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Supplementary Fig. 1 Collection of Wild Sugarcane Stalks as Naturally Dispersed Biomass Waste.
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Supplementary Fig. 2 Extraction of Fibers from Discarded Cigarette Butts.
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Supplementary Fig. 3 Spraying of Boiled Saline Solution onto Wild Sugarcane Fiber Sheet
[image: ] Supplementary Fig. 4 Fiber Structured in a Square Grid of Horizontal and Vertical Lines
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Supplementary Fig. 5 Moisture Absorption Behavior of Hygroscopic Sea Salt (NaCl)
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Supplementary Fig. 6 Comparison of Salts with Distinct Deliquescence Relative Humidity (DRH) Levels.
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Supplementary Fig. 7 Time-dependent water uptake of sea salt in bulk and as thin layers on glass and composite substrates. Bulk salt (red) absorbs more slowly than the composite-supported layer (blue) initially, but surpasses the glass-supported layer (black) during 4 h to 9 h. The composite shows the fastest uptake in the first ~8 h, while the glass-supported layer overtakes both at longer times (>11 h). Water uptake continues to rise throughout the 15 h test, showing that equilibrium was not yet reached.
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Supplementary Fig. 8 Insolubility of CB–MnO₂ Mixture in Saline Solution (Sea Salt + Water).




[image: ]Supplementary Fig. 9 Surface evolution of the composite during CB–MnO₂/salt electrolyte coating, where successive brush–dry cycles lead to progressive black coloration and a final material loading of ~9.5 g cm⁻² after three cycles.
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Supplementary Fig. 10 Conductivity Dependence on Coating Solution Loading Density.
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Supplementary Fig. 11 (a) Moisture absorption (MA%) and (b) moisture desorption (MD%) of the uncoated composite only (CO) and carbon-coated composite (CCC) under varying relative humidity (RH%). The CCC shows higher moisture uptake and desorption which confirms enhanced hygroscopic behaviour critical for efficient moisture-driven power generation in MEG systems.
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Supplementary Fig. 12 (a) SEM characterization of the MECB composite and (b) EDX mapping of NaCl1 (1).
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Supplementary Fig. 13 Moisture-Induced Ionic Transport on the Composite Surface
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Supplementary Fig. 14 Ion Concentration Gradient–Driven Potential Generation Between Current Collectors
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Supplementary Fig. 15 Moisture-Driven State Transitions in Composite Structures
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Supplementary Fig. 16 Schematic illustration of the working principle of the MECB
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Supplementary Fig. 17 Surface Color Variations of the Composite Corresponding to Three RH-Dependent States: low RH, moderate RH, and high RH.
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Supplementary Fig. 18 Schematic representation of moisture-driven power generation under natural humidity cycles.
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Supplementary Fig. 19 Moisture-Induced Swelling of Hygroscopic Materials via Water–Material Interactions.
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Supplementary Fig. 20 Humidity-Responsive Hydration and Dehydration Dynamics of the Composite.
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Supplementary Fig. 21 Humidity-Driven Hydration–Dehydration Response of the Fully Coated Composite.
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Supplementary Fig. 22 (a) Water molecules generate hydronium ions, (b) form hydrogen bonds with polar groups, and (c) bind to the composite surface.

[image: ]
Supplementary Fig. 23 Voltage response of the MECB showing an initial rise followed by exponential decay and stabilization over time.
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Supplementary Fig. 24 Time-resolved current response: (a) sharp rise during moisture absorption and (b) gradual decay during desorption.
[image: ]
Supplementary Fig. 25 Time-resolved open-circuit voltage (Voc) response: (a) gradual increase during moisture absorption and (b) decrease during desorption.
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Supplementary Fig. 26 Gravimetric power density of samples expressed as power-to-mass ratio.
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Supplementary Fig. 27 Optimized geometry of the MECB to maximize power density. Four configurations were devised, with their power outputs denoted as P0 (Sample C), P1 (Sample D), P2 (Sample B), and P3 (Sample A), respectively.
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Supplementary Fig. 28 MECB maintains performance over a wide temperature range, but extreme heat reduces moisture and lowers voltage output.
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Supplementary Fig. 29 The open-circuit voltage of MECB correlates with moisture absorption and relative humidity.
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Supplementary Fig. 30 Cost analysis of MECB on a per-square-meter basis.
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Supplementary Fig. 31 Connected multiple MECB units in series and parallel increases Voc and Isc.
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Supplementary Fig. 32 Voc and Isc of MECB were measured during LED operation and after the LED was turned off.
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Supplementary Fig. 33 Analysis of experimental data alignment with the theoretical curve across the full range of moisture absorption.
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Supplementary Fig. 34 Relationship between electrical output and relative humidity reported in previous studies1-5. (1-5)


2. Supporting Table

	Sample
	Output Voltage (Voc)
	Weight (g)
	Voltage-to-weight 
ratio (V/g)

	MECB (x1)
	0.9
	0.76
	1.18

	MECB (x2)
	1.18
	1.19
	0.99

	MECB (x3)
	1.52
	1.48
	1.03

	Olympic Battery
	1.5
	15.55
	0.10

	Sunlight Battery
	1.5
	17.07
	0.09

	Murata LR44
	1.5
	2.0
	0.75

	Enfuel Soft Battery
	1.5
	2.4
	0.63



Supplementary Table 1 Comparison of voltage, weight, and voltage-to-weight ratio between MECB and conventional 1.5 V batteries.

	Parameter
	Value

	Equation
	y = a + b*x

	                      Plot
	Power (μW)

	                   Weight
	No Weighting

	Intercept
	-27.93934 ± 7.07943

	Slope
	2.92215 ± 0.23989

	Residual Sum of Squares
	863.23156

	Pearson's r
	0.97722

	R-Square (COD)
	0.95495

	Adj. R-Square
	0.94851


Supplementary Table 2 Linear regression analysis of MECB

	Relative Humidity (RH%)
	Moisture Absorption (MA%)
	Power (µW)

	60
	5.66
	0

	65
	9.43
	0.82

	70
	11.32
	1.54

	75
	13.20
	2.52

	80
	16.98
	30.40

	85
	32.08
	64.35

	90
	45.28
	95.55

	95
	52.83
	132.60


Supplementary Table 3 Influence of relative humidity on moisture absorption and power output of the MECB








	Hygroscopic Materials
	Power Density
	Open Circuit Voltage
	Reference

	Heterogeneous Gels and Carbon Nanotubes
	9.12 μW cm–2
	1.03 V
	Huang, Z. et al 6

	Acrylamide (AAm) and 2-acrylamide-2-methylpropanesulfonic acid (AMPS)
	-
	0.89 V
	Cheng, Y. et al.7

	Biological Nanofibrils
	6.3 x 10-4 μW cm−2
	0.11 V
	Li, M. et al.8

	Paper
	2.5 x 10-3 μW cm-2
	0.25 V
	Gao, X. et al.9

	GO/PAAS Composite
	7.0 x 10-5 μW cm-2
	0.6 V
	Xue, J. et al.10

	3D PPy Framework
	6.9 x 10-4 μW cm-2
	0.06 V
	Huang, Y. et al.11

	Hygroscopic ionic hydrogel and carbon black-coated cotton knitted fabric
	0.7 μW cm–2
	0.3 V
	Wen, X. et al. 12

	SSG film (SA–SiO2–rGO)
	8.4 x10-2 μW cm–2
	0.6 V
	Wang, H. et al.13

	PSSA/PDDA Hybrid Film
	9 x10-4 μW cm-3
	1.38 V
	Huang, Z. et al.14

	P(MEDSAH-co-AA)
	1.12 μW cm-2
	0.4 V
	Long, Y. et al.15

	PAN/PSSA Nanofiber Fabrics
	1.48 x10-2 μW cm-2
	1.1 V
	Sun, Z. et al.16

	TiO2 Nanowire Networks
	4 μW cm-2
	0.5 V
	Shen, D. et al.4

	PSS/PVA Film
	7.9 μW cm-2
	0.12 V
	Yang, W. et al.3

	Ionic Liquid Film
	12.11 μW cm-2
	0.31 V
	Zheng, S. et al.17

	MECB (Our Work)
	16.44 μW cm-3
	1.16 V
	-


Supplementary Table 4 Comparative performance of the MECB and previously reported moisture-electric generators (MEGs).
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The total cost includes 40 g of PVA and the fabrication steps
involved in the composite preparation, resulting in an estimated cost
of $0.59 per square meter of MECB.
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