
	C24-C35	strength_3	0.501042	0.134247
	>C35	strength_4	-0.22113	-0.13134
Building lifespan		lifespan	0.696594	-0.1729
RCA for new cement concrete	<5mm	d1_g1	0.996141	-0.0778
	5-10mm	d1_g2	0.980302	-0.06474
	10-20mm	d1_g3	0.99974	-0.07341
	20-32mm	d1_g4	0.999272	-0.07274
RCA for Road base materials and others	<1mm	d2_g1	-0.32822	0.930131
	1-10mm	d2_g2	-0.36628	0.938027
	10-30mm	d2_g3	-0.37677	0.934331
	>30mm	d2_g4	-0.37974	0.93257
Landfill and Stacking	<10mm	d3_g1	-0.75776	-0.6603
	10-30mm	d3_g2	-0.75763	-0.66044
	30-50mm	d3_g3	-0.75777	-0.66028
	>50mm	d3_g4	-0.75772	-0.66035


113

114 Based on the principal component scores of the 50 countries, hierarchical clustering was first
 115 performed to explore the grouping structure. The dendrogram and agglomeration schedule suggest the
 116 presence of three distinct clusters (Fig. S3). To further validate the robustness of the clustering solution,
 117 K-means clustering was applied to the same principal component scores, and the results consistently
 118 indicate that three clusters provide the optimal partition of the countries (Fig. S4).

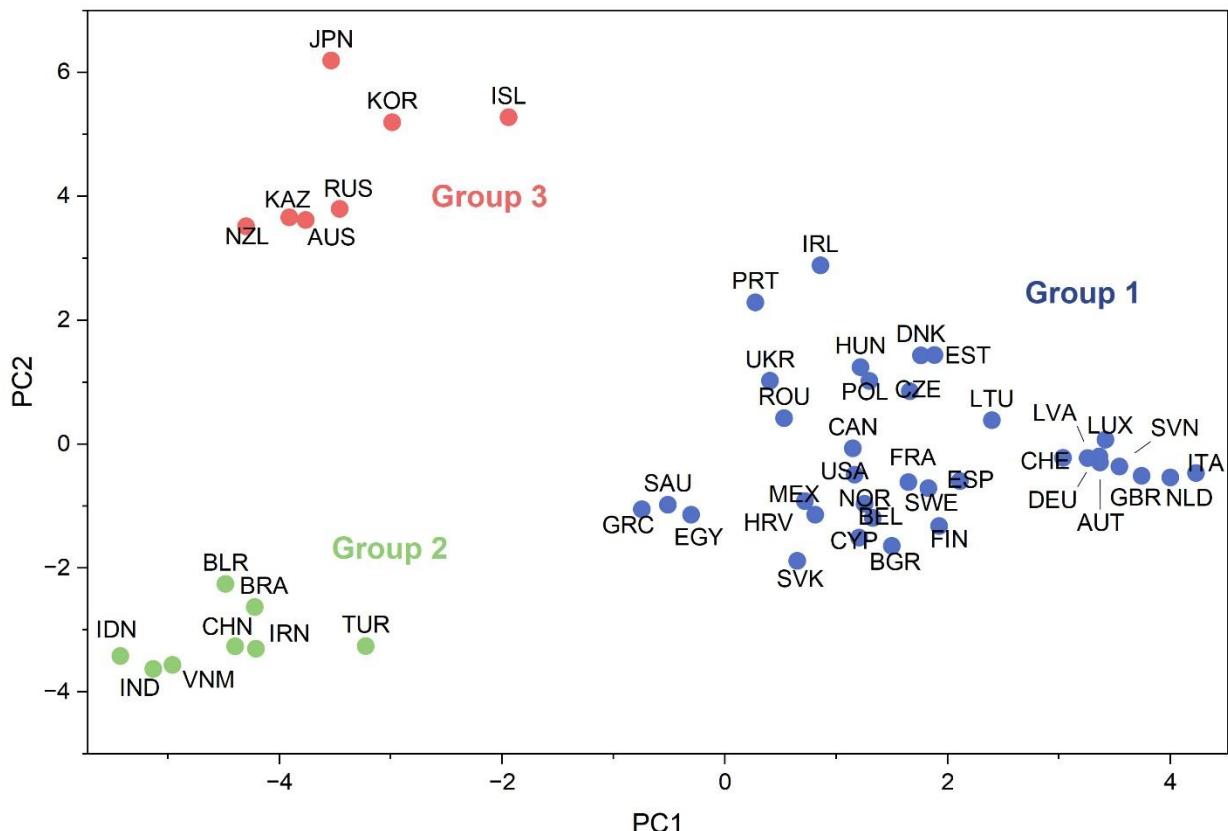
119

120 **Fig. S3:** Hierarchical clustering dendrogram.

121

122 **Fig. S4:** Silhouette coefficients for K-means clustering results at each k value.

123 On this basis, the 50 countries were classified into three distinct groups (Fig. S5).


124 Group I, characterized by high PC1 scores, consists mainly of Europe and other industrialized regions,
 125 including Austria, Germany, France, the United Kingdom, the United States, and Canada, as well as
 126 several emerging economies such as Mexico, Egypt, and Saudi Arabia. These countries are dominated
 127 by recycling of waste concrete into new cement concrete (67.57%), generally exhibit finer particle-
 128 size distributions (mainly 11-20mm), longer building lifespans, and higher proportions of cement used
 129 for concrete.

130 Group II is characterized by low scores on both PC1 and PC2 and mainly includes developing countries
 131 such as China and India. In these countries, waste concrete is predominantly disposed of through
 132 landfill and stacking (93.19%), with coarser particle sizes (mainly >50mm), shorter building lifespans
 133 (50 years), and relatively lower proportions of cement used for concrete (67.85%).

134 Group III exhibits relatively low PC1 scores but high PC2 scores, indicating a disposal structure
 135 dominated by the use of waste concrete as road base materials (71.54%). These countries are generally
 136 associated with shorter building lifespans (45 years) and a concrete strength distribution concentrated
 137 in the C16-C23 strength class (42.69%).

138 **Table S2.** The countries included in the three categories

	Group 1	Group 2	Group 3
Number of countries	35	8	7
Countries	Austria, Belgium, Bulgaria, Canada, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, the United Kingdom, the United State, Mexico, Egypt, Saudi Arabia	Belarus, Turkey, Brazil, Iran, India, China, Vietnam, Indonesia	Australia, Iceland, Japan, Kazakhstan, New Zealand, Russia, South Korea

139

140 **Fig. S5:** PCA score plot of countries based on the first two principal components (PC1 and PC2).

141 The ranges of the five key parameters for the three clusters are summarized in Table S3. Countries may
 142 identify their corresponding cluster by comparing national parameter values with these ranges, thereby
 143 selecting the appropriate Tier 1B default carbon absorption factors.

Table S3. The ranges of the five key carbonation parameters for the three groups.

Carbonation parameters		Group 1	Group 2	Group 3
Proportion of cement used for concrete		74.00% (49.74%-95.69%)	67.85% (55.01%-80.60%)	71.78% (40.90%-86.11%)
Distribution of concrete strength class	<C15	6.76% (0.03%-31.25%)	8.06% (1.50%-16.50%)	5.6% (0.33%-9.40%)
	C16-C23	35.99% (4.20%-77.00%)	45.20% (13.70%-83.12%)	42.69% (23.18%-65.80%)
	C24-C35	45.06% (11.33%-78.64%)	28.22% (2.09%-66.00%)	39.1% (15.48%-54.55%)
	>C35	13.82% (2.00%-47.34%)	19.51% (2.92%-47.34%)	14.3% (9.32%-23.48%)
Building lifespan		67 (35-100)	50 (40-100)	45 (13-90)
Distribution in different disposal types	RCA for new cement concrete	67.57% (41.20%-99.80%)	3.09% (0.00%-9.50%)	8.30% (2.00%-19.90%)
	RCA for Road base materials and others	13.88% (0.00%-48.10%)	3.79% (0.00%-12.50%)	71.64% (65.00%-88.50%)
	Landfill and Stacking	18.55% (0.20%-44.90%)	93.19% (83.30%-99.50%)	20.07% (4.70%-32.00%)
RCA for new cement concrete	<5mm	28.99% (14.90%-29.40%)	20.34% (14.90%-29.40%)	21.11% (14.90%-29.40%)
	5-10mm	14.12% (13.80%-25.10%)	20.86% (13.80%-25.10%)	20.26% (13.80%-25.10%)
	10-20mm	39.24% (39.20%-40.60%)	40.08% (39.20%-40.60%)	40.00% (39.20%-40.60%)
	20-32mm	17.65% (17.60%-19.40%)	18.73% (17.60%-19.40%)	18.63% (17.60%-19.40%)
RCA for Road base materials and others	<1mm	15.59% (11.70%-15.70%)	13.20% (11.70%-15.70%)	13.41% (11.70%-15.70%)
	1-10mm	27.48% (26.90%-27.50%)	27.13% (26.90%-27.50%)	27.16% (26.90%-27.50%)
	10-30mm	39.28% (39.20%-42.00%)	40.95% (39.20%-42.00%)	40.80% (39.20%-42.00%)
	>30mm	17.65% (17.60%-19.40%)	18.73% (17.60%-19.40%)	18.63% (17.60%-19.40%)
Landfill and Stacking	<10mm	17.80% (12.20%-25.60%)	17.80% (12.20%-25.60%)	17.80% (12.20%-25.60%)
	10-30mm	27.10% (19.50%-35.40%)	27.10% (19.50%-35.40%)	27.10% (19.50%-35.40%)
	30-50mm	17.30% (10.60%-22.50%)	17.30% (10.60%-22.50%)	17.30% (10.60%-22.50%)
	>50mm	37.80% (24.80%-48.40%)	37.80% (24.80%-48.40%)	37.80% (24.80%-48.40%)

Supplementary Note 4: The parameters for national absorption factors of cement carbonation in the Tier 2 method.

Activity Data	Input Parameters								Output
Clinker production	CKD generation rate based on clinker Proportion of CKD disposal CaO content in CKD Proportion of CaO converted to CaCO_3 for CKD recycling landfill								Production stage CKD
Cement consumption	Proportion of cement loss Loss rate of cement for concrete Loss rate of cement for mortar CaO content Proportion of CaO converted to CaCO_3 for concrete Construction waste concrete carbonation time								Construction stage Concrete loss Mortar loss
	Proportion of Cement for concrete Concrete strength classes ≤C15 C16-C23 C24-C35 >C35 Cement content for concrete ≤C15 C16-C23 C24-C35 >C35 Carbonation rate coefficients ≤C15 C16-C23 C24-C35 >C35 Correction factors of carbonation rate coefficients Cement additions CO ₂ concentration Cover and coating Concrete structure thickness Wall Beam Pillar Slabs CaO/MgO content Proportion of CaO converted to CaCO_3 for concrete Building lifespan								Service life stage Concrete Mortar
	Proportion of Cement for mortar Proportion of mortar utilization types Rendering, plastering, & decorating Maintenance and repairing Masonry Mortar thickness Rendering, plastering, & decorating Maintenance and repairing Masonry Proportions of masonry wall with render Both sides render One side render No render Mortar carbonation rate coefficients CaO/MgO content Proportion of CaO converted to CaCO_3 for mortar Building lifespan								
	Carbonation rate coefficients during demolition stage ≤C15 C16-C23 C24-C35 >C35 CaO/MgO content Proportion of CaO converted to CaCO_3 for concrete Exposure time in demolition stage								Demolition stage
147	Proportion of waste concrete in different disposal types New cement concrete Road base materials Landfill and Stacking Particle size distribution in different disposal types <5mm 5-10mm 11-20mm 21-32mm Carbonation rate coefficients in disposal stage ≤C15 C16-C23 C24-C35 >C35 CaO/MgO content Proportion of CaO converted to CaCO_3 for concrete Carbonation time								Disposal stage

Fig. S6: Input parameters for national absorption factors of cement carbonation in the Tier 2 method

149 **4.1 Global Parameters**

150 The CaO and MgO contents in cement materials, as well as the proportion of CaO (MgO) converted
151 to CaCO₃ (MgCO₃), are required input parameters for calculating cement absorption factors at all life-
152 cycle stages. They are considered as global parameters.

153 **4.1.1 CaO/MgO content in cement**

154 CaO and MgO are the principal components governing the carbonation potential of cement-based
155 materials, and their abundance determines the theoretical maximum extent of carbonation. Although
156 CKD is generated as dust during cement production, its chemical composition differs substantially
157 from that of clinker. Accordingly, we calculate the absorption factors for the production and
158 consumption stages using the CaO/MgO contents of CKD and clinker as input parameters, respectively.
159 Previous study⁴ indicates that CKD typically contains about 44.10% CaO (range: 19.0%–61.23%) and
160 less than 1% MgO. In contrast, clinker has an average CaO content of 65.0% (60.0%–67.0%)⁵ and an
161 average MgO content of approximately 2.5% (0–5.0%)^{6,7}. We vary the CaO/MgO contents of both
162 CKD and clinker using a triangular distribution, see Data 1.3 and Data 3.4.4 for details in
163 Supplementary Table2.

164 **4.1.2 Proportion of CaO converted to CaCO₃**

165 The degree to which CaO is converted to CaCO₃ during carbonation is another global parameter that
166 directly determines the actual uptake of CO₂. This ratio reflects the fraction of reactive CaO that
167 ultimately participates in carbonation under realistic environmental or operational conditions. Given
168 the variability in reaction kinetics and exposure environments, we treat proportion of CaO converted
169 to CaCO₃ as an uncertain parameter and assign it a Weibull distribution in the Monte Carlo analysis.
170 Based on multiple experimental studies^{8–11}, the conversion ratio of CaO to CaCO₃ in concrete ranges
171 from 50% to 90%. The shape and scale parameter of the Weibull distribution were set to 25 and 86.0%,
172 respectively (see Data 3.4.5 for details in Supplementary Table2). The proportion of CaO to CaCO₃ in
173 mortar is range from 50.2% to 100%, which is from experimental tests in our previous study¹². The
174 shape and scale parameter of the Weibull distribution were set to 20 and 91.45%, respectively (see
175 Data 3.5.2 for details in Supplementary Table2).

176 **4.2 Local parameters**

177 **4.2.1 Input parameters in cement production stage**

178 Cement kiln dust (CKD) is an intrinsic process residue generated during cement production⁴. A part of
179 CKD can be recycled to clinker production, while the rest is considered to be “lost” to the process.
180 This lost CKD is not ultimately deployed in cement products, but its exposure to the atmosphere in
181 disposal sites or other applications enables carbonation. Therefore, the associated carbon absorption
182 should be included in the sink inventory. The particles of CKD are extremely fine (<200µm), its
183 substantial carbonization within the first two days of landfill reaction and completing full carbonization
184 within one year. Consequently, the carbon absorption factor for CKD in the inventory is specific to the

185 reporting year. It is dependent on parameters of the annual CKD generation rate and proportion of
186 CKD to landfill etc.

187 **4.2.1.1 CKD generation rate based on clinker**

188 CKD generation rates vary dramatically among facilities in cement industry. Clinker production as the
189 activity data for carbon sequestration accounting during the production phase, which is consistent with
190 the activity data for emissions from production activities. Accordingly, this parameter represents the
191 ratio of CKD output to clinker production. For national-scale assessments, it is recommended that
192 countries derive this ratio from annual plant-level statistics. In this study, the CKD generation rate is
193 set at 6.0% (range: 4.1%–11.5%)⁴ and modeled using a triangular distribution, see Data 1.1 in
194 Supplementary Table2.

195 **4.2.1.2 Proportion of CKD to landfill**

196 Previous studies^{4,13} reported that that approximately 80% (range: 52%–90%) of CKD removed from
197 cement kilns is disposed of in landfills, while the remaining 20% portion is beneficially reused. This
198 parameter is modeled using a triangular distribution to capture its variability, see Data 1.2 in
199 Supplementary Table2. As technological advancements improve CKD recycling and reuse pathways,
200 the landfill share may change over time. It is therefore recommended that facilities track this parameter
201 annually to reflect evolving CKD management practices.

202 **4.2.2 Input parameters in construction stage**

203 During the construction phase, some concrete and mortar are lost and subsequently backfilled and
204 buried^{14–15} to undergo carbonation reactions. The input parameters for the cement carbon absorption
205 factor at this stage primarily include proportion of cement loss, the loss rate for concrete and mortar,
206 and carbonation time, see Data 2 in Supplementary Table2.

207 **4.2.2.1 Proportion of cement loss in construction processing stage**

208 It refers to the proportion of losses during the construction period relative to total cement consumption.
209 Construction budget standards¹⁶ and previous study¹⁷ indicate that between 1 and 3% of cement is lost
210 during construction. We therefore vary the parameter assuming a triangular distribution spanning this
211 range and with a mode value of 1.5%.

212 **4.2.2.2 Loss rate of cement for concrete/mortar**

213 It refers to the ratio of concrete/mortar in cement loss. For concrete, the cement loss rate is modeled
214 using a triangular distribution with a mode of 41.4% and a range of 20%–60%. For mortar, the loss
215 rate is likewise modeled as a triangular distribution, with a mode of 58.6% and a range of 40%–80%.

216 **4.2.2.3 Construction waste concrete carbonation time**

217 Most construction waste is in the form of small particles¹⁴, the construction loss mortar can be fully
218 carbonized within one year. The construction waste concrete carbonation time is estimated in triangular
219 distribution with mode value is 5 years, maximum value is 10 years, and minimum value is 1 year.

220 **4.2.3 Input parameters in service life stage**

221 During the service life, the differences in material properties and exposure conditions between concrete
222 and mortar necessitate distinct approaches for calculating their carbonation factors.

223 **4.2.3.1 Input parameters in service life stage for concrete**

224 The input parameters for concrete carbonation including the proportion of cement for concrete,
225 concrete strength classes distribution, cement content in concrete, and carbonation rate coefficients in
226 different strength classes, correct factor of carbonation rate coefficients by environment, and the
227 concrete structure thickness.

228 **(1) Proportion of cement for concrete**

229 It represents the proportion of cement consumption for concrete and is modeled using a Weibull
230 distribution. Data for European countries were collected from the European Ready Mixed Concrete
231 Organization (EMRCO)¹⁸. Data of the United State were derived from United States Geological
232 Survey (USGS) statistics¹, the scale parameter is 85.98% and the shape parameter is 4, with a range of
233 68.94%-89.41%. Chinese data were sourced from industry surveys¹², the scale parameter is 69.34%
234 and the shape parameter is 4, with a range of 67.07%-71.16%. For Brazil and Mexico¹⁹, the scale
235 parameter is 60.00% and the shape parameter is 4, with a range of 55.00%-65.00%. For Egypt²⁰, the
236 scale parameter is 82.22% and the shape parameter is 4, with a range of 63.00%-93.33%. For Indian²¹,
237 the scale parameter is 80.06% and the shape parameter is 4, with a range of 28.85%-88.31%. For
238 Indonesia and Vietnam²², the scale parameter is 66.11% and the shape parameter is 4, with a range of
239 50.86%-90.22%.

240 The proportion of cement used in concrete is critical for calculating the carbon absorption factor of
241 cement, with sensitivity around 70%¹². However, this value currently lacks official statistics.

242 **(2) Concrete strength classes distribution**

243 It refers to the proportion of concrete distributed in different strength classes: less than 15 MPa (<C15),
244 between 16 MPa and 23 MPa (C16–C23), between 24 MPa and 35 MPa (C25–C35), and greater than
245 35 MPa (>C35), and it is modeled using a Weibull distribution. This parameter varies largely across
246 countries. We collected data for European countries from ERMCO¹⁸ and estimated the values for other
247 countries based on national building-type data from China Economic Information Center Data
248 (CEIC)²¹. See Data 3.2 in Supplementary Table2.

249 **(3) Cement content in concrete**

250 It refers to the cement content in different concrete strength classes. For each class, the cement content
251 is varied using a uniform distribution. The minimum and maximum values are 165–288 kg/m³ for
252 strength class <C15, 240–390 kg/m³ for C16–C23, 280–400 kg/m³ for C25–C35, and 300–670 kg/m³
253 for >C35.

254 **(4) Carbonation rate coefficients**

255 It refers to the carbonation coefficients in different concrete strength classes. The methodology in this
256 study is based on the most widely used empirical carbonation model, which is that the carbonation
257 depth is proportional to the square root of the carbonation time²⁴. This model considers only one
258 independent variable, while other factors are considered in a carbonation coefficient “k”. The previous
259 literatures^{10,25–28} suggested the carbonation rate coefficients by categorizing the concrete based on
260 strength and exposure conditions. Concrete carbonation coefficients in China are derived from more
261 than 1300 concrete samples all over the China¹². For each concrete strength class, the carbonation rate
262 coefficients are modeled using uniform distribution, see Data 3.4.2 in Supplementary Table2.

263 **Table S4.** Carbonation rate coefficients (k) for various concrete strengths and exposure conditions in
264 Europe²³.

Exposure condition	Compressive strength (mm/(year)0.5)				
	K	≤15 MPa	16–20 Mpa	23–35 Mpa	>35MPa
Exposed outdoor	5	2.5	1.5	1	
Sheltered	10	6	4	2.5	
Indoors	15	9	6	3.5	
Wet	2	1	0.75	0.5	
Buried	3	1.5	1	0.75	

265 **Table S5.** Carbonation rate coefficients (k) for various concrete strengths and exposure conditions in
266 China⁹.

Exposure condition	Compressive strength (mm/(year)0.5)				
	K	≤15 MPa	16–20 Mpa	23–35 Mpa	>35MPa
Exposed outdoor	6.1	3.9	2.4	1.3	
Sheltered	9.9	7.1	4.8	2.5	
Indoors	13.9	9.8	7.0	4	
Buried	3.8	1.9	1.0	0.5	
Wet	1.9	1.0	0.7	0.3	

267 **(5) Correction factor of carbonation rate coefficients**

268 Cement additives can increase the carbonation rate of cement materials^{9,29–31}. Elevated CO₂
269 concentrations in industrial environments³² and near roadways can further accelerate carbonation
270 rate^{33–35}. Conversely, the application of surface treatments reduces carbonation, such as paints or
271 protective coatings³⁶. Studies have shown that coating layers can reduce carbonation rates by 0–
272 50%^{10,35–39}. In the model, the three correction parameters are represented using Weibull distributions,

273 respectively. For the correction factor of cement additions, the minimum and maximum bounds are set
274 to 1.0 and 1.3, respectively, with shape and scale parameters of 20 and 1.16. The same bounds and
275 Weibull parameters (minimum 0.93, maximum 1.2, shape 20, scale 1.18) are applied to the correction
276 factor of CO₂ concentration. Similarly, the correction factor of cover and coating protection also uses
277 a Weibull distribution with minimum 0.50, maximum 1.0, and shape and scale parameters of 6 and 1.0.
278 See Data 3.4.3 in Supplementary Table2. The correction factor of cover and coating is applied only to
279 the service life stage and not considered during its demolition stage.

280 **(6) Concrete structure thickness**

281 It refers to the wall thickness of various building structures. Wall and structure thicknesses worldwide
282 range from 60 to 610 mm, with most between 100 and 490 mm⁴⁰⁻⁴³. It is modeled as a Triangular
283 distribution with mode value 250 mm, and a range of 100-490 mm, see Data 3.4.6 in Supplementary
284 Table2.

285 **(7) Building lifespan**

286 Consistent with prior research⁴⁴⁻⁴⁶, building lifespan parameters are represented using a Weibull
287 distribution. The scale and shape parameters see Data 3.3 in Supplementary Table2.

288 **Table S6.** Building lifespan range in different countries and regions.

Countries and regions	Building lifespan	References
China	42 (4~73)	12
Europe	75 (50~90)	47,48
USA	74.1 (56.9~82.4)	44
Brazil	75 (50~100)	49
Africa	45 (40~50)	50
Japan	27 (25~30)	51,52
South Korea	21 (13~30)	53
Indonesia	23 (10~35)	54
India	50 (35~70)	55-60

289 **4.2.3.2 Input parameters in service life stage for mortar**

290 The input parameters for mortar carbonation factor including the proportion of cement for mortar,
291 proportion of mortar utilization types, mortar thickness in three utilization types, proportions of
292 masonry wall with render, and mortar carbonation rate coefficient.

293 **(1) Proportion of cement to mortar**

294 It refers to the proportion of cement consumed in mortar, and it can be calculated as the complement
295 of concrete utilization, i.e., 1 minus the concrete proportion.

296 **(2) Proportion of mortar utilization types**

297 Mortar is predominantly used in three application categories: (1) rendering, plastering and decorating,
298 (2) masonry, and (3) maintenance and repairing⁶¹. The majority of mortar is consumed in rendering,
299 plastering, and decorating⁶². The parameter is modeled using a Weibull distribution with a scale of
300 52.4% and a shape of 14, spanning a range of 24.0%–72.5%. For masonry, the Weibull distribution
301 uses a scale of 18.8% and a shape of 12, with values ranging from 1.7% to 52.2%¹². The maintenance
302 and repairing mortar's proportion is obtained as one minus the proportions of the aforementioned two.

303 **(3) Proportions of masonry wall with render**

304 This parameter represents the proportion of masonry mortar used in three wall configurations: (1) both
305 sides rendered, (2) one side rendered, and (3) no rendering. According to our previous survey projects¹²,
306 we vary the shares of masonry walls with different rendering extents using triangular distributions: a
307 mode of 60% (range: 40%–90%) for walls rendered on both sides; a mode of 30% (range: 10%–50%)
308 for walls rendered on one side; and a mode of 10% (range: 0%–20%) for walls without rendering.
309 These parameter ranges are assumed to be applicable globally.

310 **(4) Mortar thickness**

311 It refers to the thickness of mortar in three mortar utilization types. Mortar is typically applied in
312 relatively thin layers with large exposed surface areas⁶¹. Mortar thickness exerts a notable influence
313 on carbonation potential. The thickness of mortar used for rendering, plastering, and decorating is
314 modeled using a Weibull distribution with a scale parameter of 22 mm and a shape parameter of 4,
315 within a range of 3–50 mm. For masonry mortar, thickness is also represented by a Weibull distribution
316 with a scale of 11 mm and a shape of 8, ranging from 5–20 mm. For maintenance and repair
317 applications, mortar thickness follows a Weibull distribution with a scale of 26.8 mm and a shape of 7,
318 spanning a range of 10–50 mm^{43,62}.

319 **(5) Mortar carbonation rate coefficient**

320 The mortar carbonation rate coefficient during the demolition stage was determined in our previous
321 experiment study¹² (see Table S4). This parameter is modeled as a Triangular distribution with a mode
322 19.6 mm/year^{0.5} and range from 6.1 to 36.8 mm/year^{0.5}.

323 **Table S7.** Mortar carbonation rate coefficients measured in China¹²

Cement types	Strength class	Exposure conditions	Average (mm/year ^{0.5})	Max (mm/year ^{0.5})	Min (mm/year ^{0.5})
Portland cement	M15	Outdoor	11.1	22.1	4.2
		Indoor	25.5	36.5	15.4
	M20	Outdoor	10.4	19.2	4.3
		Indoor	23.9	36.5	13.9
	M25	Outdoor	10.5	17.9	5.2
		Indoor	23.9	37.8	15.2

	M30	Outdoor	10.8	21.6	4.8
		Indoor	23.5	32.5	16.3
Fly ash cement or slag cement	M15	Outdoor	13.6	19.9	7.1
		Indoor	29.1	35.4	23.3
	M20	Outdoor	14.2	21.2	7.1
		Indoor	29.9	37.1	22.3
	M25	Outdoor	14.3	20.8	9.0
		Indoor	28.8	38.8	20.8
	M30	Outdoor	13.4	21.6	7.1
		Indoor	30.2	39.4	22.6
	Average		19.6	36.8	6.1

324 **4.2.4 Input parameters in demolition stage**

325 In demolition stage, the input parameters include carbonation rate coefficient and exposure time.

326 **(1) Carbonation rate coefficient in demolition stage**

327 This refers to the carbonation rate of concrete in the demolition stage, evaluated as the service-phase
328 carbonation rate after removing the correction factor associated with cover and coating protection.

329 **(2) Exposure time in demolition stage**

330 This parameter represents the duration of cement exposure during the building demolition phase,
331 measured in years. It is modeled using a Weibull distribution, with a shape parameter of 4 and a scale
332 parameter of 0.4 years, and bounded by a minimum of 0.1 years and a maximum of 1.0 year⁶³.

333 **4.2.5 Input parameters in disposal stage**

334 During the disposal phase, demolished concrete is crushed into fine particles and processed through
335 different disposal ways. The parameters considered in this stage include: proportion of waste concrete
336 in different disposal ways, particle size distribution in different disposal ways, carbonation rate
337 coefficients in disposal stage, and carbonation time.

338 **(1) Proportion of waste concrete in different disposal ways**

339 It represents the proportion of different disposal ways for waste concrete. We consider three primary
340 end-of-life pathways for demolished concrete: Recycled Concrete Aggregates (RCA) for new cement
341 concrete (direct recycling into concrete), RCA for Road base materials and others (use as road-base /
342 sub-base and other civil-engineering fill applications), and landfill and stacking. The parameters are
343 modeled using a Triangular distribution, see Data 5.1 in Supplementary Table2.

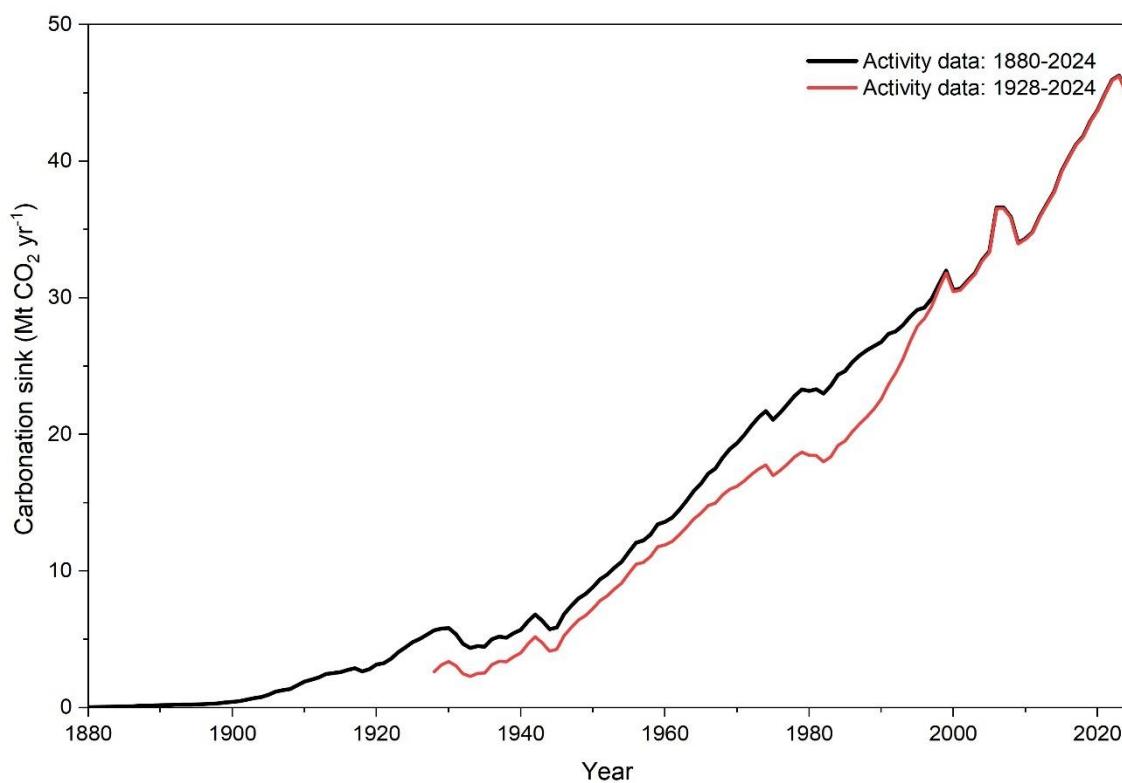
344 In countries with advanced waste management systems, this parameter is recorded by specialized
345 statistical agencies. For example, Japan's Ministry of Land, Infrastructure, Transport and Tourism
346 (MILT)⁶⁴ and the United States Environmental Protection Agency (EPA)⁶⁵ provide survey data on
347 waste concrete. Eurostat⁶⁶ compiles detailed annual data on various disposal methods for both

348 hazardous and non-hazardous construction waste across EU member states. In contrast, in most
349 developing countries, demolished waste remains poorly managed due to limitations in legislation,
350 public awareness, and technological capacity. For instance, demolished waste is not included in
351 China's environmental statistical yearbook, and the reuse rate of demolition materials in India and
352 Vietnam is below 1% with no standardized statistical tracking. Therefore, the input parameter settings
353 for these countries are primarily derived from literature sources. However, demolished waste
354 management and statistics are crucial for obtaining cement carbon absorption factors.

355 **(2) Particle size distribution in different disposal ways**

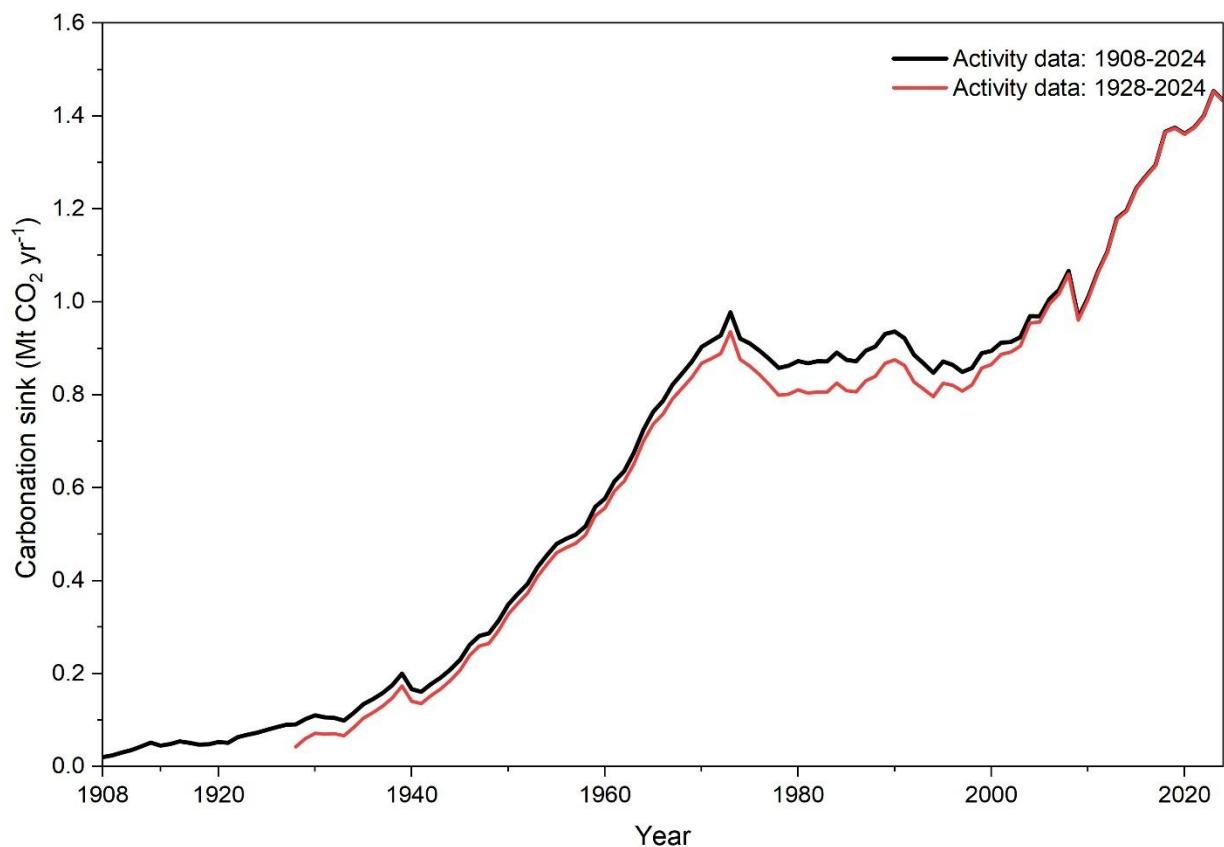
356 It refers to the particle size of crushed concrete in different disposal ways. This parameter governs the
357 carbonation reaction determined by the exposed surface area, thereby directly influencing both the rate
358 and the ultimate extent of CO₂ uptake. Based on the survey data from our previous research¹², the
359 particle size distributions for the three disposal methods were categorized into four groups. RCA for
360 new concrete are below 5 mm, 5–10 mm, 11–20 mm, and 21–32 mm. For the second method, RCA
361 for Road base materials and others are below 1 mm, 1–10 mm, 10–30 mm, and above 30 mm. For
362 landfilling and stacking are below 10 mm, 10–30 mm, 30–50 mm, and above 50 mm. This parameter
363 is modeled using a uniform distribution^{67,68}, see Data 5.2 in Supplementary Table2.

364 **(3) Carbonation rate coefficients in disposal stage**


365 During the waste disposal phase, the carbonation rate coefficients for concrete materials should be
366 determined according to the specific environmental conditions summarized in Tables S1 and S2. For
367 concrete that is reused (RCA for new cement concrete and Road base materials and others), the
368 coefficient should correspond to the relevant building environment, whereas for landfill disposal, it
369 should reflect the conditions of the buried environment.

370 **(4) Carbonation time**

371 This parameter specifies the full life-cycle duration of cement to be used in the model. To ensure a
372 complete accounting of cement carbonation, the value should be set such that it exceeds the number
373 of years from the earliest recorded national cement use to the reporting year. In this study, we set the
374 carbonation time as 200 years, allowing the model to output annual carbonation absorption factors for
375 each year over the 200-year period.


376 **Supplementary Note 5: Comparison of annual cement carbonation sink derived from different**
377 **activity data time spans.**

378 Human use of cement spans more than 2,000 years, national-level cement statistics and associated
379 carbon emission inventories typically start from 1928³, providing 95 years of data up to 2024. In
380 existing datasets, cement records for the United States and Sweden can be traced back to 1880 and
381 1908, respectively. As shown in the figure S4 and S5, differences in the starting year of activity data
382 lead to variations in cumulative carbonation by the reporting year. For example, when calculations for
383 the United States begin in 1880, the annual carbon sequestration in 1983 is 5.2 Mt CO₂ higher than
384 when starting from 1928, resulting in a cumulative difference of 189 Mt CO₂. For Sweden, the largest
385 difference occurs in 1985, with an annual carbon sequestration discrepancy of approximately
386 0.07 Mt CO₂ and a cumulative difference of 2.8 Mt CO₂.

387

388 **Fig. S7: Carbonation sink in the United State under different activity data time spans.**

389

390 **Fig. S8: Carbonation sink in the Sweden by different activity data time spans.**

391 **Reference**

392 1. United States Geological Survey (USGS). Cement Statistics and Information.
393 <http://minerals.usgs.gov/minerals/pubs/commodity/cement/index.html>.

394 2. Intergovernmental Panel on Climate Change. *2006 IPCC Guidelines for National Greenhouse Gas*
395 *Inventories*. Institute for Global Environmental Strategies (IGES), Japan (2006).

396 3. Andrew, R. M. Global CO₂ emissions from cement production, 1928–2018. *Earth Syst. Sci. Data*
397 **11**, 1675–1710 (2019).

398 4. USEPA. Report to Congress on Cement Kiln Dust. (Office of Solid Waste and Emergency
399 Response, 1993).

400 5. Intergovernmental Panel on Climate Change. *2006 IPCC Guidelines for National Greenhouse Gas*
401 *Inventories*. Institute for Global Environmental Strategies (IGES), Japan (2006).

402 6. Chen, L. Effect of cement chemical composition on service life of concrete. *Concrete*. **225**, 78-79
403 (In Chinese) (2008).

404 7. Kurdowski, W. *Cement and Concrete Chemistry*. (Springer, Netherlands, 2014).

405 8. Gajda, J. Absorption of atmospheric carbon dioxide by portland cement concrete. (Portland
406 Cement Association, 2001).

407 9. Pade, C. & Guimaraes, M. The CO₂ uptake of concrete in a 100 year perspective. *Cem. Concr. Res.*
408 **37**, 1348-1356 (2007).

409 10. Andersson, R., Fridh, K., Stripple, H. & Häglund, M. Calculating CO₂ uptake for existing concrete
410 structures during and after service life. *Environ. Sci. Technol.* **47**, 11625-11633 (2013).

411 11. Chang, C. F. & Chen, J. W. The experimental investigation of concrete carbonation depth. *Cem.*
412 *Concr. Res.* **36**, 1760-1767 (2006).

413 12. Xi, F. et al. Substantial global carbon uptake by cement carbonation. *Nat. Geosci.* **9**, 880–883
414 (2016).

415 13. Khanna, O. S. *Characterization and Utilization of Cement Kiln Dusts (CKDs) as Partial*
416 *Replacements of Portland Cement*. (University of Toronto, 2009).

417 14. Huang, T., Shi, F., Tanikawa, H., Fei, J. & Han, J. Materials demand and environmental impact of
418 buildings construction and demolition in China based on dynamic material flow analysis. *Resour.*
419 *Conserv. Recy.* **72**, 91-101 (2013).

420 15. Bossink, B. & Brouwers, H. Construction waste: quantification and source evaluation. *J. Constr.*
421 *Eng. M.* **122**, 55-60 (1996).

422 16. Zhou, H. *Construction and Installation Engineering Budget Manual*. (China Machine Press, 2003).

423 17. Lu, W. et al. An empirical investigation of construction and demolition waste generation rates in
424 Shenzhen city, South China. *Waste Manage.* **31**, 680-687 (2011).

425 18. EMRCO (European Ready Mixed Concrete Organization). *Ready-Mixed Concrete Industry*
426 *Statistics 2008-2019*. <http://www.ermco.eu>.

427 19. Villagrán-Zaccardi, Y. et al. Overview of cement and concrete production in Latin America and the
428 Caribbean with a focus on the goals of reaching carbon neutrality. *RILEM Tech. Lett.* **7**, 30–46

429 (2022).

430 20. Muigai, R. et al. Cradle-to-gate environmental impacts of the concrete industry in South Africa. *J.*
431 *South Afr. Inst. Civil Eng.* **55**, 02–07 (2013).

432 21. Kumar, P. & Kaushik, S. Some trends in the use of concrete: Indian scenario. *Cement Concr. Res.*
433 **33**, 77. (2003).

434 22. Limsuwan, E. Thailand – Concrete Construction Industry – Cement Based Material and Civil
435 Infrastructure (CBM-CI). Proc. CBM-CI International Workshop, Karachi, Pakistan (2007).

436 23. CEIC Data: Building Work Completed, CEIC Data [data set], <https://www.ceicdata.com/zh-hans>
437 (last access: 25 August 2024), 2023.

438 24. You, X., Hu, X., He, P., Liu, J., and Shi, C.: A review on the modelling of carbonation of hardened
439 and fresh cement-based materials, *Cement and Concrete Composites*, **125**, 104315 (2022).

440 25. European Committee for Standardization (CEN). EN 16757: Sustainability of construction works
441 - Environmental product declarations - Product Category Rules for concrete and concrete elements.
442 CEN, Brussels (2017).

443 26. Monteiro, I., Branco, F., Brito, J. D. & Neves, R. Statistical analysis of the carbonation coefficient
444 in open air concrete structures. *Constr. Build. Mater.* **29**, 263-269 (2012).

445 27. Huang, N., Chang, J. & Liang, M. Effect of plastering on the carbonation of a 35-year-old
446 reinforced concrete building. *Constr. Build. Mater.* **29**, 206-214 (2012).

447 28. Silva, A., Neves, R. & de Brito, J. Statistical modelling of carbonation in reinforced concrete.
448 *Cement Concrete Comp.* **50**, 73-81 (2014).

449 29. Papadakis, V. G. Effect of supplementary cementing materials on concrete resistance against
450 carbonation and chloride ingress. *Cem. Concr. Res.* **30**, 291-299 (2000).

451 30. Andrade, C. Evaluation of the degree of carbonation of concretes in three environments. *Constr.*
452 *Build. Mater.* **230**, 116804 (2020).

453 31. Atış, C. D. Accelerated carbonation and testing of concrete made with fly ash. *Constr. Build. Mater.*
454 **17**, 147-152 (2003)

455 32. Talukdar, S., Banthia, N., Grace, J. & Cohen, S. Carbonation in concrete infrastructure in the
456 context of global climate change: Part 2–Canadian urban simulations. *Cement and Concrete Comp.*
457 **34**, 931-935 (2012).

458 33. Papadakis, V. G., Vayenas, C. G. & Fardis, M. N. Experimental investigation and mathematical
459 modeling of the concrete carbonation problem. *Chem. Eng. Sci.* **46**, 1333-1338 (1991).

460 34. Yoon, I. S., Çopuroğlu, O. & Park, K. B. Effect of global climatic change on carbonation progress
461 of concrete. *Atmos. Environ.* **41**, 7274-7285 (2007).

462 35. Li, D. et al. Evaluating the effect of external and internal factors on carbonation of existing concrete
463 building structures. *Constr. Build. Mater.* **167**, 73–81 (2018).

464 36. Roy, S., Northwood, D. & Poh, K. Effect of plastering on the carbonation of a 19-year-old
465 reinforced concrete building. *Constr. Build. Mater.* **10**, 267-272 (1996).

466 37. Park, D. C. Carbonation of concrete in relation to CO₂ permeability and degradation of coatings.
467 *Constr. Build. Mater.* **22**, 2260-2268 (2008).

468 38. Lo, T. Y., Liao, W., K. Wong, C. & Tang, W. Evaluation of carbonation resistance of paint coated
469 concrete for buildings. *Constr. Build. Mater.* **107**, 299–306 (2016).

470 39. Li, G., Dong, L., Bai, Z., Lei, M. & Du, J. Predicting carbonation depth for concrete with organic
471 film coatings combined with ageing effects. *Constr. Build. Mater.* **142**, 59–65 (2017).

472 40. Zhou, H. Construction and Installation Engineering Budget Manual. (China Machine Press, 2003).

473 41. Hendry, E. A. W. Masonry walls: materials and construction. *Constr. Build. Mater.* **15**, 323-330
474 (2001).

475 42. Mineral Products Association – UK Concrete. UK Greenhouse Gas Inventory Improvement:
476 Carbonation of Concrete Emissions Sink Modelling. MPA, London (2023).

477 43. Standardization Administration of China. GB/T 50010-2010 (2024 edition). Code for design of
478 concrete structures. China Architecture & Building Press (2024).

479 44. Kapur, A., Keoleian, G., Kendall, A. & Kesler, S. E. Dynamic Modeling of In-Use Cement Stocks
480 in the United States. *J. Ind. Ecol.* **12**, 539-556 (2008).

481 45. Miatto, A., Schandl, H. & Tanikawa, H. How important are realistic building lifespan assumptions
482 for material stock and demolition waste accounts? *Resour. Conserv. Recycl.* **122**, 143–154 (2017).

483 46. Cai, W., Wan, L., Jiang, Y., Wang, C. & Lin, L. Short-lived buildings in China: Impacts on water,
484 energy, and carbon emissions. *Environ. Sci. Technol.* **49**, 13921–13928 (2015).

485 47. Pommer, K., Pade, C., Institut, D. T. & Centre, N. I. Guidelines: Uptake of Carbon Dioxide in the
486 Life Cycle Inventory of Concrete. (Nordic Innovation Centre, 2006).

487 48. Mequignon, M., Ait Haddou, H., Thellier, F. & Bonhomme, M. Greenhouse gases and building
488 lifetimes. *Build. Environ.* **68**, 77-86 (2013).

489 49. da Silva, M. R., Rohden, A. B., Mesquita, E. F. T. & Garcez, M. R. Influence of concrete cover in
490 the service life of a newly built reinforced concrete structure: A case study. *J. Build. Pathol.*
491 *Rehabil.* **5**, 9 (2020).

492 50. Lokko, M. et al. Comparing the whole life cycle carbon impact of conventional and biogenic
493 building materials across major residential typologies in Ghana and Senegal. *Sustain. Cities Soc.*
494 **106**, 105332 (2024).

495 51. Wuyts, W., Miatto, A., Sedlitzky, R. & Tanikawa, H. Extending or ending the life of residential
496 buildings in Japan: A social circular economy approach to the problem of short-lived constructions.
497 *J. Clean. Prod.* **231**, 660–670 (2019).

498 52. Minami, K. The efforts to develop longer life housing with adaptability in Japan. *Energy Procedia*
499 **96**, 662–673 (2016).

500 53. Ji, S., Lee, B. & Yi, M. Y. Building life-span prediction for life cycle assessment and life cycle cost
501 using machine learning: A big data approach. *Build. Environ.* **205**, 108267 (2021).

502 54. Surahman, U., Kubota, T. & Higashi, O. Life cycle assessment of energy and CO₂ emissions for
503 residential buildings in jakarta and bandung, indonesia. *Buildings* **5**, 1131–1155 (2015).

504 55. Bhyan, P., Shrivastava, B. & Kumar, N. Systematic literature review of life cycle sustainability
505 assessment system for residential buildings: Using bibliometric analysis 2000–2020. *Environ. Dev.*
506 *Sustain.* **25**, 13637–13665 (2023).

507 56. Varun, Sharma, A., Shree, V. & Nautiyal, H. Life cycle environmental assessment of an educational
508 building in northern India: A case study. *Sustain. Cities Soc.* **4**, 22–28 (2012).

509 57. Praseeda, K. I., Reddy, B. V. V. & Mani, M. Embodied and operational energy of urban residential
510 buildings in India. *Energy Build.* **110**, 211–219 (2016).

511 58. Abd Rashid, A. F., Idris, J. & Yusoff, S. Environmental impact analysis on residential building in
512 Malaysia using life cycle assessment. *Sustainability*. **9**, 329 (2017).

513 59. Kofoworola, O. F. & Gheewala, S. H. Environmental life cycle assessment of a commercial office
514 building in Thailand. *Int. J. Life Cycle Assess.* **13**, 498–511 (2008).

515 60. Ansah, M. K., Chen, X., Yang, H., Lu, L. & Lam, P. T. I. An integrated life cycle assessment of
516 different façade systems for a typical residential building in Ghana. *Sustain. Cities Soc.* **53**, 101974
517 (2020).

518 61. Lutz, H. & Bayer, R. Ullmann's Encyclopedia of Industrial Chemistry Vol. 11 (Wiley, New York,
519 2010).

520 62. Winter, C. & Plank, J. The European dry-mix mortar industry (Part 1). ZKG. INT. **60**, 62 (2007).

521 63. Dodoo, A., Gustavsson, L. & Sathre, R. Carbon implications of end-of-life management of building
522 materials. *Resour. Conserv. Recy.* **53**, 276–286 (2009).

523 64. Ministry of Land, Infrastructure, Transport and Tourism (MLIT). “Recent changes in societal
524 conditions around construction by-products and past initiatives” (Materials No. 2, 13 September
525 2024). Available at: <https://www.mlit.go.jp/policy/shingikai/content/05shiryou2.pdf> (accessed 25
526 Nov 2025).

527 65. United States Environmental Protection Agency (EPA). Studies, summary tables and data related
528 to the Advancing Sustainable Materials Management report. Available at:
529 <https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/studies-summary-tables-and-data-related> (accessed 25 Nov 2025).

531 66. European Commission (Eurostat). *Waste statistics*. Eurostat Statistics Explained. Available at:
532 https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (2024, accessed
533 15 October 2024).

534 67. Yang, K. H., Seo, E. A. & Tae, S. H. Carbonation and CO₂ uptake of concrete. *Environ. Impact.*
535 *Asses.* **46**, 43–52 (2014).

536 68. Kikuchi, T. & Kuroda, Y. Carbon Dioxide Uptake in Demolished and Crushed Concrete. *J. Adv.*
537 *Concr. Technol.* **9**, 115–124 (2011).