

Supplementary Information

A New Paradigm for Brine Thermodynamics: Inverse Electrochemical Probing of Activity Using Reverse Electrodialysis

Babaa Moulay Rachid

Supplementary Information

Supplementary Note S1. Seasonal thermodynamic and transport property calculations

This work is entirely model-based. Seasonal solution properties were generated by coupling multi-ion Pitzer thermodynamics with a permselectivity-corrected reverse electrodialysis (RED) electrochemical model. For each season, the thermodynamic state of both the hypersaline (concentrated) stream and treated wastewater (TWW; dilute) stream was characterized in terms of mean ionic activity and associated transport properties (electrical conductivity). The resulting seasonal activity-conductivity pairs are tabulated in Tables S3 and S4.

S1.1 Seasonal forcing and inputs

For each season $s \in \{\text{Summer, Autumn, Winter, Spring}\}$, the following inputs were prescribed: (i) temperature T_s (K), converted from Celsius via

$$T_s = T_{C,s} + 273.15; \quad (1)$$

(ii) ionic compositions expressed as molalities $m_{i,s}$ (mol kg^{-1}) for the hypersaline and TWW streams; (iii) multi-ion Pitzer interaction parameters from the literature; and (iv) RED system parameters including stack size N , average permselectivity α , and constants R and F .

S1.2 Ionic strength calculation

For each stream and season, the ionic strength was computed as

$$I_s = \frac{1}{2} \sum_i m_{i,s} z_i^2, \quad (2)$$

where $m_{i,s}$ and z_i are the molality and charge of ion i , respectively.

S1.3 Mean ionic activity coefficients

Mean ionic activity coefficients $\gamma_{\pm,s}$ were computed using the multi-ion Pitzer formalism, in which

$$\ln \gamma_{\pm,s} = f(I_s, T_s) + \sum \text{(interaction terms)}, \quad (3)$$

combining long-range electrostatic and short-range ion–ion interactions.

S1.4 Mean ionic activity calculation

Mean ionic activities were computed on the molality scale as

$$a_{\pm,s} = \gamma_{\pm,s} \left(\frac{m_s}{m^\circ} \right), \quad m^\circ = 1 \text{ mol kg}^{-1}. \quad (4)$$

For the hypersaline stream this yields an effective activity $a_{\text{H}}^{(\text{eff})}$, while the dilute stream activity is denoted a_{TWW} .

S1.5 Electrical conductivity computation

Electrical conductivity κ_s was computed consistently with the same thermodynamic state defined by $(T_s, m_{i,s})$. Conductivity was used to parameterize the channel resistance via

$$R_{\text{ch},s} = \frac{l}{\kappa_s A}, \quad (5)$$

where l is channel length and A the channel cross-sectional area.

S1.6 Link to inverse thermodynamic probe framework

The seasonal activities reported in Tables S3 and S4 enter the permselectivity-corrected RED voltage expression

$$E_{\text{OCV},s} = \alpha N \frac{RT_s}{zF} \ln \left(\frac{a_{\pm,c,s}}{a_{\pm,d,s}} \right). \quad (6)$$

Deviations between ideal and non-ideal voltage predictions encode non-ideal thermodynamic information and enable inference of activity-coefficient effects from electrical observables.

S2. Multi-ion thermodynamic model for Aral Sea brine

The ionic composition of the Aral Sea brine used in this work is summarised in Table S1. Concentrations are expressed as molality m_i (mol kg⁻¹ of water).

The ionic strength of the brine is

$$I = \frac{1}{2} \sum_i m_i z_i^2 = 5.13 \text{ mol kg}^{-1}. \quad (7)$$

At this ionic strength, ion non-ideality is described using the multi-ion Pitzer formulation. For ion i , the activity coefficient is

$$\ln \gamma_i = z_i^2 f(I) + \sum_j m_j B_{ij}(I) + \sum_{j,k} m_j m_k C_{ijk}, \quad (8)$$

Table 1: Ionic composition and transport parameters for Aral Sea brine at 25 °C.

Ion	c (g L $^{-1}$)	M (g mol $^{-1}$)	C (mol L $^{-1}$)	z	m (mol kg $^{-1}$)	$0.5 m z^2$	λ_i^0 (S m 2 mol $^{-1}$)
Cl $^-$	84.62	35.45	2.387	-1	2.3978	1.1989	0.007635
SO 4^{2-}	69.95	96.06	0.728	-2	0.7315	1.4630	0.016000
HCO $_3^-$	0.88	61.02	0.0144	-1	0.0145	0.0072	0.004450
Na $^+$	62.43	22.99	2.716	+1	2.7278	1.3639	0.005010
K $^+$	3.82	39.10	0.0977	+1	0.0981	0.0491	0.007350
Ca $^{2+}$	0.35	40.08	0.0087	+2	0.0088	0.0175	0.011900
Mg $^{2+}$	12.44	24.31	0.512	+2	0.5140	1.0281	0.010600

where $f(I)$ is the Debye–Hückel long-range term, B_{ij} are binary interaction terms, and C_{ijk} are ternary interaction terms.

For RED calculations, we define an effective charge-equivalent activity of the high-salinity stream as

$$a_{\text{H}}^{(\text{eff})} \equiv \sum_i |z_i| a_i = \sum_i |z_i| m_i \gamma_i. \quad (9)$$

Evaluated at 25 °C, this yields

$$a_{\text{H}}^{(\text{eff})}(25^\circ\text{C}) \approx 1.1 \text{ mol kg}^{-1}. \quad (10)$$

S3. Conductivity of Aral brine and treated wastewater

The equivalent fraction of ion i is

$$y_i = \frac{|z_i|m_i}{\sum_j |z_j|m_j}, \quad \sum_j |z_j|m_j = 7.75 \text{ mol kg}^{-1}. \quad (11)$$

The mixture limiting equivalent conductance is

$$\bar{\lambda}^0 = \sum_i y_i \lambda_i^0 \approx 8.68 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}. \quad (12)$$

For the purpose of estimating electrical conductivity, a charge-equivalent volumetric concentration is introduced as

$$c_{\text{eq}}^0 = \left(\sum_i |z_i|m_i \right) \times 10^3 = 7.75 \times 10^3 \text{ mol m}^{-3}, \quad (13)$$

yielding a limiting conductivity

$$\kappa^0 = \bar{\lambda}^0 c_{\text{eq}}^0 \approx 67 \text{ S m}^{-1}. \quad (14)$$

To account for ion pairing and mobility reduction at high ionic strength, an empirical reduction factor is calibrated against measured conductivity:

$$f_{\kappa} = \frac{\kappa_{\text{meas}}}{\kappa^0} = \frac{22.4}{67} \approx 0.33, \quad (15)$$

leading to the effective conductivity used in the RED model,

$$\kappa_{\text{sea}}(25^{\circ}\text{C}) = f_{\kappa} \kappa^0 \approx 22.4 \text{ S m}^{-1}. \quad (16)$$

For treated wastewater (TWW), a NaCl-equivalent concentration of $C_{\text{TWW}} = 26 \text{ mol m}^{-3}$ is assumed. The Davies equation gives $\gamma_{\pm} \approx 0.86$, yielding

$$a_{\text{TWW}}(25^{\circ}\text{C}) = m\gamma_{\pm} \approx 0.0223 \text{ mol kg}^{-1}. \quad (17)$$

Based on field data, the baseline conductivity is taken as

$$\kappa_{\text{TWW}}(25^{\circ}\text{C}) = 0.263 \text{ S m}^{-1}. \quad (18)$$

S4. Seasonal temperature dependence

Seasonal-average temperatures were used to recompute activities and conductivities following the same workflow. Activities were updated as

$$a(T) = a(T_{\text{ref}}) \frac{T}{T_{\text{ref}}}, \quad T_{\text{ref}} = 298.15 \text{ K}, \quad (19)$$

and conductivities using a linear temperature coefficient

$$\kappa(T) = \kappa(T_{\text{ref}}) [1 + \alpha_{\kappa}(T_C - 25)], \quad \alpha_{\kappa} = 0.02 \text{ }^{\circ}\text{C}^{-1}. \quad (20)$$

Table 2: Seasonal-average activities and conductivities used in the RED model.

Season	T_C (°C)	T (K)	$a_{\text{H}}^{(\text{eff})}$	a_{TWW}	κ_{sea} (S m $^{-1}$)	κ_{TWW} (S m $^{-1}$)
Summer	26.41	299.56	1.105	0.0224	23.03	0.270
Autumn	12.58	285.73	1.054	0.0214	16.84	0.198
Winter	-0.84	272.31	1.005	0.0204	10.82	0.127
Spring	14.01	287.16	1.059	0.0215	17.48	0.205

Table 3: Electrical conductivity as a function of mean ionic activity (Hypersaline seawater).

Season	Mean ionic activity, $a_{\text{H}}^{(\text{eff})}$ (mol kg $^{-1}$)	Electrical conductivity, κ_{sea} (S m $^{-1}$)
Summer	1.105	23.03
Autumn	1.054	16.84
Winter	1.005	10.82
Spring	1.059	17.48

Table 4: Electrical conductivity as a function of mean ionic activity (Treated wastewater).

Season	Mean ionic activity, a_{TWW} (mol kg $^{-1}$)	Electrical conductivity, κ_{TWW} (S m $^{-1}$)
Summer	0.0224	0.270
Autumn	0.0214	0.198
Winter	0.0204	0.127
Spring	0.0215	0.205

Abbreviations

Table 1: List of abbreviations used in this study.

Abbreviation	Definition
RED	Reverse Electrodialysis
OCV	Open-circuit voltage
E_{OCV}	Open-circuit voltage of a RED stack
E_{OCV}^{ideal}	Ideal Nernstian open-circuit voltage
$E_{OCV}^{\text{ideal-sol}}$	Ideal-solution open-circuit voltage
ΔE_{γ}	Voltage deviation due to activity-coefficient effects
R	Universal gas constant
T	Absolute temperature
T_C	Temperature in degrees Celsius
F	Faraday constant
z	Effective ionic charge number
N	Number of membrane cell pairs in the RED stack
α	Average membrane permselectivity
a_i	Ionic activity of species i
a_{\pm}	Mean ionic activity
γ_i	Activity coefficient of ion i
γ_{\pm}	Mean ionic activity coefficient
m_i	Molality of ion i
m°	Standard molality (1 mol kg ⁻¹)
$a_H^{(\text{eff})}$	Effective charge-equivalent activity of the hypersaline stream
TWW	Treated wastewater
I	Ionic strength
Pitzer model	Thermodynamic model for non-ideal electrolyte solutions
B_{ij}	Binary Pitzer interaction parameter
C_{ijk}	Ternary Pitzer interaction parameter
κ	Electrical conductivity
κ_{sea}	Electrical conductivity of hypersaline seawater
κ_{TWW}	Electrical conductivity of treated wastewater
λ_i^0	Limiting equivalent conductance of ion i
$\bar{\lambda}^0$	Mixture limiting equivalent conductance
y_i	Charge-equivalent fraction of ion i
c_{eq}^0	Charge-equivalent volumetric concentration
f_{κ}	Empirical mobility-reduction factor
R_{ch}	Channel (solution) resistance
A	Channel cross-sectional area
l	Channel length
W_{rev}	Reversible electrochemical work
ΔG_{mix}	Gibbs free energy of mixing