A neuro-computational framework for modeling the development of cross-sensory interactions in Autism: from mechanistic understanding to targeted intervention
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Supplementary materials
1. Mathematical implementation of the network

As described above, each region of the model is described by a single neural element. Every element of the network has been described by means of a first order differential equation, which simulates the integrative properties of the cellular membrane, and a steady-state sigmoidal relationship that simulates the presence of a lower threshold and an upper saturation for neural activation. The saturation value is set at 1, i.e., all outputs are normalized to the maximum. The term “activity” is used to denote the output of each area from now on. 
In the following, each element will be denoted with a superscript, , referred to a specific region of the model ( or  where  refers to the auditory input area,  to the visual input area,  to the multisensory output region,  and  to the inhibitory auditory and visual neurons, respectively).  and  are used to represent the net input and output of a given neural element at time t, respectively. Thus,  and  represent the output and the net input of the neural element simulating the region , respectively. A generic neural element of a region  is described by the following differential equation:

 			(1)

where  is the time constant and  represents the sigmoidal relationship:

 			(2)

s and  are parameters which establish the slope and the central position of the sigmoidal relationship, respectively. For the sake of simplicity, in this work all the neural elements are described by using the same parameters (s and ) and the same time constant (). 
The net input that reaches a specific neural element (i.e., the quantity  in Eq. (1)) depends on the region it belongs to. 

Input areas

Elements in these regions process separately auditory and visual external stimuli (). Their net input is the result of three components. 
The first, the “external” component, is the unisensory input , coming from the external world. The second, the “cross-modal” component, is the input, , from the area processing the other sensory modality, transmitted to the target neuron through the cross-modal synapses. The last component is the contribution of the feedback inhibitory synapses, , which is the effect of the interneurons excited by the other sensory region that interacts with the target element through inhibitory synapses. 
The external input is characterized by its effectiveness , and its duration . Assuming a stimulus of sensory modality :

 			(3)

The cross-modal input, , is obtained assuming that each element receives a projection from the region processing the other modality defined as:

		(4)

where ,  are the weights of these reciprocal connections, and  is a delay which represents the latency with which cross-modal inputs are exchanged between the two regions.
Finally, the inhibitory input, , that a unisensory element receives from the interneuron of the other modality is defined as:

  		(5)

where  and  are the activities of presynaptic auditory and visual interneurons respectively, and ,  are the strengths of the inhibitory synapses. In the model, we did not incorporate a delay for the cross-sensory inhibition, because the dynamics of the inhibitory effect has been chosen much longer than any other mechanism of the network (see below Dynamics of each input component), so the effect of a delay is already included in the time constant chosen for these projections.

Inhibitory interneurons

Elements in these two regions () are excited respectively by the auditory and visual input areas, and they exchange inhibitory projections, implementing a “winner-takes-all” (WTA) mechanism. Their net input is the result of an excitatory stimulus, , coming from the corresponding unisensory input region through excitatory synapses, and an inhibitory component, , produced by inhibitory synapses from the other interneuron.
The excitatory components, , targeting the auditory and visual interneurons are defined as:

 		(6)

where  and  are the weights of the excitatory connections from a unisensory input region to its corresponding interneuron element, assumed the same for both sensory modalities ().
The inhibitory input, , that an interneuron receives from the interneuron of the other modality, through inhibitory synapses, is defined as:

		(7)

where  and  are the activities of presynaptic auditory and visual interneurons respectively, and ,  are the strengths of the reciprocal inhibitory connections. These symmetrical synapses () implement the WTA mechanism between the two areas. Also in this case, as in Eq. (5), we do not include a pure delay for the same reason stated above.

Multisensory output area

This region () receives a net input that is the sum of the stimuli, carried by long-range excitatory synapses, from the auditory and visual input areas.
Its net input, , is defined as:

 		(8)

where  and  are the weights of the excitatory connections from the unisensory input regions to the multisensory area and  is a delay, which represents the slightest latency with which stimuli from the input regions are able to generate behavioral responses. 

Dynamics of each input component

All previous quantities (Eqs. (3) to (8)) affect the input  of the corresponding postsynaptic element via a second order differential equation. By denoting with  the output of the differential equation for the generic input source  (described by any of Eqs. (3) to (8)) we have

 		(9)

where  represents the gain and  defines the time constant of the dynamics, for each region , and input component  (Eqs. (3) to (8)). Eq. (9) implements a second-order impulse response with two coincident real poles. This is used frequently in neural modeling to mimic synaptic dynamics (Cuppini et al., 2014; Jansen & Rit, 1995; Wendling et al., 2002). In the model, in order to reduce the number of parameters, we choose the same values for  and , for every connection (see Table S1), except two cases: (i) the external stimuli, and, (ii) the feedback synapses implementing the cross-sensory inhibitory mechanism.
According to the previous description, the total input (namely ) received by a neuron in region , is computed as follows: 
i For the input regions, it is the sum of the external component (Eq. (3)), cross-modal term (Eq. (4)), and inhibitory feedback (Eq. (5)), filtered through the second order equation (Eq. (9)): 

 		(10)
ii For the inhibitory interneurons, it is the sum of the excitation from the input region (Eq. (6)), and the effect of the WTA mechanism (Eq. (7)), filtered by Eq. (9):

 
		(11)
iii For the output region, it is the effect of the feedforward excitatory synapses (Eq. (8)), filtered by the differential equation previously described (Eq. (9)):

 		(12)

2. Mathematical implementation of the training phase

During this phase visual and auditory stimuli are presented to the network, alone or congruently combined, and feedforward connections to the M region ( and ), reciprocal cross-modal synapses between input areas ( and ), and feedback inhibitory connections ( and ) are trained. 
Feedforward and cross-modal connections are trained with a Hebb-like learning rule, which modifies the synaptic weights based on the correlation between the presynaptic and the postsynaptic activity. For simplicity, four additional constraints have been added to the Hebbian training:
(i) An activation threshold for engagement, . This threshold is identical for all the trained connections, and equal to the 10% of the maximum activity in the regions (see Table S1).
(ii) A fixed upper bound, , for the synaptic weight, implementing a saturation in the synaptic reinforcement. In this way, the synaptic weights cannot overcome the maximum saturation value  (Hertz et al., 1991). The maximum value has been fixed for each pair of long-range connections.
(iii) A delay, , accounting for the time the synapses take to transmit signals between the two regions they connect. In this way, we require that synapses are modified if and only if the activity in the postsynaptic region is positively correlated with the activity in the presynaptic one, taken  time samples earlier.
(iv) A pre- and postsynaptic gating, that is we require that both pre- and postsynaptic neurons are active (above threshold) to have some synaptic change. In the following equation (Eq. (13))  represents a rectification operation (i.e.,  =  if  > 0;  = 0 otherwise).
Using the meaning of symbols explained above, the efficacy of the synapse linking two regions (namely , ) is updated via the following rule: 

		(13)

where  represents the change in the synapse strength, due to the presynaptic and postsynaptic activities,  and  are the activities in the postsynaptic and presynaptic neural elements respectively.  denotes the learning rates, fixed and symmetrical for the two modalities: . According to Eq. (13), the postsynaptic area, , with a high activity  modifies its targeting connections , shaping them based on the activity  of the presynaptic region, , taken  time samples earlier. Conversely, silent neurons with poor output activity do not appreciably modify their connections. 
Hence, the new synapse values are computed as follows:
(i) For cross-modal connections:

		(14)

where the symbol ← signifies that the value computed at the right-hand member is assigned to the left-hand member. 
(ii) For feedforward connections toward the M region:

 					(15)

where  represents the step function (i.e.,  1 if  > 0,   0 otherwise). Indeed, feedforward synapses cannot become negative (otherwise, excitation would be converted into inhibition, and no behavioral response would be present). 
The inhibitory feedback connections () are trained with an anti-Hebbian mechanism, i.e., they are strengthened when the activities are negatively correlated. This reflects in the post-synaptic gating, requiring that postsynaptic neurons are inhibited, while presynaptic ones are active, to have some synaptic change. In the following equation (Eq. (13’))  represents a rectification operation (i.e.,  =  if  < 0;  = 0 otherwise). 
Using the meaning of symbols explained above, the efficacy of feedback inhibitory connections is updated via the following training rule: 

 				(13’)

where  represents the change in the synapse strength, due to the presynaptic and postsynaptic activities,  and  are the activities in the postsynaptic and presynaptic neural element respectively.  denotes the learning rates, that are fixed and symmetrical for the two modalities: . It is worth noting that, in this case, the correlation between the activities of the pre- and postsynaptic regions is computed considering the activities at the same time instant, because no delay has been incorporated for the cross-sensory inhibition. 
According to Eq. (13’), when the presynaptic area, , participates to the inhibition of the postsynaptic area,  (i.e., when the postsynaptic element is inhibited and the presynaptic one is simultaneously active), the inhibitory projections  are strengthened (becoming more inhibitory). Conversely, active postsynaptic neurons do not appreciably modify the connections
The new value of inhibitory feedback connections is modified according to Eq. (15).

3. Parameters assignment

The values of model parameters (see Table S1) were assigned in accordance with the criteria summarized below, based on findings reported in the literature. Parameters describing the elements of the network were assumed equal for the two sensory modalities, with the only exception of the external inputs, to reduce the number of ad hoc assumptions. Moreover, the values of the synaptic weights were adjusted to achieve a good fit between the model and behavioral data reported in Crosse et al. (2022). Specifically, the basal values (i.e., the starting value for the synapses that are going to be trained and the fixed value for untrained synapses) were set to reproduce experimental data of 6-9 year-old subjects. The maximum values and the learning factors (for trained connections only) were chosen to reproduce the development and the behavioral data at the end of the training.

Parameters of individual neurons

The central abscissa, , was assigned to have negligible neuron activity in basal conditions (i.e., when the input was zero). The slope of the sigmoidal relationship,, was assigned to have a smooth transition from silence to saturation in response to external stimuli. The time constant agreed with values (a few ms) normally used in deterministic mean-field equations (Ben-Yishai et al., 1995; Treves, 1993).

External input 

Physiological evidence shows that in the brain, auditory processing is faster, and auditory cortical neurons exhibit shorter latencies (e.g., Recanzone et al., 2000) than neurons in the visual cortex (Maunsell & Gibson, 1992). As we did in a previous model (Cuppini et al., 2014), in this network the visual input region receives external stimuli described by a slower time constant, compared with the auditory ones. This is mimicked by setting  in Eq. (9). The values of parameters  and  have been assigned to reproduce the temporal evolution of the process of an auditory and a visual stimulus in the early cortical areas. In particular,  is given so that the auditory processing presents the faster dynamics, and the auditory area is activated by an auditory input 25-30 ms after the stimulus. Since two time constants represent the time needed for the activity in the input regions to reach 90% of its steady-state level, in response to a step input, we assume  = 15 ms. For what concerns the visual area,  is assigned so that a visual stimulus produces a detectable response in the visual area 45-50 ms after its onset; hence  = 25 ms has been chosen. It is worth noting that these are the only differences between the two sensory processing pathways (auditory and visual); all other parameters are assumed equal for the auditory and visual branches of the network. 
The strength of the external visual and auditory stimuli (parameters  and  ) are chosen so that the overall input elicits a response, in the input regions, in the linear part of the sigmoidal static characteristic (i.e., a little below saturation).

Synaptic connections

The initial strength (i.e., before training) of the feedforward connections targeting the M region ( and ) is set so that an effective unisensory stimulus of sufficient strength (i.e., able to lead input areas close to saturation) evokes an activity in lower part of the linear region of the sigmoidal activation function (i.e., about 30% of the maximum activity in this area). Conversely, the maximum value of the strength of these connections ( and ) was set so that an effective unisensory stimulus of sufficient strength leads the multisensory region to saturation, after the training phase. Both the initial and the final value of these synapses are identical for TD and ASD simulations.
Feedforward connections to the M regions are characterized by a fast dynamics ( = 50 ms; with ) and by a delay , to discriminate fast outliers. In particular, previous studies considered RTs faster 100 – 150 ms as anticipatory responses (Crosse et al., 2022; Molholm et al., 2020). Therefore, we assigned to  an average value between those found in the literature (120 ms).
[bookmark: _Hlk111950846]Excitatory feedforward connections to interneurons, ,  are characterized only by their efficacy and are not subject to training. Specifically, their value is chosen so that even a small activity in the input layer is able to elicit an activity in the interneuron of the corresponding modality, activating the cross-sensory inhibitory mechanism. This element is characterized by a fast dynamics ( = 15 ms; with ).
Interneurons reciprocal inhibition, , implements the WTA competition. The effectiveness of the reciprocal synapses, , is chosen high enough so that the “winner” interneuron is able to turn off almost completely the “loser” element. Also this element is characterized by a fast dynamics ( = 15 ms; with ).
Behavioral data (Crosse et al., 2022) show that strongest cross-sensory inhibitory effect occurs for ISIs as short as 1000 ms, but this effect decays slowly for longer time intervals between the stimuli. To simulate this result, the feedback inhibitory synapses in the model have slow dynamics, implemented by time constants for the feedback projections as great as to 180 ms (). In fact, with such a time constant, the inhibitory component provides a significant contribution to the input regions of the other modality after almost 1000 ms after stimulus presentation. In summary, the input regions are activated by an external stimulus after almost 50 ms (time constants 15-25 ms); through the excitatory projections, the interneurons show a non-null activity after 100-120 ms, and a peak activation between 250 ms and 300 ms; then the chosen inhibitory dynamics add 540 ms (approximately three time constants) before the feedback inhibitory component reaches its maximal effect on the unisensory input regions.  
Both the initial and the final maximum values of the inhibitory feedback connections (,  and ,  respectively) were set to reproduce initial data acquired by Crosse et al. (2022) and their subsequent development. Moreover, they are identical for TD and ASD simulations.
The parameters of cross-modal synapses are selected to reproduce empirical findings by Raij et al. (2010). These authors, combining MEG and fMRI recordings, studied cross-modal activations and audio-visual interactions in the primary auditory cortex (A1) and in the primary visual cortex (V1) at very early post stimulus latencies. To simulate Raij et al. (2010) results we used the input to the neurons (i.e., quantity  in Eq. (1)) since this is indicative of field potentials, detected through EEG or MEG techniques, and/or synaptic metabolic activity, detected through fMRI. The dynamics of the reciprocal cross-modal projections have been chosen fast and symmetrical for both sensory modalities. Their time constant ( = 15 ms) and the delay in cross-modal synapses,  = 16 ms, simulating the latency with which the influence of a unisensory stimulus was detected in the area processing the other sensory modality, are selected so that the cross-modal component produces an effect with a rapid time course, affecting “the other region” after further 30-40 ms. 
The initial efficacy (i.e., before training) of cross-modal synapses ( and ) is negative, so to implement the default competition state (Monti et al., 2025). The maximum synaptic strength of cross-modal projections ( and ) is positive, and set to be strong enough so that, in case of a multisensory stimulation, the level of activity in the opposite input area is enhanced. However these connections are maintained sufficiently low so that an external stimulus in one sensory modality did not induce phantom activity in the other sensory-specific area (see for example, Allman & Meredith, 2007; Meredith & Allman, 2015). While the final value of cross-modal synapses is the same in TD and ASD, the initial value is much more inhibitory in ASD. We made this assumption based on the delayed maturational trajectories characterizing ASD abilities: since the maturation of perceptual abilities is delayed in ASD subjects, it is conceivable that cross-modal connections are still more inhibitory in ASD children of 6-9 years of age compared to their TD peers.
For all the above elements,  the values are chosen so that the elicited activity in the post-synaptic elements is in the linear portion of the sigmoidal relationship: as shown in Table S1,  = 75 for every synapse (), except for the inhibitory feedback () where  = 750.
Finally, the ratio of the synaptic learning factors () were assigned to simulate the data about the TD and ASD maturation as reported in Crosse et al. (2022) (see Table S1). Moreover, to attain satisfactory reproduction of the experimental data, three different learning rates were used for the three trained connections. It is worth noting, however, that the same parameters have been used in the auditory and visual branches of the network; therefore, differences in network abilities in cases of auditory and visual stimulation emerge as a consequence of differences in the sensory experience (not in the parameters). The values of these three parameters were subsequently varied only for testing the reduced plasticity as a possible explanation of impaired perceptual abilities in ASD.

Table S1
Parameters value
	
	Parameter definition
	Value

	Neurons
	
	

	
	Slope of neuron’s sigmoidal activation function 
	=0.3

	
	Central position of neuron’s sigmoidal activation function
	 

	
	Neurons’ dynamics
	 

	Inputs
	
	

	
	Stimuli intensity 
	 
 

	
	Stimuli duration 
	 

	
	Stimuli dynamics 
	 
 

	
	Presentation rate
	 

	Behavioral index
	
	

	
	Detection threshold
	 

	Synapses
	
	

	
	Initial efficacy of trained synapses (for TD)
	 
 
  

	
	Initial efficacy of trained synapses (for ASD)
	 
 
  

	
	Fixed efficacy of untrained synapses
	 
 

	
	Synaptic gains
	  
 

	
	Synaptic dynamics
	  
  
 

	
	Delay of feedforward connections to the M region
	 

	
	Delay of cross-modal connections
	 

	Training
	
	

	
	Saturation values of trained synapses
	 
 
  

	
	Learning rates (for TD and ASD with reduced multisensory experience)
	  
 
 

	
	Learning rates (for ASD with reduced plasticity)
	   
 
 

	
	Training threshold
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