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When SI is actually needed

For a mathematically unconventional manuscript, SI is useful when any of the following hold: (i)
a key result depends on a short but nontrivial derivation that would interrupt the narrative, (ii)
reproducibility requires implementation details that would clutter the main text, (iii) multiple
noise/decoherence models must be laid out cleanly for falsifiability.

In this project, SI is recommended. The manuscript contains a compact main-line argument;
the SI can carry the fully explicit SU(2) overlap derivation, the transport/holonomy formalization,
full CHSH noise-threshold algebra, and the Gaussian-to-effective-flip mapping.
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1 SU(2) geometry and the sin?*(0/2) law

1.1 Spinors for two measurement directions

Let a,b € S? be unit vectors, separated by angle 6 € [0, 7] so that a b = cosf. Choose
coordinates so that @ = 2 and b lies in the xz-plane with polar angle 6. In the Z basis, the

eigenstates of o, are
+a) =, —a)= (]
—\0)’ S\l

The eigenstates of spin along b are the eigenvectors of o = b-o. With b= (sind,0,cos6),
o = ((2050 sin 0 > ‘
b sinf —cos6
A convenient normalized eigenbasis is
o= () o ()
These satisfy o;|+b) = £|+b) and are continuous in 6.

1.2 Overlap probabilities
The key geometric identity is the SU(2) inner-product overlap:
|(+b] — a)|* = sin?(0/2), |(=b| — a)|* = cos?(0/2).
Proof:
(45 — a) = (cos(8/2) sin(6/2)) (2) — sin(6/2),

and similarly (—b| — a) = cos(0/2). Squaring gives the claim.



1.3 Singlet anti-correlation and the correlation function

For the spin singlet state, if Alice measures +1 along a then Bob’s conditional state is | — a)
(anti-correlation). Therefore,

P(B=+1|A=+1,4,b) = |(+b| — a)|* = sin*(6/2),

P(B=—1|A=+41,a,b) = |(=b] — a)|* = cos®(8/2).

Hence the expectation for outcomes +1 is
E(a,b) = P(B=A)— P(B # A) = sin?(0/2) — cos?(0/2) = — cos .

This derivation uses only SU(2) geometry plus the singlet constraint; the probability is an
amplitude-squared.

2 Bundle, double cover, and the “Mobius twist” as the kernel
element

2.1 Covering map and the meaning of U — —U
The double cover 7 : SU(2) — SO(3) can be expressed as

T(U): v, (v'-o)=Uv-o)U'.

Then U and —U induce the same rotation in SO(3): w(U) = n(—U), because the minus sign
cancels in U(-)UT. The kernel is ker 7 = {£I}, and the nontrivial element —I is the canonical
“twist parity” in the spinor bundle. This is the precise sense in which a “Md&bius twist” can be
modeled as U — —U without invoking an improper rotation in SO(3).

2.2 Transport operator: a concrete, reproducible definition

For directions a, b, let R(a — IA))A € SO(3) be the unique minimal rotation sending & to b (axis
x a x b, angle 6). Let U(a — b) € SU(2) be any lift such that 7(U) = R. Define two lifted
transports . . R .

To(a,b) =U(a — b), Ti(a,b) = =U(a — b).
They project to the same SO(3) rotation but differ by the kernel element. A “topology-erasure”

channel (see 7?7) randomizes the parity bit selecting Ty versus 7.

3 CHSH: standard angles, analytic optimum, and Monte Carlo
reproducibility

3.1 Optimal settings
Given E(a,b) = — cos g, the CHSH combination

S = E(a,b) + E(a,b') + E(&',b) — E(a', V)

attains |S|max = 2v/2 at the usual coplanar settings with relative angles 0, = 0y = 0,1 = /4,
ea/b’ =3r / 4.



3.2 Reference Monte Carlo (sampler of the derived distribution)

The following is a minimal sampler for the derived conditional law. It is appropriate when the
paper treats Theorem 1 as primary and the Monte Carlo as an empirical check.

MC-1. Fix N trials, settings (a,d’,b, V), and seed (e.g., 42).

MC-2. Sample A ~ Unif(S?) using the Marsaglia method (Appendix ?7?).

MC-3. Compute A = sign(\ - a) for each trial (and similarly for a’).

MC-4. For each setting pair (Z,), let & = arccos( - §) and set psame = sin?(#/2). Then sample
B so that P(B = A) = psame and P(B = —A) = 1 — Psame-

MC-5. Estimate each E(&,7) by sample mean of A B, then compute S.

Standard error. For bounded i.i.d. variables X; = A;B; € {_11+1} with mean F, Var(X) =
1 — E? 50 SE(E) ~ /(1 — E2)/N. A conservative bound is SE(E) < 1/v/N.
3.3 Deterministic variant (optional)

If one prefers to avoid explicit sampling from pgame, one can define a transported spinor (or a
transported \) and threshold it to obtain B. When the transport is defined in SU(2) and A is
uniform, the empirical frequency of B = A converges to sin?(6/2). Including this deterministic
implementation can make the numerical section feel less “distribution-sampling”.

4 Noise and decoherence: full derivations of critical thresholds

4.1 CHSH scaling under a bit-flip channel

Let each recorded outcome be flipped independently with probability n: Agps = A w.p. 1 — 17,
and Agps = —A w.p. 1 (similarly for B), independent of settings. Then Ag,s = A - F4 where
Fy € {£1} with E[F4] = 1 —2n. Likewise Bonhs = B - Fpp with E[F] = 1 —27. Assuming F4, Fp
independent of (A, B) and of each other,

Eops = IE’[‘Aobs-Bobs] = E[AB] E[FA] E[FB] - (1 - 277)2E

Therefore

|Sobs| = (1 - 277)2 2\/5'

The violation persists while |Sops| > 2, i.e.

1 1
(1—2n)* > 5 o= l-m> 27V = < = 5 (1 - 2711) = 0.0796.

4.2 CHSH scaling under a depolarizing channel

For an isotropic depolarizing channel on the shared two-qubit state,

I
pr>(A=pp+py

Correlations scale as E +— (1 — p)E for traceless Pauli observables, hence
S(p)| = (1-p)2v2.

Violation requires (1 — p)2v/2 > 2, giving

P < Peit = 1 — — =~ 0.2929.



4.3 Gaussian additive readout noise and effective flip probability

Consider a sign readout with additive Gaussian noise:
Aops = sign(A + oe), e ~N(0,1),

with A € {£1}. Conditioned on A = +1, a flip occurs when 1+ oe <0, i.e. ¢ < —1/0. Thus
the flip probability is
1
() = ().
o

where ® is the standard normal CDF. By symmetry, the same holds for A = —1. Assuming
independent Gaussian readout noise on each wing, one obtains

15(a)] = (1 2nea(0))* 2v2,

matching the bit-flip scaling with n = neg(0).

5 Topology-erasure channel and the plateaucliff prediction

5.1 Why this is not ordinary depolarization

Ordinary depolarization is a continuous mixture channel and yields a linear decay in |S|. A
plateau+cliff shape requires a different mechanism: a discrete loss of the twist-parity class
associated with the nontrivial element of ker(SU(2) — SO(3)).

5.2 A minimal mathematical model

Introduce a Bernoulli “parity” variable 7 € {0,1} selecting the lifted transport 75 (é,b) from
Section 2. Define a topology-erasure channel with rate ¢q: with probability 1 — ¢, 7 remains fixed
across the two wings in a run (coherent parity), and with probability ¢ the parity is randomized
(incoherent parity), destroying the shared holonomy class.

A minimal effective prediction model is then:

22, 0<q<qe, 1
1S(q)| ~ V2, 0<q<q Gom 1 — — ~0.293,
<2, q=>q \&

where the numerical value is aligned to the depolarizing critical point but the functional form
(plateau+cliff) differs. Any experimentally observed nonlinearity of |S| versus a knob that targets
parity coherence would discriminate this model from standard depolarization.

5.3 Protocol-ready discriminator

To avoid ambiguity, one should run two sweeps: (A) a standard depolarizing knob (predict linear
decay), and (B) a parity-coherence knob (predict plateau+-cliff). The experiment is decisive if
(B) produces a statistically significant nonlinearity while (A) remains linear within error bars.

A Marsaglia method for uniform sampling on the sphere

A standard method to sample A ~ Unif(S?) is: draw u,v ~ Unif(—1,1) until s = u? + v? < 1,

then set
A= (2uv1—s, 201 —s, 1 —2s).

This yields a uniform distribution on the unit sphere.



Quick reference table

Channel Parameter CHSH scaling

Bit flip (each wing) n S| = (1—-2n)222

Depolarization D S| = (1—p)2v2

Gaussian sign readout o Net = ®(—1/0), then bit-flip form
Topology-erasure (parity) ¢ model-dependent; can show plateau+cliff




