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When SI is actually needed

For a mathematically unconventional manuscript, SI is useful when any of the following hold: (i)
a key result depends on a short but nontrivial derivation that would interrupt the narrative, (ii)
reproducibility requires implementation details that would clutter the main text, (iii) multiple
noise/decoherence models must be laid out cleanly for falsifiability.

In this project, SI is recommended. The manuscript contains a compact main-line argument;
the SI can carry the fully explicit SU(2) overlap derivation, the transport/holonomy formalization,
full CHSH noise-threshold algebra, and the Gaussian-to-effective-flip mapping.
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1 SU(2) geometry and the sin2(θ/2) law

1.1 Spinors for two measurement directions

Let â, b̂ ∈ S2 be unit vectors, separated by angle θ ∈ [0, π] so that â · b̂ = cos θ. Choose
coordinates so that â = ẑ and b̂ lies in the xz-plane with polar angle θ. In the ẑ basis, the
eigenstates of σz are

|+ a⟩ =
(
1
0

)
, | − a⟩ =

(
0
1

)
.

The eigenstates of spin along b̂ are the eigenvectors of σb̂ = b̂ · σ. With b̂ = (sin θ, 0, cos θ),

σb̂ =

(
cos θ sin θ
sin θ − cos θ

)
.

A convenient normalized eigenbasis is

|+ b⟩ =
(
cos(θ/2)
sin(θ/2)

)
, | − b⟩ =

(
− sin(θ/2)
cos(θ/2)

)
.

These satisfy σb̂|±b⟩ = ±|±b⟩ and are continuous in θ.

1.2 Overlap probabilities

The key geometric identity is the SU(2) inner-product overlap:

|⟨+b| − a⟩|2 = sin2(θ/2), |⟨−b| − a⟩|2 = cos2(θ/2).

Proof:

⟨+b| − a⟩ =
(
cos(θ/2) sin(θ/2)

)(0
1

)
= sin(θ/2),

and similarly ⟨−b| − a⟩ = cos(θ/2). Squaring gives the claim.
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1.3 Singlet anti-correlation and the correlation function

For the spin singlet state, if Alice measures +1 along â then Bob’s conditional state is | − a⟩
(anti-correlation). Therefore,

P (B = +1 | A = +1, â, b̂) = |⟨+b| − a⟩|2 = sin2(θ/2),

P (B = −1 | A = +1, â, b̂) = |⟨−b| − a⟩|2 = cos2(θ/2).

Hence the expectation for outcomes ±1 is

E(â, b̂) = P (B = A)− P (B ̸= A) = sin2(θ/2)− cos2(θ/2) = − cos θ.

This derivation uses only SU(2) geometry plus the singlet constraint; the probability is an
amplitude-squared.

2 Bundle, double cover, and the “Möbius twist” as the kernel
element

2.1 Covering map and the meaning of U 7→ −U

The double cover π : SU(2) → SO(3) can be expressed as

π(U) : v 7→ v′, (v′ · σ) = U(v · σ)U †.

Then U and −U induce the same rotation in SO(3): π(U) = π(−U), because the minus sign
cancels in U(·)U †. The kernel is kerπ = {±I}, and the nontrivial element −I is the canonical
“twist parity” in the spinor bundle. This is the precise sense in which a “Möbius twist” can be
modeled as U 7→ −U without invoking an improper rotation in SO(3).

2.2 Transport operator: a concrete, reproducible definition

For directions â, b̂, let R(â → b̂) ∈ SO(3) be the unique minimal rotation sending â to b̂ (axis
∝ â × b̂, angle θ). Let U(â → b̂) ∈ SU(2) be any lift such that π(U) = R. Define two lifted
transports

T0(â, b̂) = U(â → b̂), T1(â, b̂) = −U(â → b̂).

They project to the same SO(3) rotation but differ by the kernel element. A “topology-erasure”
channel (see ??) randomizes the parity bit selecting T0 versus T1.

3 CHSH: standard angles, analytic optimum, and Monte Carlo
reproducibility

3.1 Optimal settings

Given E(â, b̂) = − cos θab, the CHSH combination

S = E(â, b̂) + E(â, b̂′) + E(â′, b̂)− E(â′, b̂′)

attains |S|max = 2
√
2 at the usual coplanar settings with relative angles θab = θab′ = θa′b = π/4,

θa′b′ = 3π/4.
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3.2 Reference Monte Carlo (sampler of the derived distribution)

The following is a minimal sampler for the derived conditional law. It is appropriate when the
paper treats Theorem 1 as primary and the Monte Carlo as an empirical check.

MC-1. Fix N trials, settings (â, â′, b̂, b̂′), and seed (e.g., 42).
MC-2. Sample λ ∼ Unif(S2) using the Marsaglia method (Appendix ??).
MC-3. Compute A = sign(λ · â) for each trial (and similarly for â′).
MC-4. For each setting pair (x̂, ŷ), let θ = arccos(x̂ · ŷ) and set psame = sin2(θ/2). Then sample

B so that P (B = A) = psame and P (B = −A) = 1− psame.
MC-5. Estimate each E(x̂, ŷ) by sample mean of AB, then compute Ŝ.

Standard error. For bounded i.i.d. variables Xi = AiBi ∈ {−1,+1} with mean E, Var(X) =
1− E2, so SE(Ê) ≈

√
(1− E2)/N . A conservative bound is SE(Ê) ≤ 1/

√
N .

3.3 Deterministic variant (optional)

If one prefers to avoid explicit sampling from psame, one can define a transported spinor (or a
transported λ) and threshold it to obtain B. When the transport is defined in SU(2) and λ is
uniform, the empirical frequency of B = A converges to sin2(θ/2). Including this deterministic
implementation can make the numerical section feel less “distribution-sampling”.

4 Noise and decoherence: full derivations of critical thresholds

4.1 CHSH scaling under a bit-flip channel

Let each recorded outcome be flipped independently with probability η: Aobs = A w.p. 1− η,
and Aobs = −A w.p. η (similarly for B), independent of settings. Then Aobs = A · FA where
FA ∈ {±1} with E[FA] = 1− 2η. Likewise Bobs = B ·FB with E[FB] = 1− 2η. Assuming FA, FB

independent of (A,B) and of each other,

Eobs = E[AobsBobs] = E[AB]E[FA]E[FB] = (1− 2η)2E.

Therefore
|Sobs| = (1− 2η)2 2

√
2.

The violation persists while |Sobs| > 2, i.e.

(1− 2η)2 >
1√
2

=⇒ 1− 2η > 2−1/4 =⇒ η < ηcrit =
1

2

(
1− 2−1/4

)
≈ 0.0796.

4.2 CHSH scaling under a depolarizing channel

For an isotropic depolarizing channel on the shared two-qubit state,

ρ 7→ (1− p)ρ+ p
I
4
.

Correlations scale as E 7→ (1− p)E for traceless Pauli observables, hence

|S(p)| = (1− p) 2
√
2.

Violation requires (1− p)2
√
2 > 2, giving

p < pcrit = 1− 1√
2
≈ 0.2929.
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4.3 Gaussian additive readout noise and effective flip probability

Consider a sign readout with additive Gaussian noise:

Aobs = sign(A+ σε), ε ∼ N (0, 1),

with A ∈ {±1}. Conditioned on A = +1, a flip occurs when 1 + σε < 0, i.e. ε < −1/σ. Thus
the flip probability is

ηeff(σ) = Φ

(
− 1

σ

)
,

where Φ is the standard normal CDF. By symmetry, the same holds for A = −1. Assuming
independent Gaussian readout noise on each wing, one obtains

|S(σ)| =
(
1− 2ηeff(σ)

)2
2
√
2,

matching the bit-flip scaling with η = ηeff(σ).

5 Topology-erasure channel and the plateau+cliff prediction

5.1 Why this is not ordinary depolarization

Ordinary depolarization is a continuous mixture channel and yields a linear decay in |S|. A
plateau+cliff shape requires a different mechanism: a discrete loss of the twist-parity class
associated with the nontrivial element of ker(SU(2) → SO(3)).

5.2 A minimal mathematical model

Introduce a Bernoulli “parity” variable τ ∈ {0, 1} selecting the lifted transport Tτ (â, b̂) from
Section 2. Define a topology-erasure channel with rate q: with probability 1− q, τ remains fixed
across the two wings in a run (coherent parity), and with probability q the parity is randomized
(incoherent parity), destroying the shared holonomy class.

A minimal effective prediction model is then:

|S(q)| ≈

{
2
√
2, 0 ≤ q < qc,

≤ 2, q ≥ qc,
qc ≈ 1− 1√

2
≈ 0.293,

where the numerical value is aligned to the depolarizing critical point but the functional form
(plateau+cliff) differs. Any experimentally observed nonlinearity of |S| versus a knob that targets
parity coherence would discriminate this model from standard depolarization.

5.3 Protocol-ready discriminator

To avoid ambiguity, one should run two sweeps: (A) a standard depolarizing knob (predict linear
decay), and (B) a parity-coherence knob (predict plateau+cliff). The experiment is decisive if
(B) produces a statistically significant nonlinearity while (A) remains linear within error bars.

A Marsaglia method for uniform sampling on the sphere

A standard method to sample λ ∼ Unif(S2) is: draw u, v ∼ Unif(−1, 1) until s = u2 + v2 < 1,
then set

λ =
(
2u

√
1− s, 2v

√
1− s, 1− 2s

)
.

This yields a uniform distribution on the unit sphere.
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B Quick reference table

Channel Parameter CHSH scaling

Bit flip (each wing) η |S| = (1− 2η)2 2
√
2

Depolarization p |S| = (1− p) 2
√
2

Gaussian sign readout σ ηeff = Φ(−1/σ), then bit-flip form
Topology-erasure (parity) q model-dependent; can show plateau+cliff
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