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S1 Hodge Laplacian and Homology

Let 𝐾 be a finite, oriented simplicial complex. For each 𝑘 ≥ 0, the 𝑘–chain space 𝐶𝑘 (𝐾) is the

real vector space spanned by oriented 𝑘–simplices, equipped with the inner product that makes

those simplices orthonormal. The boundary operators

𝜕𝑘 : 𝐶𝑘 → 𝐶𝑘−1, 𝜕𝑘 [𝑣0, . . . , 𝑣𝑘 ] =
𝑘∑︁
𝑖=0
(−1)𝑖 [𝑣0, . . . , 𝑣𝑖, . . . , 𝑣𝑘 ] (S1)

assemble into the chain complex

· · · 𝜕𝑘+1−−−→ 𝐶𝑘
𝜕𝑘−−→ 𝐶𝑘−1

𝜕𝑘−1−−−→ · · · , 𝜕𝑘𝜕𝑘+1 = 0. (S2)

The 𝑘th homology group is

𝐻𝑘 (𝐾) = ker(𝜕𝑘 )/im(𝜕𝑘+1), 𝛽𝑘 = dim𝐻𝑘 (𝐾), (S3)

which counts independent 𝑘–dimensional holes (54). In Eq. (S1), 𝑣𝑖 indicates omission of 𝑣𝑖, and

the orientation is the canonical orientation induced by the vertex order.

With respect to the chosen inner product, let 𝜕†
𝑘

denote the adjoint of 𝜕𝑘 . It is convenient to split

the 𝑘–Hodge Laplacian into its “down” and “up” parts and write

𝐿
↓
𝑘
= 𝜕
†
𝑘
𝜕𝑘 , 𝐿

↑
𝑘
= 𝜕𝑘+1𝜕

†
𝑘+1, 𝐿𝑘 = 𝐿

↓
𝑘
+ 𝐿↑

𝑘
= 𝜕
†
𝑘
𝜕𝑘 + 𝜕𝑘+1𝜕†𝑘+1, (S4)

All operators act on 𝐶𝑘 (𝐾) equipped with the simplex-orthonormal inner product, so (·)† is just

transposed with respect to that basis.

Any 𝑘–chain 𝑥 ∈ 𝐶𝑘 admits three qualitatively distinct behaviors. It can be a gradient (an

exact 𝑘–chain) of some (𝑘−1)–chain, 𝑥 = 𝜕
†
𝑘
𝑦; it can be a curl (a coexact 𝑘–chain) induced by a

(𝑘+1)–chain, 𝑥 = 𝜕𝑘+1𝑧; or it can simultaneously cycle and cocycle, i.e., 𝑥 ∈ ker(𝜕𝑘 ) ∩ ker(𝜕†
𝑘+1),

which is divergence–free and curl–free. The latter are the harmonic 𝑘–chains and encode the

homology.
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The Hodge decomposition states that these three subspaces are mutually orthogonal and span 𝐶𝑘 :

𝐶𝑘 = im(𝜕†
𝑘
) ⊕ ker 𝐿𝑘 ⊕ im(𝜕𝑘+1), ker 𝐿𝑘 = ker(𝜕𝑘 ) ∩ ker(𝜕†

𝑘+1) � 𝐻𝑘 , 𝛽𝑘 = dim ker 𝐿𝑘 .

(S5)

Thus every 𝑥 ∈ 𝐶𝑘 splits uniquely as 𝑥 = 𝑥grad + 𝑥harm + 𝑥curl, with the three components pairwise

orthogonal.

Because the direct sum is orthogonal, each component can be recovered via orthogonal projection.

Using Moore–Penrose pseudoinverses,

𝑃grad = 𝜕
†
𝑘
(𝜕𝑘𝜕†𝑘 )

+𝜕𝑘 , 𝑃curl = 𝜕𝑘+1(𝜕†𝑘+1𝜕𝑘+1)
+𝜕†

𝑘+1, (S6)

𝑃harm = 𝐼 − 𝑃grad − 𝑃curl, 𝑥• = 𝑃•𝑥. (S7)

Equivalently, 𝑥grad = 𝜕
†
𝑘
𝑢 where 𝑢 solves the normal equations 𝜕𝑘𝜕†𝑘𝑢 = 𝜕𝑘𝑥; 𝑥curl = 𝜕𝑘+1𝑣 where

𝜕
†
𝑘+1𝜕𝑘+1𝑣 = 𝜕

†
𝑘+1𝑥; and 𝑥harm is the residual in ker 𝐿𝑘 .

The appearance of the adjoint 𝜕†
𝑘

in 𝑃grad is deliberate and fundamental. Since im(𝜕†
𝑘
) is the

subspace of exact 𝑘–cochains (coboundaries), projection onto this space necessarily involves 𝜕†
𝑘

acting on the left. Had we used 𝜕𝑘 instead, the resulting operator would project onto im(𝜕𝑘 ), the

boundary subspace associated with the next lower chain group, corresponding to 𝑃curl. Thus the two

projectors are adjoint counterparts under discrete Hodge pairing:

𝑃grad = 𝜕
†
𝑘
(𝜕𝑘𝜕†𝑘 )

+𝜕𝑘 , 𝑃curl = 𝜕𝑘+1(𝜕†𝑘+1𝜕𝑘+1)
+𝜕†

𝑘+1.

This construction ensures that 𝑃grad, 𝑃curl, and 𝑃harm form a complete, mutually orthogonal

decomposition of 𝐶𝑘 , as guaranteed by the Hodge theorem for finite complexes. Equivalent

formulations appear in the discrete Hodge-theoretic treatments of Horak and Jost (55) and Lim (56),

where the operators are written as

𝑃grad = 𝛿(𝛿∗𝛿)+𝛿∗, 𝑃curl = 𝛿
∗(𝛿𝛿∗)+𝛿,

where 𝛿 = 𝜕†
𝑘

denotes the coboundary operator.
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For the case where 𝑘 = 1, write 𝐵1 for the vertex–edge incidence matrix and 𝐵2 for the

edge–triangle incidence matrix of 𝐾 (if triangles are present). Let 𝐵1 ∈ R|𝑉 |×|𝐸 | be the vertex–edge

incidence (each column has one +1 and one −1 according to edge orientation), and 𝐵2 ∈ R|𝐸 |×|𝑇 | the

edge–triangle incidence (entries in {0,±1} given by compatible orientation). Then

𝐿
↓
1 = 𝐵⊤1 𝐵1, 𝐿

↑
1 = 𝐵2𝐵

⊤
2 , 𝐿1 = 𝐵⊤1 𝐵1 + 𝐵2𝐵

⊤
2 . (S8)

Here im(𝐵⊤1 ) consists of edge differences of a scalar potential on vertices (gradient space), im(𝐵2)

consists of circulations induced by triangle potentials (curl space), and ker 𝐿1 consists of edge flows

that are both divergence–free (𝐵1𝑥 = 0) and curl–free (𝐵⊤2 𝑥 = 0); hence 𝛽1 = dim ker 𝐿1 recovers

the first Betti number. On a pure graph with no filled triangles (𝐵2 = 0), one simply has 𝐿1 = 𝐵⊤1 𝐵1

and ker 𝐿1 = ker 𝐵1, the usual cycle space (57,58).

The Hodge Laplacian introduced above not only decomposes chains into gradient, curl, and

harmonic components but also connects directly to the semiclassical picture of Witten–Morse

supersymmetric quantum mechanics (29). In this correspondence, the gradient, curl, and harmonic

parts represent, respectively, downwards and upwards gradient flows and the stationary (zero–energy)

sector of a supersymmetric Hamiltonian. Under Witten’s deformation 𝑑𝑡 = 𝑒−𝑡 𝑓 𝑑𝑒𝑡 𝑓 the Laplacian

Δ𝑡 = (𝑑𝑡 + 𝑑†𝑡 )2 acquires exponentially small eigenvalues 𝐸𝑖 (𝑡) ∼ exp[−2𝑡 Δ 𝑓𝑖/ℏ] generated by

tunneling between distinct basins of the Morse function 𝑓 . The first nonzero eigenvalue therefore

measures a tunneling gap that quantifies how strongly separated topological sectors communicate.

In the discrete combinatorial setting this role is played by

Δ
(1)
SUSY = min{𝜆 > 0 : 𝜆 ∈ 𝜎(𝐿1)},

the smallest positive eigenvalue of the one–form Hodge block. When persistent loops are well isolated

in geometry, tunneling is suppressed and the gap widens; when loops merge or collapse, tunneling

increases and the gap closes. Across a filtration or control parameter this gap Δ
(1)
SUSY typically

covaries with the highest persistence of homology ℓmax
𝐻1

, providing a spectral proxy for topological

stability (32, 59). This connection unifies the classical Hodge decomposition, the Witten–Morse
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semiclassical analysis, and modern persistent-Laplacian formulations into a single framework linking

gradient flow, tunneling amplitude, and topological persistence.

From a spectral viewpoint, eigenpairs of 𝐿𝑘 separate according to (S5): harmonic modes (𝜆 = 0)

span homology, whereas nonzero eigenvalues arise from gradient–type subspaces and curl–type

subspaces (32,54,55,60). Small but nonzero eigenvalues can come from either block or reflect different

geometric mechanisms (e.g., thin bridges versus wide vortical regions). Consequently, interpreting

“small eigenvalues” requires tracking their provenance across scales or filtrations; disentangling

the three families is essential for faithful geometric and topological inference (18, 32, 44, 61–65).

Relatedly, persistent homology allows quantitative connections to fractal dimensions via upper box

dimension estimates (66).

S2 Supersymmetric (SUSY) Hamiltonian and Homology

We consider N=2 supersymmetric quantum mechanics on a Z–graded Hilbert space; 𝐹 is the

degree operator so that [𝐹,𝑄] = 𝑄 shifts degree by +1 and [𝐹,𝑄†] = −𝑄† by −1.

H =

𝑚⊕
𝑘=0
H𝑘 , (S9)

with odd supercharges 𝑄 and 𝑄† obeying

𝑄2 = (𝑄†)2 = 0, 𝐻 = {𝑄,𝑄†} = 𝑄†𝑄 +𝑄𝑄†, [𝐹,𝑄] = 𝑄, [𝐹,𝑄†] = −𝑄†, (S10)

where 𝐹 is the degree operator. Hence 𝑄 : H𝑘 →H𝑘+1 and 𝑄† : H𝑘 →H𝑘−1, and [𝐻, 𝐹] = 0 so

𝐻 is block-diagonal in degree.

Let 𝑑𝑘 := 𝑄
��
H𝑘

: H𝑘 →H𝑘+1 and 𝑑†
𝑘

:= 𝑄†
��
H𝑘+1

: H𝑘+1 →H𝑘 , and let 𝑃𝑘 be the projector onto

H𝑘 . Expanding 𝑄 =
∑
𝑗 𝑑 𝑗𝑃 𝑗 and 𝑄† =

∑
𝑗 𝑑
†
𝑗−1𝑃 𝑗 , for any 𝑣 ∈ H𝑘 we have

𝐻𝑣 = (𝑄†𝑄 +𝑄𝑄†)𝑣 = 𝑄†(𝑑𝑘𝑣) +𝑄(𝑑†𝑘−1𝑣) = 𝑑
†
𝑘
𝑑𝑘𝑣 + 𝑑𝑘−1𝑑

†
𝑘−1𝑣 ∈ H𝑘 . (S11)

Thus, in the degree-𝑘 subspace, the SUSY Hamiltonian block equals the 𝑘–Hodge Laplacian L𝑘

acting on 𝑘–cochains.

𝐻
��
H𝑘

= 𝑑
†
𝑘
𝑑𝑘 + 𝑑𝑘−1𝑑

†
𝑘−1 = L𝑘 . (S12)
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At the ends of the complex, 𝑑−1 ≡ 0 and 𝑑𝑚 ≡ 0, giving 𝐻
��
H0

= 𝑑
†
0𝑑0 and 𝐻

��
H𝑚

= 𝑑𝑚−1𝑑
†
𝑚−1.

Positivity follows immediately: for 𝑣 ∈ H𝑘 ,

⟨𝑣, 𝐻𝑣⟩ = ∥𝑑𝑘𝑣∥2 + ∥𝑑†𝑘−1𝑣∥
2 ≥ 0, (S13)

Here, ⟨·, ·⟩ is the Hilbert–space inner product; positivity holds since each term is a squared norm, so

𝐸 = 0 if 𝑑𝑘𝑣 = 0 and 𝑑†
𝑘−1𝑣 = 0, i.e.,

ker𝐻
��
H𝑘

= ker 𝑑𝑘 ∩ ker 𝑑†
𝑘−1 = kerL𝑘 . (S14)

Zero-energy states are therefore simultaneously closed and coclosed (harmonic).

We use 𝑑𝑘 := 𝑄 |H𝑘
and 𝑑†

𝑘
:= 𝑄† |H𝑘+1 , which is consistent with the coboundary on cochains.

Introduce the 𝑄–cohomology

𝐻𝑘 (𝑄) = ker 𝑑𝑘/im 𝑑𝑘−1. (S15)

The Hodge decomposition yields, for every 𝑣 ∈ H𝑘 ,

𝑣 = 𝑑𝑘−1𝑢 + ℎ + 𝑑†𝑘𝑤, 𝑢 ∈ H𝑘−1, 𝑤 ∈ H𝑘+1, ℎ ∈ kerL𝑘 . (S16)

If 𝑣 is 𝑑𝑘–closed, then 𝑣 is cohomologous to the unique harmonic representative ℎ; hence, the map

[𝑣] ↦→ ℎ induces an isomorphism

ker𝐻
��
H𝑘

= kerL𝑘 � 𝐻𝑘 (𝑄) (and by duality 𝐻𝑘 ), dim ker𝐻
��
H𝑘

= 𝛽𝑘 . (S17)

All positive–energy levels appear in adjacent–degree pairs: if 𝐻𝑣 = 𝐸𝑣 with 𝐸 > 0, then 𝑄𝑣 and

𝑄†𝑣 (when nonzero) are eigenvectors with the same 𝐸 in degrees 𝑘+1 and 𝑘−1, respectively; only

the harmonic sector contributes to 𝐸 = 0.

When the graded Hilbert space is realized as cochains on a finite simplicial complex and 𝑑𝑘

is the coboundary, the block identity (S12) coincides with the combinatorial Hodge Laplacian

L𝑘 = 𝑑†𝑘𝑑𝑘 + 𝑑𝑘−1𝑑
†
𝑘−1. In particular, for a 1–dimensional block with vertex–edge incidence 𝐵1 and

edge–triangle incidence 𝐵2, one has L1 = 𝐵⊤1 𝐵1 + 𝐵2𝐵
⊤
2 ; its kernel encodes divergence–free and

curl–free edge flows, so dim kerL1 = 𝛽1 recovers the cycle space of the underlying complex (and of

a pure graph when 𝐵2 = 0).
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These relations imply a practical dictionary for topology–aware spectroscopy. The degeneracy of

zero modes in degree 𝑘 equals the 𝑘th Betti number, whereas the first positive eigenvalue

Δ
(1)
SUSY = min{𝜆 > 0 | 𝜆 ∈ 𝜎(L1)}. (S18)

measures the spectral isolation of the corresponding topological sector (an “nearly harmonic” scale).

Tracking Δ(𝑘) and the occupation of kerL𝑘 as external parameters (e.g., the Lorenz control 𝜌)

vary suggesting the appearance, merger, or disappearance of topological features in a way that is

algebraically exact yet numerically robust.

S3 Dynamical and topological phase transitions of the Lorenz system

We study the Lorenz flow

¤𝑥 = 𝜎(𝑦 − 𝑥), ¤𝑦 = 𝑥(𝜌 − 𝑧) − 𝑦, ¤𝑧 = 𝑥𝑦 − 𝛽𝑧. (S19)

Here (𝜎, 𝛽, 𝜌) > 0 are the Prandtl number, the geometric parameter, and the Rayleigh parameter,

respectively; we later scan 𝜌 while fixing (𝜎, 𝛽) = (10, 8/3). For each 𝜌, a long trajectory yields

a point cloud 𝑋 (𝜌) ⊂ R𝑑 (either directly in phase space or via delay embedding), and we attach

to it a parameter–dependent effective Hamiltonian 𝐻 (𝜌) that captures spectral/dynamical content.

This construction allows us to examine phase behavior through two complementary lenses. The

dynamical lens quantifies how the system explores frequency and state space; the topological lens

quantifies how the invariant geometry reorganizes across scales. In our experiments we evaluate

both families of indicators along 𝜌 and interpret their concordance as evidence for dynamical and

topological phase transitions, placing special emphasis on the physical meaning of each indicator.

On the dynamical side, we probe frequency–space complexity via the spectral entropy of a

survival (Loschmidt) amplitude for a fixed probe state |𝜓⟩,

𝐶 (𝑡; 𝜌) = ⟨𝜓 |𝑒−𝑖𝐻 (𝜌)𝑡 |𝜓⟩ =
∑︁
𝑛

|𝑐𝑛 (𝜌) |2𝑒−𝑖𝐸𝑛 (𝜌)𝑡 , 𝑐𝑛 (𝜌) = ⟨𝐸𝑛 (𝜌) |𝜓⟩. (S20)

Let 𝑆(𝜔; 𝜌) =
��F [𝐶 (·; 𝜌)] (𝜔)��2 be a windowed power spectrum and 𝑃(𝜔; 𝜌) =

𝑆(𝜔; 𝜌)/
∫
𝑆(𝜔; 𝜌) 𝑑𝜔 its normalization. Let F denote the unitary Fourier transform in 𝑡, and
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normalize 𝑆(𝜔) to a probability density 𝑃(𝜔) so that
∫
𝑃(𝜔) 𝑑𝜔 = 1. We then define

𝐻spec(𝜌) = −
∫

𝑑𝜔 𝑃(𝜔; 𝜌) ln 𝑃(𝜔; 𝜌), (S21)

which is small when a few frequencies dominate (coherent/locked motion) and large when many

incommensurate frequencies carry comparable weights (dephasing and complex mixing). Peaks in

𝐻spec(𝜌) signal spectral broadening that typically accompanies a transition, followed by a drop once

a new regime relocks the spectrum.

The linear response to the control parameter is captured by the free-energy curvature. With a

linear deformation 𝐻 (𝜌) = 𝐻0 − 𝜌 𝑂̂ and 𝐹 (𝜌) = −(1/𝛽) ln Tr 𝑒−𝛽𝐻 (𝜌) ,

𝐹′′(𝜌) = 𝛽th
(
⟨𝑂̂2⟩ − ⟨𝑂̂⟩2

)
, 𝛽th = 1/(𝑘B𝑇) ≡ 𝜒𝑂 (𝜌) ≥ 0, (S22)

and in the ground-state limit 𝐹 (𝜌) → 𝐸0(𝜌),

𝐸′′0 (𝜌) = 2
∑︁
𝑛>0

|⟨𝑛|𝑂̂ |0⟩|2
𝐸𝑛 (𝜌) − 𝐸0(𝜌)

. (S23)

Both formulas demonstrate enhancement by small gaps and large transition matrix elements;

pronounced peaks in 𝐹′′(𝜌) therefore locate parameter regions where the state is most sensitive to 𝜌.

The geometry of the projective Hilbert manifold is accessed through ground-state fidelity. Write

|𝜓0(𝜌)⟩ for the normalized ground state of 𝐻 (𝜌) with an arbitrary but fixed global phase convention.

𝐹 (𝜌, 𝜌 + 𝛿) =
��⟨𝜓0(𝜌) | 𝜓0(𝜌 + 𝛿)⟩

�� = 1 − 1
2 𝜒𝐹 (𝜌) 𝛿

2 +𝑂 (𝛿3) (S24)

defines the fidelity susceptibility

𝜒𝐹 (𝜌) = ⟨𝜕𝜌𝜓0 |𝜕𝜌𝜓0⟩ − |⟨𝜓0 |𝜕𝜌𝜓0⟩|2 =
∑︁
𝑛>0

|⟨𝑛|𝑂̂ |0⟩|2(
𝐸𝑛 (𝜌) − 𝐸0(𝜌)

)2 . (S25)

Sharp drops in 𝐹 and peaks (or finite-size precursors thereof) in 𝜒𝐹 mark rapid ground-state

reconfiguration, a hallmark of continuous transitions.
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An additional dynamical diagnostic is the maximum Lyapunov exponent (MLE) 𝜆max(𝜌), which

quantifies the mean exponential divergence of nearby trajectories in the Lorenz flow itself. Writing

𝛿𝑥(𝑡) for an infinitesimal perturbation that obeys the variational equation

¤𝛿𝑥(𝑡) = 𝐽 (𝑡; 𝜌) 𝛿𝑥(𝑡), 𝐽 (𝑡; 𝜌) = 𝜕 𝑓 (𝑥(𝑡); 𝜌)
𝜕𝑥

(S26)

with 𝑓 = ( ¤𝑥, ¤𝑦, ¤𝑧), one defines

𝜆max(𝜌) = lim
𝑡→∞

1
𝑡

ln
∥𝛿𝑥(𝑡)∥
∥𝛿𝑥(0)∥ , (S27)

where the limit is realized numerically through periodic renormalization of 𝛿𝑥(𝑡) in the Benettin

algorithm. A negative 𝜆max indicates stable fixed points or periodic orbits, 𝜆max = 0 corresponds to

neutral stability at a bifurcation, and a positive 𝜆max indicates chaotic dynamics with exponential

sensitivity to initial conditions. For the Lorenz parameters (𝜎, 𝛽) = (10, 8/3), the computed 𝜆max(𝜌)

changes sign near 𝜌𝑐 ≃ 24.7, in agreement with the classical onset of the strange attractor. This

neighborhood has historically been described as a “preturbulent” regime in Lorenz-type flows (67).

In our analysis, this transition in 𝜆max aligns closely with the peaks of spectral entropy and fidelity

susceptibility, linking microscopic Hilbert-space sensitivity to macroscopic chaos in the underlying

flow.

On the topological side, we examine loop robustness in the embedded attractor by persistent

homology. The Vietoris–Rips filtration

𝑅𝜀 (𝑋 (𝜌)) = {𝜎 ⊂ 𝑋 (𝜌) : max
𝑥,𝑦∈𝜎

𝑑 (𝑥, 𝑦) ≤ 𝜀} (S28)

tracks 𝐻1 classes through births 𝑏 and deaths 𝑑; the persistence is ℓ = 𝑑 − 𝑏. We use the Euclidean

metric 𝑑 (·, ·) on the embedded point cloud 𝑋 (𝜌), and the Rips complex includes a simplex whenever

all pairwise distances within it are ≤ 𝜀. As a compact summary we record the highest persistence

ℓmax
𝐻1
(𝜌) = max

𝑖
(𝑑𝑖 − 𝑏𝑖), 𝑄topo(𝜌) =

ℓmax
𝐻1
(𝜌)

1 + ℓmax
𝐻1
(𝜌) ∈ [0, 1), (S29)

where large values indicate a clear, persistent loop (e.g., well-separated wings of the attractor),

whereas kinks or drops versus 𝜌 mark geometric reorganizations.
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The same topological information admits a spectral representation through a supersymmetric

(SUSY) Hamiltonian. Let the graded Hilbert space H =
⊕

𝑘 H𝑘 represent 𝑘–cochains, with 𝑄 :

H𝑘 →H𝑘+1 the coboundary block 𝑑𝑘 and𝑄† its adjoint. The SUSY Hamiltonian HSUSY = {𝑄,𝑄†}

is block-diagonal with

HSUSY
��
H𝑘

= 𝑑
†
𝑘
𝑑𝑘 + 𝑑𝑘−1𝑑

†
𝑘−1 = L𝑘 , (S30)

the combinatorial Hodge Laplacian. Zero-energy states satisfy 𝑑𝑘𝑣 = 0 and 𝑑†
𝑘−1𝑣 = 0; hence,

kerHSUSY
��
H𝑘

= kerL𝑘 � 𝐻𝑘 (and by duality 𝐻𝑘 ), dim kerL𝑘 = 𝛽𝑘 . (S31)

For a self-adjoint matrix 𝑀 , 𝜎(𝑀) denotes its multiset of eigenvalues; min(𝜎(𝑀) \ {0}) is the first

positive eigenvalue (if any).

Δ
(1)
SUSY = min{𝜆 > 0 | 𝜆 ∈ 𝜎(L1)}. (S32)

is a topological gap separating harmonic 1-cycles from their first excitations; its shrinkage (reopening)

signals weakening (strengthening) of loop robustness and typically covaries with ℓmax
𝐻1
(𝜌).

If {𝐸𝑛 (𝜌)}𝑛 denotes the ordered eigenvalues of 𝐻 (𝜌), we define the many-body gap as 𝛾(𝜌) =

𝐸1(𝜌) − 𝐸0(𝜌).

𝛾(𝜌) = 𝐸1(𝜌) − 𝐸0(𝜌), (S33)

which often obeys critical scaling near 𝜌𝑐,

𝛾(𝜌) ∼ |𝜌 − 𝜌𝑐 |𝑧𝜈, 𝜉 (𝜌) ∼ |𝜌 − 𝜌𝑐 |−𝜈, 𝛾 ∼ 𝜉−𝑧, (S34)

and, for linear size 𝐿 (or an effective sample-size proxy),

𝛾(𝜌, 𝐿) = 𝐿−𝑧 F
(
(𝜌 − 𝜌𝑐)𝐿1/𝜈) , 𝛾(𝜌𝑐, 𝐿) ∝ 𝐿−𝑧 . (S35)

In practice, the minima or closures of 𝛾(𝜌) tend to align with the peaks of 𝐹′′(𝜌) and 𝜒𝐹 (𝜌) because

of the small denominators in their spectral representations; at the same locations one often observes

a peak in 𝐻spec(𝜌) and a kink or turnover in ℓmax
𝐻1
(𝜌) or Δ(1)SUSY(𝜌).
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The experimental campaign thus evaluates the Lorenz system via 𝜌 using both dynamical (spectral

entropy, free-energy curvature, and fidelity) and topological (persistent 𝐻1 and Hodge–Laplacian

spectrum gaps) indicators, and it explores their physical significance jointly: spectral broadening

and heightened response coincide with homology-carrying zero modes becoming weakly isolated.

However, the relocking of frequencies and reduced susceptibility accompany the reopening of

topological and spectral gaps. This consensus across indicators provides a robust locator of phase

boundaries and a unified interpretation of dynamic and geometric reorganization in the Lorenz

system.

S4 Pipeline Overview

The proposed framework transforms a real-valued time series into a quantum–mechanical spectral

representation whose low-energy structure encodes the persistent topology of the underlying

dynamics. By integrating classical topological data analysis (TDA) with quantum spectral estimation

in a sequential and interpretable workflow, the method converts physical and geometric information

into algebraic form, culminating in a supersymmetric (SUSY) Hamiltonian whose eigenvalue

spectrum suggests homological features.

The end-to-end process comprises five main stages, illustrated schematically in Figure 1. First, a

scalar observable from the Lorenz system is embedded into a reconstructed phase space via Takens’

delay coordinates (Section S5). The resulting point cloud 𝑋 = {𝑋 (𝑡𝑘 )} approximates the invariant

manifold of the attractor, preserving its loop topology and geometric structure.In particular, sliding-

window constructions together with persistence have proven effective for extracting topological

signatures from time-series data (68).

Next, a compact subset 𝑉 = {𝑣𝑖}𝑛𝑖=1 is extracted from 𝑋 on the basis of density, topological

persistence, and geometric diversity (Section S6). This topology-aware reduction retains the regions

most relevant to persistent 𝐻1 features while maintaining balanced spatial coverage. The selected

representatives are then connected into an undirected graph 𝐺 = (𝑉, 𝐸) that captures both local
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geometric adjacency and dominant loop structures (Section S7). The edge set combines a minimum

spanning tree backbone, a 𝜀–neighborhood layer, and optional ring edges derived from circular

coordinates obtained via persistent homology.

The graph’s connectivity and topology are subsequently mapped onto a symmetric quantum

probe state (Section S8). Weighted superpositions of Dicke states |𝐷 (𝑛)
𝑘
⟩ encode local degrees, loop

participation, and feature persistence in their excitation-number populations, ensuring compatibility

with excitation-preserving SUSY dynamics.

Finally, from the constructed graph, we assemble a SUSY HamiltonianH = 𝑄†𝑄 whose 1–form

block L1 = 𝑑
†
1𝑑1 + 𝑑0𝑑

†
0 acts as a discrete Hodge Laplacian on edges (Section S9). Its zero-energy

kernel corresponds to the harmonic 1–cycles, whereas the first positive eigenvalue Δ(1)SUSY measures

the spectral isolation of these topological features. The Hamiltonian is simulated via a controlled

time-evolution circuit and probed through single-ancilla quantum phase estimation (QPE), yielding

the low-lying energy spectrum.

This sequence may point toward a coherent mapping from temporal dynamics to quantum spec-

tra: time series
Takens embedding
−−−−−−−−−−−−−→ point cloud

topology-aware reduction
−−−−−−−−−−−−−−−−−−→ graph 𝐺 (𝑉, 𝐸)

SUSY encoding
−−−−−−−−−−−→

quantum HamiltonianH QPE−−−→ spectral features {Δ(𝑘)SUSY}. Each transformation—embedding, pro-

jection, graph construction, operator synthesis, and quantum measurement—preserves structural

information while translating it across representations.

The classical components (embedding, sampling, and graph formation) compress continuous

dynamics into discrete topological summaries, whereas the quantum components (state encoding,

Hamiltonian simulation, and phase estimation) perform spectral inference without explicit matrix

diagonalization, exploiting quantum parallelism for eigenvalue extraction. This hybrid approach

combines interpretability from classical TDA with computational leverage from quantum simulation.
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The main observables emerging from the pipeline include the low-lying eigenvalues {𝐸0, 𝐸1, . . . }

ofH and their spacing 𝛾 = 𝐸1 − 𝐸0, which quantify the dynamical spectral gap; the topological gap

Δ
(1)
SUSY from the 1–form block L1, which measures the robustness of persistent loops; the highest

persistence ℓmax
𝐻1

obtained from classical homology, which serves as a geometric benchmark, and

the spectral entropy 𝐻spec derived from the QPE amplitude distribution, which summarizes the

frequency-space complexity. The correlations among these quantities reveal how dynamic and

topological transitions interact under changes in the control parameter, such as the Rayleigh number

𝜌 in the Lorenz flow.

By integrating geometric embedding, topological reduction, and quantum spectral estimation

into a unified sequence, this framework provides a reproducible and physically interpretable route

for detecting, characterizing, and quantifying topological signatures in nonlinear dynamics. The

resulting hybrid representation enables both theoretical analysis and experimental realization of

contemporary quantum hardware.

S5 Time series embedding

The first stage of the pipeline transforms a one-dimensional dynamical signal into a geometric

representation suitable for topological and spectral analysis.

Following Takens’ embedding theorem (68–71), the underlying attractor of the Lorenz flow is

reconstructed from a scalar observable, producing a point cloud 𝑋 ⊂ R𝑚 that preserves the topology

of the original state space appropriate simplicial complexes and reconstruction choices critically

affect the recovered topology (72)..

The Lorenz system (73–75) is governed by

¤𝑥 = 𝜎(𝑦 − 𝑥), ¤𝑦 = 𝑥(𝜌 − 𝑧) − 𝑦, ¤𝑧 = 𝑥𝑦 − 𝛽𝑧, (S36)

with the canonical parameters (𝜎, 𝛽, 𝜌) = (10, 8/3, 28) corresponding to the chaotic regime. This

system generates a nonperiodic attractor of fractal dimension dim𝐻 ≈ 2.06, which is sensitive to
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initial conditions and a complex, folded topology. Varying the Rayleigh number 𝜌 induces distinct

dynamical phases, which are later examined through topological and spectral diagnostics.

From a single scalar measurement, for example, 𝑥(𝑡), we construct an 𝑚–dimensional delay-

coordinate embedding,

𝑋 (𝑡) =
[
𝑥(𝑡), 𝑥(𝑡 + 𝜏), 𝑥(𝑡 + 2𝜏), . . . , 𝑥(𝑡 + (𝑚 − 1)𝜏)

]
∈ R𝑚, (S37)

where 𝜏 is the time delay and 𝑚 is the embedding dimension. Under generic smoothness and

observability conditions, this mapping is diffeomorphic to the original attractor when 𝑚 > 2𝑑𝐴,

where 𝑑𝐴 denotes the attractor’s dimension. The reconstructed manifold thus faithfully captures the

invariant geometry of the flow.

The time delay 𝜏 controls the balance between redundancy and independence among coordinates.

If 𝜏 is too small, consecutive components become nearly collinear, yielding an artificially thin

manifold; if 𝜏 is too large, temporal correlation is lost, and attractor fragments are generated. Two

practical selection rules are widely used: (i) choosing 𝜏 as the first minimum of the automutual

information, which maximizes independence between coordinates, and (ii) setting 𝜏 to the 1/𝑒

decorrelation time of the autocorrelation function, which maintains dynamical coherence. For the

Lorenz system, 𝜏 typically falls within [0.05, 0.2] in dimensionless time units, producing stable

embeddings with clearly separated loops.

The embedding dimension 𝑚 must be large enough to unfold the attractor and prevent self-

intersections, yet small enough to remain computationally manageable. In practice, 𝑚 is increased

until the fraction of false nearest neighbors (76) falls below a threshold (e.g., 1%) and the estimated

correlation dimension (77) stabilizes. For the Lorenz flow, 𝑚 = 3–6 typically suffices to recover

the two-wing structure, whereas larger values further smooth sampling artifacts at the cost of

redundancy.

To ensure numerical consistency across 𝜌, several safeguards are implemented. Initial transients

of duration 𝑡trans are discarded to eliminate sensitivity to initial conditions; integration of Eq. (S36)
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is performed with a fixed time step Δ𝑡 to prevent stiffness-induced distortions; trajectories are

downsampled so that the sampling stride is comparable to 𝜏, avoiding oversampling of correlated

points; and each coordinate is normalized to unit variance before distance calculations. These

procedures maintain numerical stability and geometric consistency over parameter sweeps (78,79).

The quality of the embedding is verified by estimating the largest Lyapunov exponent 𝜆max from

the reconstructed series (80–82). A positive 𝜆max is consistent with the reconstructed dynamics

preserving the expected chaotic character. Additionally, visual inspection of the attractor projection

and its persistence diagram ensures that characteristic topological features—such as the double-wing

loop—remain intact.

The embedding yields a point cloud

𝑋 = {𝑋 (𝑡𝑘 ) ∈ R𝑚}𝑁𝑘=1, (S38)

which samples the invariant manifold of the Lorenz attractor. Euclidean distances ∥𝑋𝑖 − 𝑋 𝑗 ∥2 capture

local dynamical adjacency and form the geometric substrate for subsequent topological and spectral

analyses. This point cloud provides the input for the representative-point selection step (Section S6),

where density, topology, and diversity criteria are applied to extract a compact but faithful subset of

points.

Under the selected (𝜏, 𝑚), the Lorenz embedding produces a cloud whose Vietoris–Rips filtration

results in two persistent 𝐻1 classes corresponding to the attractor’s wings, which is consistent with

previous studies (83,84). These structures are stable across time windows and parameter variations,

confirming that the embedding serves as a robust precursor for quantum–topological encoding.

Takens embedding therefore transforms a scalar chaotic signal into a geometric object that retains

the essential topology of the underlying flow. The appropriate choices of 𝜏 and 𝑚, combined with

numerical safeguards, ensure that the resulting point cloud faithfully represents the attractor’s loop

geometry. This embedded manifold forms the geometric foundation upon which topology preserving

reduction and supersymmetric Hamiltonian encoding are subsequently built.
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S6 Representative Point Selection

Given an embedded point cloud 𝑋 = {𝑥𝑖 ∈ R𝑚}𝑁
𝑖=1, the task is to extract a smaller subset of

representative points 𝑉 = {𝑣 𝑗 }𝑛𝑗=1 (𝑛 ≪ 𝑁) that preserves the high-density regions of the attractor,

the essential loop topology captured by persistent 𝐻1, and the overall geometric diversity of the data.

This reduction yields a tractable input for graph and Hamiltonian construction while maintaining

the topological integrity of the system.

The selection process proceeds in two main stages. In the first stage, topology-aware sampling

identifies regions supporting persistent 𝐻1 features and high local density. Second, a complementary

set of points is added to maximize the geometric spread, ensuring that the global features and

sparse regions are not neglected. The combination produces a compact yet topology-preserving

representative set 𝑉 .

Let 𝐷 (𝑥, 𝑦) = ∥𝑥 − 𝑦∥2 denote the Euclidean distance, and let 𝑘 be the target number of

representatives. A fraction 𝑟 ∈ (0, 1) of these, 𝑘 topo = ⌊𝑘𝑟⌋, is reserved for topological coverage,

with the remaining 𝑘global = 𝑘 − 𝑘 topo used for global diversity. A 𝐾-nearest-neighbor (KNN) graph

(typically 𝐾 ≈ 10) is constructed on 𝑋 , and its shortest-path metric 𝐷geo approximates geodesic

distance along the manifold.

The local density is estimated via a Gaussian kernel:

𝜌(𝑥𝑖) =
1

𝑁 ℎ𝑚

𝑁∑︁
𝑗=1

exp
(
−
∥𝑥𝑖 − 𝑥 𝑗 ∥2

2ℎ2

)
, (S39)

where the bandwidth ℎ is chosen as the 10th percentile of pairwise distances to ensure robustness

against outliers. Positive weights are then defined as

𝑤𝑖 ∝ 𝜌(𝑥𝑖) 𝛼−1, 𝛼 > 1, (S40)

so that dense regions exert a stronger influence on the selection.
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To identify points most relevant to loop topology, the Vietoris–Rips persistent homology of 𝑋 is

computed and the most persistent 𝐻1 feature with birth–death pair (𝑏∗, 𝑑∗) is located. Its midpoint

radius is

𝑟mid = 1
2 (𝑏
∗ + 𝑑∗), (S41)

sets a characteristic neighborhood scale. For each point 𝑥𝑖, the mid-scale neighbor count

𝜈𝑖 = #{ 𝑗 : 𝐷 (𝑥𝑖, 𝑥 𝑗 ) < 𝑟mid } (S42)

quantifies local crowding at that scale. Points with excessively few or many neighbors are excluded

by defining the candidate set

𝐼 =
{
𝑖
�� 𝑁min < 𝜈𝑖 < 𝑁max

}
, 𝑁min ≈ ⌊0.02𝑁⌋, 𝑁max ≈ max{𝑁min+5, ⌊0.10𝑁⌋}. (S43)

When a dominant 𝐻1 loop is present, each point 𝑥𝑖 is assigned an angular coordinate 𝜃𝑖 ∈ [0, 2𝜋)

derived from persistent cohomology circular coordinates. The interval [0, 2𝜋) is discretized into 𝐵

bins to encourage uniform angular sampling around the loop.

The topological subset 𝑆topo is initialized with the point of maximal density weight 𝑤𝛼−1
𝑖

within 𝐼.

While |𝑆topo | < 𝑘 topo, new points are added greedily by maximizing the composite gain function

Δ( 𝑗) = 𝜆𝜃 Δ𝐻𝛼 (ℎ ⊕ 𝜃 𝑗 ) + 𝜆𝐷 min
𝑖∈𝑆topo

𝐷geo(𝑥 𝑗 , 𝑥𝑖) + 𝜆𝑑 𝐻𝛼
(
{𝑞𝑖}𝑖∈𝑆topo∪{ 𝑗}

)
− 𝜆𝑐 Π(𝜃 𝑗 | {𝜃𝑖}𝑖∈𝑆topo),

(S44)

where 𝐻𝛼 is the Rényi entropy, 𝑞𝑖 ∝ 𝜌(𝑥𝑖) are normalized density weights, Δ𝐻𝛼 (ℎ ⊕ 𝜃 𝑗 ) measures

the entropy gain from adding 𝜃 𝑗 to the angular histogram, and Π penalizes violations of a minimum

angular separation Δ𝜃min ≈ 2𝜋/(1.35 𝑘 topo). The hyperparameters (𝜆𝜃 , 𝜆𝐷 , 𝜆𝑑 , 𝜆𝑐) balance angular

diversity, geodesic spacing, density regularization, and collision avoidance. This greedy procedure

incrementally increases coverage of the loop while maintaining separation and balance.

Once the topological representatives are chosen, the remaining 𝑘global points are selected to

maximize global diversity. For each unselected candidate, its minimum distance from the topological
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set is defined as

𝑑min(𝑥 𝑗 ) = min
𝑖∈𝑆topo

𝐷 (𝑥 𝑗 , 𝑥𝑖), (S45)

and a combined score

score(𝑥 𝑗 ) = 𝑤 𝑗 · (1 + 𝑑min(𝑥 𝑗 )) (S46)

is computed to prioritize dense but distant regions. The highest-scoring points are successively

added to form the global coverage set 𝑆global.

The final representative set is the union

𝑉 = 𝑆topo ∪ 𝑆global, |𝑉 | = 𝑘. (S47)

The parameters (𝑟, 𝛼, ℎ, 𝐵, 𝜆𝜃 , 𝜆𝐷 , 𝜆𝑑 , 𝜆𝑐) collectively govern the trade-off between density preser-

vation, loop fidelity, and geometric spread. For Lorenz-type attractors, empirical tests show that 𝑟

values between 0.5 and 0.7 provide a stable balance.

The resulting representative points are concentrated near persistent cycles and bridge regions of

high Betti stability, while the globally selected points capture the outer geometry and noncyclic

regions. Together, they yield a compact and faithful summary of the attractor’s structure, substantially

reducing the matrix dimensions for subsequent Laplacian and SUSY Hamiltonian construction

without sacrificing the accuracy of homological inference.

In terms of computational cost, density estimation scales as 𝑂 (𝑁2) (reducible with KD-tree or

approximate-nearest-neighbor acceleration), persistent homology scales as𝑂 (𝑁3/2) for typical point

cloud, and greedy selection scales as 𝑂 (𝑘2). The only sources of stochasticity are tie-breaking and

angular-bin initialization, which can be controlled by fixing the random seed to ensure reproducibility.

The resulting set 𝑉 provides the foundation for the topological edge construction described in

Section S7.
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S7 Topological Edge Construction

Given a reduced representative point set 𝑉 = {𝑣𝑖}𝑛𝑖=1 ⊂ R𝑚, the objective is to construct an

undirected graph 𝐺 = (𝑉, 𝐸) that preserves local geometric proximity, remains globally connected,

and exposes prominent one-dimensional cycles when they exist. This graph functions as the

1–skeleton of a simplicial complex whose Hodge Laplacian encodes the persistent 𝐻1 topology of

the data.

To achieve this, the edge set 𝐸 must capture both geometric adjacency and topological evidence.

We combine a global backbone built from a minimum spanning tree (MST), a local neighborhood

layer derived from an 𝜀–graph, and an optional ring augmentation guided by circular coordinates.

The resulting union is patched to ensure single-component connectivity, yielding a sparse yet

expressive graph that reflects both metric and topological structure.

We begin with the pairwise distance matrix 𝐷𝑖 𝑗 = ∥𝑣𝑖 − 𝑣 𝑗 ∥2, from which the MST outlines a

baseline connectivity without redundant long edges:

𝐸MST = arg min
𝑇⊆(𝑉2), |𝑇 |=𝑛−1

∑︁
(𝑖, 𝑗)∈𝑇

𝐷𝑖 𝑗 . (S48)

This minimal tree ensures that 𝐺 is connected and acyclic, providing a global scaffold upon which

additional edges can be added to recover the local structure.

The local geometry is then restored by introducing edges shorter than a data-driven threshold 𝜀.

Let𝑈 = {𝐷𝑖 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} be the multiset of pairwise distances. A robust length scale is set as

the 30th percentile, 𝜀 = 𝑄0.3(𝑈), and all pairs satisfying

𝐸𝜀 = {(𝑖, 𝑗) : 𝐷𝑖 𝑗 < 𝜀} (S49)

are connected. This 𝜀–graph preserves local neighborhoods and manifold adjacency while avoiding

excessive long-range links, thereby restoring the short-range curvature fidelity that the MST alone

omits.
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When persistent homology suggests a strong 𝐻1 signal, we further augment the structure by

explicitly forming a ring that reinforces the dominant loop. Each vertex 𝑣𝑖 is assigned an angular

coordinate 𝜃𝑖 ∈ [0, 2𝜋) obtained from persistent cohomology, spectral embedding, or a surrogate

PCA–atan2 projection. Sorting the subset 𝑉ring ⊆ 𝑉 by 𝜃𝑖, we connect consecutive points with

wrap-around closure:

𝐸ring =

{
(𝑖𝑘 , 𝑖𝑘+1)

} |𝑉ring |−1

𝑘=1
∪ {(𝑖 |𝑉ring |, 𝑖1)}, (S50)

embedding an explicit cycle corresponding to the most persistent homology class. If no significant

𝐻1 feature is detected, this augmentation is omitted.

The provisional edge set,

𝐸′ = 𝐸MST ∪ 𝐸𝜀 ∪ 𝐸ring, (S51)

may still contain multiple connected components, especially when the representative points occupy

disjoint or sparsely sampled regions. To restore global connectivity, we iteratively link components

by adding the shortest intercomponent edge,

(𝑖★, 𝑗★) = arg min
𝑖∈𝐶𝑝 , 𝑗∈𝐶𝑝+1

𝐷𝑖 𝑗 , (S52)

until a single connected graph remains. The added edges form the patch set 𝐸patch.

The final edge collection is thus

𝐸 = 𝐸MST ∪ 𝐸𝜀 ∪ 𝐸ring ∪ 𝐸patch, (S53)

ensuring that 𝐺 = (𝑉, 𝐸) is connected, locally faithful, and topologically expressive. Edges from the

MST enforce global reachability; those from 𝐸𝜀 reconstruct local geometry; and those from 𝐸ring

explicitly embed the dominant one-dimensional cycle. Together, these elements guarantee that the

cycle space ker 𝐵1 of 𝐺 accurately reflects the principal 𝐻1 feature of the attractor. For loop-like

geometries such as the Lorenz double-wing attractor, ring augmentation ensures that the first Betti

number 𝛽1 = 1 is preserved in the graph Laplacian 𝐿1 = 𝐵⊤1 𝐵1 before supersymmetric extension.
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The quantile threshold𝑄0.3 can be tuned to data density: higher quantiles increase local connectivity

but risk introducing spurious short cycles, whereas lower values may fragment the graph. Both 𝜀

and MST edges are computed via Euclidean distances for stability, although alternative metrics such

as geodesic or diffusion distances may be substituted. Deterministic tie-breaking is applied in (S48)

and (S52) to ensure reproducibility.

The computational cost of each step scales efficiently: MST construction requires 𝑂 (𝑛 log 𝑛)

via Kruskal or Prim algorithms, the 𝜀–graph formation scales as 𝑂 (𝑛2) (or 𝑂 (𝑛 log 𝑛) with spatial

indexing), and the ring augmentation scales linearly with |𝑉ring |. The final graph contains𝑂 (𝑛) edges

in typical sparse settings, making it tractable for both classical Laplacian assembly and quantum

operator encoding (Section S9). All subsequent SUSY Hamiltonian blocks L𝑘 inherit this sparsity,

enabling efficient simulation via product-formula time evolution.

The constructed graph 𝐺 therefore acts as a compact, topology-aware skeleton of the embedded

attractor. It faithfully preserves local neighborhoods while revealing the main loop structure identified

by persistent homology. This balance between geometric fidelity and topological simplicity is crucial

for ensuring that the SUSY Hamiltonian derived from 𝐺 accurately encodes the persistent 𝐻1

features in its low-energy spectrum.

S8 Dicke State Encoding

The aim is to encode the topology of the representative-point graph into a quantum probe

that predominantly resides in the symmetric subspace of (C2)⊗𝑛. Dicke states form a natural and

computationally efficient basis for this purpose: they capture global excitation-number symmetry,

preserve combinatorial structure, and admit compact circuit representations with logarithmic depth.

For 𝑛 qubits, the weight-𝑘 Dicke state is

|𝐷 (𝑛)
𝑘
⟩ =

(
𝑛

𝑘

)−1/2 ∑︁
𝑥∈{0,1}𝑛
|𝑥 |=𝑘

|𝑥⟩ , 𝑘 = 0, 1, . . . , 𝑛, (S54)

S23



where {|𝑥 | = 𝑘} is the set of computational strings of Hamming weight 𝑘 . These states are

orthonormal and span the (𝑛+1)-dimensional symmetric subspaceHsym, diagonalizing the collective

spin 𝐽𝑧 = 1
2
∑𝑛
𝑖=1 𝑍𝑖 with eigenvalues𝑚𝑘 = 𝑘 − 𝑛2 . Throughout, we use the ordering |𝑥⟩ = |𝑥𝑛−1 . . . 𝑥0⟩

and the subset index ind(𝑆) = ∑
𝑖∈𝑆 2𝑖 for 𝑆 ⊆ {0, . . . , 𝑛 − 1}, so that amplitudes are assigned

uniformly within each weight-𝑘 sector, and normalization ensures ⟨𝐷 (𝑛)
𝑘
|𝐷 (𝑛)

𝑘 ′ ⟩ = 𝛿𝑘𝑘 ′ .

The topological information extracted from the graph 𝐺 = (𝑉, 𝐸) is embedded into a symmetric

superposition of Dicke sectors:

|𝜓⟩ =
∑𝑛
𝑘=0 𝑤̃𝑘 |𝐷

(𝑛)
𝑘
⟩


∑𝑛

𝑘=0 𝑤̃𝑘 |𝐷
(𝑛)
𝑘
⟩



 , 𝑤̃𝑘 =

𝑤𝑘√︃∑
𝑗 𝑤

2
𝑗

, (S55)

where the unnormalized weights 𝑤𝑘 encode both local connectivity and global loop persistence.

Local bias arises from degrees and ring participation: letting Ering denote edges that lie on the

dominant cycle and deg(𝑣) the degree of vertex 𝑣, the update

𝑤𝑘 ← 𝑤𝑘 + 𝛼
∑︁

(𝑢,𝑣)∈Ering

[
1{𝑢 = 𝑘} + 1{𝑣 = 𝑘}

]
+ 𝛽

∑︁
𝑣:deg(𝑣)=𝑘

1 (S56)

reinforces sectors touched by the ring and emphasizes hubs, with tunable 𝛼, 𝛽 ≥ 0 setting the relative

importance of the two contributions. Global topological strength further modulates contrast via the

persistence Λ of the most persistent 𝐻1 class:

𝑤𝑘 ← (1 + 𝜂Λ) 𝑤𝑘 , 𝜂 > 0, (S57)

which amplifies all sectors proportionally when a robust loop is present while preserving the local

bias profile.

After normalization, sector populations 𝑝𝑘 = |⟨𝐷 (𝑛)𝑘 |𝜓⟩|
2 = 𝑤̃ 2

𝑘
define a probability distribution

over the excitation number. The expectation

𝑀 =
∑︁
𝑘

(
𝑘 − 𝑛

2
)
𝑝𝑘 = ⟨𝜓 |𝐽𝑧 |𝜓⟩ (S58)

plays the role of a magnetization-like order parameter, and the variance Var(𝐽𝑧) =
∑
𝑘 (𝑘− 𝑛2 −𝑀)

2𝑝𝑘

yields the quantum Fisher information 𝐹𝑄 = 4 Var(𝐽𝑧), linking the breadth of the excitation
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distribution to metrological sensitivity. In this way, loop prominence and heterogeneity manifest

as broadening of {𝑝𝑘 }, nonzero 𝑀, and enhanced 𝐹𝑄 , providing a direct statistical signature of

topological complexity.

Crucially, the supersymmetric Hamiltonian H constructed in Section S9 conserves the total

excitation number and decomposes into blocks L𝑘 acting on the weight-𝑘 sector:

𝑒−𝑖H 𝑡 =
𝑛⊕
𝑘=0

𝑒−𝑖L𝑘 𝑡 . (S59)

A probe of the form (S55) therefore aligns with the block-diagonal structure ofH and maximizes

overlap with homology-bearing low-energy modes. Because the excitation number is conserved,

evolution remains within the symmetric manifold—significantly reducing the Hilbert space dimension

from 2𝑛 to (𝑛+1) and thereby lowering the simulation and QPE circuit costs. The single-ancilla

Hadamard test or QPE then accesses the autocorrelation

𝐶 (𝑡) = ⟨𝜓 |𝑒−𝑖H 𝑡 |𝜓⟩ =
∑︁
𝑘

𝑝𝑘 𝑒
−𝑖𝐸𝑘 𝑡 , (S60)

whose spectral lines at {𝐸𝑘 } expose near-harmonic modes tied to topological features while

preserving the symmetric-sector decomposition.

The implementation of near-term hardware requires exact or approximate preparation. Exactly

|𝐷 (𝑛)
𝑘
⟩ states can be synthesized in logarithmic depth via permutation-symmetric isometries or

tree networks of controlled rotations; approximate preparation is achievable with variational or

iterative amplitude-loading schemes. The superposition
∑
𝑘 𝑤̃𝑘 |𝐷

(𝑛)
𝑘
⟩ is realized by preparing a

weight register and mapping |𝑘⟩ |0𝑛⟩ ↦→ |𝑘⟩ |𝐷 (𝑛)
𝑘
⟩, followed by uncomputing |𝑘⟩; normalization of

{𝑤̃𝑘 } stabilizes amplitudes numerically. Because the excitation number is conserved under 𝑒−𝑖H 𝑡 ,

there is no cross-sector leakage during evolution, which simplifies the controlled time evolution and

reduces the circuit depth in the QPE.

From a physical standpoint, graphs with balanced connectivity concentrate weights near 𝑘 ≃ 𝑛/2,

yielding 𝑀 ≃ 0 and narrower distributions; sparse or strongly cyclic graphs skew {𝑝𝑘 }, induce
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nonzero magnetization, and increase 𝐹𝑄 . The Dicke manifold thus provides an interpretable encoding

in which loop geometry and symmetry breaking translate into measurable sector populations and

interferometric sensitivity. In summary, Dicke-state encoding turns the classical 𝐻1 structure into

structured superpositions across excitation-number sectors, couples naturally to the SUSY block

structure, and yields a probe that is both conceptually transparent and hardware-efficient for quantum

spectral readout.

While the Dicke-state formalism provides a compact theoretical description, exact preparation

of |𝐷 (𝑛)
𝑘
⟩ on current devices remains resource-intensive. In our implementation, we employed a

simplified circuit that efficiently generates the single-excitation (𝑘=1) Dicke state |𝑊𝑛⟩ = |𝐷 (𝑛)1 ⟩

from |100 . . . 0⟩ via a linear sequence of controlled-𝑅𝑦 and CNOT gates. This scheme transfers the

excitation along the register, dividing the amplitude evenly at each step and achieving depth 𝑂 (𝑛)

while maintaining high fidelity under realistic noise. Higher-weight sectors are then approximated

by composing multiple W-state layers or by variational amplitude-loading when available. Thus,

although the analytical description uses the full Dicke manifold, the experimental embedding adopts

an optimized, hardware-compatible version that retains the essential symmetry and spectral features

relevant to the QPE readout.

S9 SUSY Hamiltonian Construction

The supersymmetric HamiltonianH is constructed on 𝑛 qubits to faithfully encode the topology of

the representative-point graph 𝐺 = (𝑉, 𝐸) obtained from the data. The operator is designed to obey

the N = 2 supersymmetry algebra, preserve the excitation number, and remain efficiently simulable

on quantum hardware. The SUSY Hamiltonian coincides with the combinatorial Hodge–Laplacian.

In particular, the zero-energy sector encodes topological invariants of the graph, such as the Betti

numbers.

We define the following local operators that act on each qubit:

{𝐼, 𝑋, 𝑍, 𝑧, 𝑜}, 𝑧 = 𝐼+𝑍
2 , 𝑜 = 𝐼−𝑍

2 , (S61)
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where 𝑧 and 𝑜 act as projectors onto |0⟩ and |1⟩, respectively. All the local letters are Hermitian and

real, and after Hermitization, the HamiltonianH becomes real and symmetric. The set {𝐼, 𝑋, 𝑍, 𝑧, 𝑜}

is sufficient for representing the Projected-basis SUSY Hamiltonian without introducing complex 𝑌

rotations.

Fermionic excitations are represented by Jordan–Wigner strings that ensure proper anticommuta-

tion. For vertex 𝑖, the elementary flip operator is

𝑋JW
𝑖 =

(∏
𝑘<𝑖

𝑍𝑘

)
𝑋𝑖 . (S62)

To enforce clique consistency, we introduce complement-graph projectors. For each vertex 𝑖, let

𝑁
comp
𝑖

= { 𝑗 ∈ 𝑉 : (𝑖, 𝑗) ∉ 𝐸, 𝑗 ≠ 𝑖}, (S63)

and define

𝑃𝑖 =
∏

𝑗∈𝑁comp
𝑖

𝐼 + 𝑍 𝑗
2

=
⊗
𝑗∈𝑉


𝑧 𝑗 , 𝑗 ∈ 𝑁comp

𝑖
,

𝐼 𝑗 , otherwise.
(S64)

These projectors annihilate configurations in which vertex 𝑖 is excited simultaneously with a

nonneighbor, enforcing adjacency constraints. The elementary supercharge at site 𝑖 is 𝑄𝑖 = 𝑋JW
𝑖
𝑃𝑖,

and the total supercharge is 𝑄 =
∑
𝑖 𝑄𝑖, and by construction 𝑄2 = 0.

The Hamiltonian functions as the anticommutator

H = 𝑄†𝑄 =
∑︁
𝑖

𝑄
†
𝑖
𝑄𝑖 +

∑︁
𝑖< 𝑗

(𝑄†
𝑖
𝑄 𝑗 +𝑄†𝑗𝑄𝑖), (S65)

which automatically commutes with the excitation number. In the 0–excitation sector, H acts as

the vertex Laplacian L0; in the 1–excitation sector,H acts as the edge Laplacian L1; and in higher

sectors,H acts as clique Laplacians for multiexcitation configurations:

H =

𝑛⊕
𝑘=0
L𝑘 , L𝑘 = 𝑑†𝑘𝑑𝑘 + 𝑑𝑘−1𝑑

†
𝑘−1. (S66)

This block decomposition mirrors the combinatorial Hodge structure and ensures correspondence

between harmonic subspaces and homology groups.
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Substituting the operator definitions,

𝑧 = 𝐼+𝑍
2 , 𝑜 = 𝐼−𝑍

2 , (S67)

clarifies that each local factor belongs to the {𝐼, 𝑋, 𝑍} Pauli family and that 𝑧, 𝑜 act only as symbolic

projectors composed of them. In practice the full (𝐼, 𝑍) expansion of 𝑧, 𝑜 is not carried out; they are

treated as diagonal control predicates. Under this symbolic treatment,H remains a sparse sum of

few-qubit Pauli operators with real coefficients.

Because each supercharge 𝑄𝑖 acts nondiagonally on a single qubit and diagonally (via projectors)

on the rest, the interaction structure involves only qubit pairs (𝑖, 𝑗) that share an edge in 𝐺. For

graphs of bounded degree, the number of distinct tensor-product terms therefore scales quadratically

in 𝑛, O(𝑛2), rather than exponentially in 4𝑛. This estimate has been verified for the representative

Lorenz-derived graphs used here, where the compiled Hamiltonians contain a few hundred terms.

After Hermitization, the operator is real and symmetric.

The kernel ofH corresponds to harmonic forms:

kerH
��
𝑘–sector = kerL𝑘 � 𝐻𝑘 , (S68)

so that the multiplicity of zero eigenvalues in degree 1 equals the first Betti number 𝛽1. The smallest

nonzero eigenvalue,

Δ
(1)
SUSY = min{𝜆 > 0 | 𝜆 ∈ 𝜎(L1)}. (S69)

acts as a topological gap that measures the spectral isolation of persistent cycles, as formally justified

in the Supplementary Materials (Section S12). Its variation with the control parameter 𝜌 tracks the

emergence, merger, and decay of topological features.

Any global energy offset 𝑐𝐼 𝐼 appearing in the Pauli expansion is separated asH = 𝑐𝐼 𝐼 + (H −𝑐𝐼 𝐼),

with phase 𝑐𝐼 𝑡 applied only to the ancilla branch during controlled evolution. This adjustment

stabilizes interferometric measurements while leaving the eigenvectors and relative gaps intact.
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For simulation, each exponential 𝑒−𝑖𝜃𝑡
⊗

𝑞 𝑃𝑞 is implemented by reducing local letters to 𝑍 ,

aggregating parity with CNOT ladders, and applying a controlled 𝑅𝑍 (2𝜃𝑡) on the reference qubit

conditioned on the predicate. Because the complement-graph projectors commute, control masks

can be toggled efficiently in Gray order (85) so that successive terms differ by a single-qubit

flip. Grouping identical Pauli-letter patterns consolidates many rotations into a single 𝑅𝑍 , and

multicontrol conjunctions are computed into an ancilla bit, replacing deep multicontrolled gates

with two MCX operations and one 𝐶𝑅𝑍 operation.

The resulting Hamiltonian is sparse, local, and block-diagonal, explicitly preserving topological

sectors (15). For typical Lorenz-derived graphs (𝑛 ≈ 10–12), the compiled operator contains a few

hundred Pauli strings and fewer than 103 controlled rotations, well within the current simulator

and NISQ capabilities. The method extends naturally to higher spatial dimensions by including

multiple excitation constraints, providing a scalable template for encoding combinatorial Laplacians

as quantum circuits.

This Hamiltonian reproduces the spectral structure of the Hodge Laplacian; its low-lying gaps

empirically covary with persistent-Laplacian features. In this way, the SUSY Hamiltonian serves as

an algebraic bridge between discrete topological data analysis and measurable quantum spectra,

enabling topological invariants to be extracted directly through quantum phase estimation.

S10 Controlled Time Evolution Circuit

For quantum phase estimation on a supersymmetric HamiltonianH , we synthesize the ancilla-

controlled time evolution

𝑈ctrl(𝑡) = |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑒−𝑖H 𝑡 , (S70)

Thus, interference between the ancilla and system registers encodes the spectral phase ofH with

high fidelity (48, 86, 87). The construction proceeds term by term and is illustrated in Figure S1 and

Figure S2, whereas the Gray-order traversal used to optimize control toggles is shown in Figure S3.
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Each local factor ofH is drawn from the symbolic alphabet

{𝐼, 𝑋, 𝑍, 𝑧, 𝑜}, 𝑧 = 𝐼+𝑍
2 , 𝑜 = 𝐼−𝑍

2 ,

so that

H =
∑︁
ℓ

𝜃ℓ

𝑛⊗
𝑞=1

𝑃
(ℓ)
𝑞 , 𝑃

(ℓ)
𝑞 ∈ {𝐼, 𝑋, 𝑍, 𝑧, 𝑜}, (S71)

with real coefficients Re(𝜃ℓ) after Hermitization. Each term acts on a small subset of qubits, ensuring

sparsity and locality (15,88). For a local operatorHℓ = 𝜃ℓ
⊗

𝑞∈𝑆ℓ 𝑃
(ℓ)
𝑞 , the rightmost active qubit

𝑟 = max 𝑆ℓ serves as the reference site. To standardize all the terms, the nondiagonal operators are

converted to 𝑍 form via a Hadamard gate on each affected qubit, as depicted in the left half of

Figure S2. In the present construction, all off-diagonal couplings originate from 𝑋-type flip terms in

the supercharges. The 𝑌 operator does not appear because no complex phase rotations are required;

all the coefficients are real after Hermitization.

After basis alignment, a CNOT ladder

𝐿ℓ =
∏

𝑞∈𝑆ℓ\{𝑟}
CNOT(𝑞→𝑟) (S72)

collects the parity of all 𝑍 factors onto the reference qubit (89), ensuring 𝐿†
ℓ

( ∏
𝑞∈𝑆ℓ 𝑍𝑞

)
𝐿ℓ = 𝑍𝑟 .

The controlled evolution for that term then reduces to a single 𝑅𝑍 (2 Re(𝜃ℓ)𝑡) rotation on qubit 𝑟,

conditioned on the ancilla and any projector controls. The right halves of Figure S1 and Figure S2

show this structure: parity is gathered on 𝑟 , the ancilla-controlled rotation applies the phase, and all

intermediate operations are uncomputed to restore the original basis.

Projector symbols 𝑧 = (𝐼+𝑍)/2 and 𝑜 = (𝐼−𝑍)/2 correspond to |0⟩- and |1⟩-controls, respectively.

To unify them, temporary 𝑋 gates toggle |0⟩-controls into the |1⟩ basis, and a multiqubit conjunction

is computed into an auxiliary predicate qubit,

Πℓ = AND
(
ancilla, 𝐶 (ℓ)0 , 𝐶

(ℓ)
1

)
, (S73)

where ancilla denotes the interference qubit used in the Hadamard-test or the QPE protocol. It is

initialized in ( |0⟩ + |1⟩)/
√

2 and controls whether the system register undergoes time evolution: the

S30



|0⟩ branch remains idle, whereas the |1⟩ branch activates the controlled evolution 𝑒−𝑖H 𝑡 . The sets𝐶 (ℓ)0

and 𝐶 (ℓ)1 index the projector-controlled qubits associated with 𝑧- and 𝑜-type predicates, respectively.

The composite predicate Πℓ therefore represents the logical AND of all active controls—ancilla,

|0⟩-controls, and |1⟩-controls—and acts as a single effective control (90,91) for the rotation gate.

Each local exponential term is then written as

𝑈ℓ (𝑡) = 𝑈b𝑈lad
[
𝑅𝑍 (2 Re(𝜃ℓ)𝑡) on qubit 𝑟 controlled by Πℓ

]
𝑈
†
lad𝑈

†
b , (S74)

where𝑈b collects the basis transformations (e.g., 𝐻 or 𝑅𝑥 (−𝜋/2) rotations), and𝑈lad is the CNOT

ladder circuit that aggregates the parity of all 𝑍-type factors onto the rightmost active qubit

𝑟 = max 𝑆ℓ before the controlled rotation.

This construction ensures that each local factor
⊗

𝑞∈𝑆ℓ 𝑃
(ℓ)
𝑞 is implemented with minimal control

overhead while preserving the full commutation structure.

Since all 𝑅𝑍 rotations commute, terms sharing the same control mask and reference qubit can be

merged. To minimize the number of control toggles between successive terms, the control masks are

scheduled in Gray order, as shown in Figure S3, where consecutive masks differ by only a single bit.

Predicate caching further lowers the depth by computing the logical AND once, applying one 𝐶𝑅𝑍 ,

and uncomputing it.

The total time evolution over duration 𝑡 is approximated via product formulas (15,88). A first-order

Trotter step

𝑈̃1(𝑡) =
∏
ℓ

𝑈ℓ (𝑡)

achieves 𝑂 (𝑡2) accuracy, whereas the symmetric second-order step

𝑈̃2(𝑡) = 𝑈̃1(𝑡/2) 𝑈̃1(−𝑡/2)†

suppresses the error to 𝑂 (𝑡3), with the bound

𝑒−𝑖H 𝑡 − 𝑈̃ (𝑡)

 = 𝑂 (
𝑡2 max

ℓ,ℓ′
∥ [Hℓ,Hℓ′] ∥

)
.
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A global energy offsetH = 𝑐𝐼 𝐼 + (H − 𝑐𝐼 𝐼) is handled by applying 𝑒−𝑖𝑐𝐼 𝑡 only to the ancilla’s |1⟩

branch, stabilizing the interferometric phase without affecting the eigenvectors or relative gaps.

After grouping and optimization, the circuit depth is dominated by a few parity ladders and

multicontrol rotations, whereas most remaining operations are commuting single-qubit 𝑅𝑍 gates.

For typical systems with 𝑛 ≈ 10 qubits, a complete controlled evolution requires ∼ 104 primitive

gates. Gray-ordered scheduling and commuting-group compilation reduce entangling depth by

a factor of 3–5 while maintaining spectral fidelity at the 10−3 level in the extracted gap 𝛾. The

resulting construction provides an efficient and hardware-compatible realization of𝑈ctrl(𝑡) suitable

for Hadamard-test and QPE-based spectroscopic estimation of supersymmetric energy gaps (28,92).

This Projected-basis compilation not only reduces the circuit depth but also emulates the structural

evolution of the combinatorial Laplacian under topological filtration. As noted in the persistent

spectral framework of Meng and Xia (93), the number and strength of off-diagonal Laplacian entries

vary systematically as simplices are added or removed along a filtration, producing a continuous

growth and decay of coupling terms that governs spectral transitions. In our implementation, the

Projected-basis realizes this mechanism at the operator level: Pauli-grouped commuting terms encode

diagonal potentials, whereas Projected-basis operations selectively activate or suppress off-diagonal

couplings corresponding to newly formed or annihilated simplices. Consequently, the controlled

time-evolution operator𝑈 (𝑡) = 𝑒−𝑖H̃ 𝑡 mimics the dynamic modulation of connectivity observed in

persistent Laplacian models, ensuring that the evolution of the quantum spectrum reproduces the

same addition–removal process of Laplacian couplings that drives the filtration-dependent spectra.

S11 Quantum phase estimation (eigenvalue extraction)

We recover the eigenvalues of the supersymmetric Hamiltonian H by analysing the time

autocorrelation of a prepared probe state. For a normalized state |𝜓⟩, the correlation function is

𝐶 (𝑡) = ⟨𝜓 |𝑒−𝑖H 𝑡 |𝜓⟩ =
∑︁
𝑗

𝑎 𝑗𝑒
−𝑖𝐸 𝑗 𝑡 , 𝑎 𝑗 = |⟨𝐸 𝑗 |𝜓⟩|2, 𝑎 𝑗 ≥ 0,

∑︁
𝑗

𝑎 𝑗 = 1, (S75)
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so that the frequency content consists of spectral lines at {𝐸 𝑗 } with nonnegative weights {𝑎 𝑗 }. The

measurement is performed via a single-ancilla Hadamard test (Figure S4): the ancilla prepares

( |0⟩+|1⟩)/
√

2, interferes with a reference branch with a data branch undergoing controlled evolution

𝑒−𝑖H 𝑡 , and is measured along 𝑋 or 𝑌 , yielding ⟨𝑋⟩ = ℜ𝐶 (𝑡) and ⟨𝑌⟩ = −ℑ𝐶 (𝑡). The correlation

function 𝐶 (𝑡) is sampled on a uniform grid 𝑡𝑘 = 𝑘 Δ𝑡 for 𝑘 = 0, . . . , 𝑇−1. Identity offsets are

removed by writingH = 𝑐𝐼 𝐼 + (H − 𝑐𝐼 𝐼) and applying the global phase 𝑒−𝑖𝑐𝐼 𝑡 only to the ancilla’s

|1⟩ branch, so that the measured phases reflectH − 𝑐𝐼 𝐼.

Because the Hadamard test measures the expectation value Tr(𝜌 𝑒−𝑖H 𝑡) for an arbitrary density

operator 𝜌, the same circuit applies without modification to statistical mixtures or decohered

superpositions. In practice, we emulate such mixedness by averaging over random single–qubit 𝑍

phases within the Hadamard–test loop, effectively transforming 𝜌 = |𝜓⟩⟨𝜓 | into 𝜌 = E𝑍 [𝑍 |𝜓⟩⟨𝜓 |𝑍†]

and suppressing off–diagonal coherences between Dicke sectors. In particular, for the Dicke–encoded

probe 𝜌 =
∑
𝑘 𝑝𝑘 |𝐷

(𝑛)
𝑘
⟩⟨𝐷 (𝑛)

𝑘
|, the measured correlator becomes 𝐶 (𝑡) = Tr(𝜌 𝑒−𝑖H 𝑡) = ∑

𝑘 𝑝𝑘𝑒
−𝑖𝐸𝑘 𝑡 ,

so the interferometric signal directly represents a weighted spectral average over symmetric sectors.

Thus, mixedness arising from imperfect preparation, dephasing, or intentional classical weighting is

inherently incorporated in the measured autocorrelation, and no circuit modification is required.

Formally, the equivalence between this averaged Hadamard–test measurement and a true

mixed–state expectation can be seen by expanding the coherent probe |𝜓⟩ = 1√
𝑁

∑
𝑒 |𝑒⟩ on a

computational basis. The interferometric estimator yields

⟨𝜓 |𝑒−𝑖H 𝑡 |𝜓⟩ = 1
𝑁

∑︁
𝑒,𝑒′
⟨𝑒′|𝑒−𝑖H 𝑡 |𝑒⟩ = 1

𝑁

∑︁
𝑒

⟨𝑒 |𝑒−𝑖H 𝑡 |𝑒⟩ + 1
𝑁

∑︁
𝑒≠𝑒′
⟨𝑒′|𝑒−𝑖H 𝑡 |𝑒⟩. (S76)

The first term corresponds exactly to the mixed–state trace Tr(𝜌 𝑒−𝑖H 𝑡) for 𝜌 = 1
𝑁

∑
𝑒 |𝑒⟩⟨𝑒 |, whereas

the second term contains off–diagonal coherences between distinct basis states. Under temporal

averaging or random–phase dephasing, these cross terms vanish because their phases oscillate at

frequencies 𝜔𝑒′ − 𝜔𝑒, leading to

⟨𝜓 |𝑒−𝑖H 𝑡 |𝜓⟩ = 1
𝑁

∑︁
𝑒

⟨𝑒 |𝑒−𝑖H 𝑡 |𝑒⟩ = Tr(𝜌 𝑒−𝑖H 𝑡). (S77)
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Hence, the Hadamard test on a uniform superposition state reproduces the expectation value of

an incoherent statistical ensemble without requiring any additional ancilla or explicit purification.

In other words, quantum interference within the single Hadamard–test circuit naturally performs

the same linear averaging that would otherwise arise from tracing out an ancillary subsystem in a

purified mixed state.

A tapered discrete transform with window 𝑤𝑘 (e.g., Hann) is then formed as

𝐶̃ (𝜔ℓ) =
𝑇−1∑︁
𝑘=0

𝑤𝑘 𝐶 (𝑡𝑘 ) 𝑒𝑖𝜔ℓ 𝑡𝑘 , 𝜔ℓ =
2𝜋ℓ
𝑇Δ𝑡

, ℓ = 0, . . . , 𝑇 − 1, (S78)

given frequency resolution Δ𝜔 = 2𝜋/(𝑇Δ𝑡) over the unaliased band [0, 𝜋/Δ𝑡]. With 𝑀 repetitions

per 𝑡𝑘 , shot noise is approximately white with

SE[𝐶 (𝑡𝑘 )] ≃
√︂

1 − |𝐶 (𝑡𝑘 ) |2
𝑀

, (S79)

and is shaped by the window response |𝑊 (𝜔) | in |𝐶̃ (𝜔) |. Eigenfrequencies appear as peaks of |𝐶̃ (𝜔) |;

letting 𝜔ℓ be a discrete maximizer with neighbors 𝐴− = |𝐶̃ (𝜔ℓ−1) |, 𝐴0 = |𝐶̃ (𝜔ℓ) |, 𝐴+ = |𝐶̃ (𝜔ℓ+1) |,

quadratic interpolation refines the location and amplitude,

𝛿 =
1
2

𝐴− − 𝐴+
𝐴− − 2𝐴0 + 𝐴+

, 𝜔̂ = 𝜔ℓ + 𝛿 Δ𝜔, 𝐴̂ = 𝐴0 −
(𝐴− − 𝐴+)2

8 (𝐴− − 2𝐴0 + 𝐴+)
. (S80)

For SUSY blocks probing 𝐻1, a zero mode manifests near 𝜔≈0; to avoid leakage, a guard width

Ωg = 𝜅 Δ𝜔 with 𝜅 ∈ [1, 3] is enforced and the smallest positive frequency is estimated as

𝛾̂ = min{𝜔̂𝑖 : 𝜔̂𝑖 > Ωg}, 𝜉 = 1/𝛾̂. (S81)

If no zero mode is present, the two lowest refined peaks yield 𝐸̂0, 𝐸̂1, and the gap 𝛾̂ = 𝐸̂1 − 𝐸̂0.

To cross-check FFT peaks, a parametric estimator fits a sum of complex exponentials to {𝐶 (𝑡𝑘 )}

via a shift-invariant method (Prony/ESPRIT): Hankel matrices (𝐻0, 𝐻1) are formed, an effective rank

𝑟 is chosen by SVD thresholding, and the generalized eigenproblem 𝐻1𝑣 = 𝜆𝐻0𝑣 yields 𝑧 𝑗 ≈ 𝑒−𝑖𝐸 𝑗Δ𝑡

and hence 𝐸̂ 𝑗 = − arg(𝑧 𝑗 )/Δ𝑡. Sweeping 𝑟 over a small range and intersecting stable roots returns a

smallest positive consistent element 𝛾̂Prony that is compared against the windowed-DFT estimate.
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Phase wrap-around is controlled by enforcing ∥H − 𝑐𝐼 𝐼 ∥ < 𝜋/Δ𝑡 (via norm or Gershgorin

bounds). Ambiguities are further disambiguated by acquiring a secondary dataset with spacing Δ𝑡′

whose ratio to Δ𝑡 is far from low-order rationals; a true line must lie in the intersection

A(Δ𝑡) =
{
𝜔̂(Δ𝑡) + 2𝜋𝑚

Δ𝑡

}
, A(Δ𝑡′) =

{
𝜔̂(Δ𝑡

′) + 2𝜋𝑚′
Δ𝑡′

}
, (S82)

from which the unique joint solution within the interpolation error bars is selected. A dedicated

zero-mode test compares the near-zero band power to its sidebands (94,95),

P0 =
∑︁
|𝜔ℓ |≤Ωz

|𝐶̃ (𝜔ℓ) |2, Psb = 1
2

∑︁
Ωz< |𝜔ℓ |≤2Ωz

|𝐶̃ (𝜔ℓ) |2, (S83)

and declares a zero mode when 𝑅 = P0/Psb exceeds a calibrated threshold, stabilizing 𝛽1 counting

against spectral leakage.

The final aggregation combines the smallest nonzero from the refined FFT and Prony/ESPRIT

via a conservative median,

𝛾̂ = median
(
𝛾̂FFT, 𝛾̂Prony

)
, (S84)

optionally weighted by inverse residuals (peak-fit error vs. reconstruction error). Uncertainty is

quantified by a block bootstrap over time: resampling {𝐶 (𝑡𝑘 )} in blocks at least as wide as the

window main lobe yields {𝛾̂ (𝑏)} for percentile intervals. Near an isolated line, a fast error proxy is

SE[𝜔̂] ≈ 𝛽win Δ𝜔

𝜌
, 𝜌 = 𝐴̂/𝜎, (S85)

with window constant 𝛽win (Hann: ≈ 0.5) and peak SNR 𝜌; for zero mode, SE[𝛾̂] = SE[𝜔̂1],

otherwise, the two lowest-peak errors add in quadrature. A Cramér–Rao proxy,

Var(𝐸̂) ≳
𝜎2∑

𝑘 𝑎
2
eff 𝑡

2
𝑘

, (S86)

emphasizes the value of a longer total span 𝑇Δ𝑡.

Resource–accuracy tradeoffs follow from the target gap 𝛾★, requiring 𝑇Δ𝑡 ≳ 2𝜋/𝛾★. A decrease

in Δ𝑡 enlarges the Nyquist band but increases the number of controlled evolutions for a fixed span,

with total sampling cost 𝑇 × 𝑀 . Trotterized simulation of 𝑒−𝑖H 𝑡 with step 𝛿𝑡 incurs

∥𝑒−𝑖H 𝑡 − 𝑈̃ (𝑡)∥ = 𝑂
(
𝑡2 max

ℓ≠ℓ′
∥ [𝐻ℓ, 𝐻ℓ′] ∥

)
, (S87)
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while a symmetric second-order formula reduces this to 𝑂 (𝑡3). Short-term calibration points verify

linear phase growth, and slow drifts are removed via a global linear fit prior to spectral estimation.

The spectral entropy 𝑆spec = −
∑
𝑖 𝑝𝑖 log 𝑝𝑖 computed from line strengths 𝑝𝑖 = 𝐴̂𝑖/

∑
𝑗 𝐴̂ 𝑗 summarizes

mode complexity and is reported alongside 𝛾̂.

Peak identification from |𝐶̃ (𝜔) | follows a robust spectral-gap picking procedure. After applying a

Hann window and detrending to suppress DC leakage, the analysis is restricted to a fixed search

band [𝑤lo, 𝑤hi] = [0, 0.8] within the Nyquist interval. Within this band, candidate peaks are local

maxima that exceed a robust threshold 𝑇 = median(𝑆) + 1.4826 𝑘𝜎 MAD(𝑆), which suppresses

noise-dominated fluctuations. Each candidate is refined via parabolic interpolation for subbin

accuracy, and optional harmonic guards exclude integer multiples of an estimated fundamental

frequency 𝜔est within tolerance 𝛿harm. A selection policy then determines the representative spectral

line: nearest_to_estimate chooses the candidate closest to 𝜔est (default), whereas min_significant

or lowest_nonzero favour the smallest nonzero significant peak. If no valid candidate remains, the

strongest in-band maximum serves as fallback. This combination of band restriction, DC/harmonic

guards, and median–MAD thresholding yields a stable and noise-resilient estimate of the fundamental

spectral gap.

An end-to-end procedure thus proceeds as follows: acquire complex correlators on a primary

grid (and optionally a secondary Δ𝑡′), form windowed spectra, detect and refine peaks via (S80),

apply zero-mode and alias guards, crosscheck with Prony/ESPRIT, aggregate to 𝛾̂ with a confidence

interval, and finally report 𝜉 = 1/𝛾̂ together with {𝑝𝑖} and 𝑆spec and calibration diagnostics. For

systems of ∼10–15 qubits, grouped Pauli–projector synthesis keeps each long-time controlled

evolution at practical depth while preserving near-zero multiplicities and the first spectral gap with

subpercent bias under noiseless calibration.
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S12 Proof of the Spectral Bound between Energy Gap and Persistence

We derive a spectral bound that relates the Laplacian energy gap to the persistence of topological

features observed during a filtration {𝐾𝑡}. The main theorem states that the persistence (𝑑 − 𝑏) of a

homological feature born at 𝑡 = 𝑏 and disappearing at 𝑡 = 𝑑 satisfies

𝐿̃ (𝑑 − 𝑏) + (𝑝 + 1)𝑑𝑝,max ≥ 𝜆𝛽𝑝+1 (Δ𝑝 (𝐾𝑏)), (S88)

where 𝐿̃ denotes the effective Lipschitz constant of spectral variation, and where 𝑑𝑝,max is the

maximal number of adjacent (𝑝 − 1)–simplices for any 𝑝–simplex. A larger local spectral gap

shortens the persistence, whereas a vanishing gap leads to long-lived harmonic modes.

First, recall that for any Hermitian matrix 𝐻, the Courant–Fischer theorem expresses the 𝑘-th

eigenvalue as

𝜆𝑘 (𝐻) = min
dim𝑈=𝑘

max
𝑥∈𝑈\{0}

𝑥T𝐻𝑥

𝑥T𝑥
= max

dim𝑉=𝑛−𝑘+1
min

𝑥∈𝑉\{0}

𝑥T𝐻𝑥

𝑥T𝑥
. (S89)

If 𝐻 = 𝑈†Λ𝑈 with eigenvalues 𝜆1 ≤ · · · ≤ 𝜆𝑛 and𝑈𝑥 = 𝛼, then

𝑅𝐻 (𝑥) =
∑
𝑖 𝜆𝑖𝛼

2
𝑖∑

𝑖 𝛼
2
𝑖

=
∑︁
𝑖

𝜆𝑖𝛼̃
2
𝑖 , 𝛼̃𝑖 =

𝛼𝑖

∥𝑥∥ , (S90)

so that max𝑥∈span{𝑒1,...,𝑒𝑘} 𝑅𝐻 (𝑥) = 𝜆𝑘 .

Now consider a block Hermitian matrix

𝑀 =
©­«
𝐴 𝐵

𝐵† 𝐶

ª®¬ , 𝑆 = 𝐴 − 𝐵𝐶−1𝐵†,

with 𝐴 Hermitian and 𝐶 > 0. At the minimizing point 𝑦∗(𝑥) = −𝐶−1𝐵†𝑥, the Rayleigh quotient

satisfies

𝑅𝑀 (𝑥, 𝑦∗(𝑥)) = 𝑅𝑆 (𝑥)
(
1 + ∥𝑦

∗(𝑥)∥2
∥𝑥∥2

)−1
≤ 𝑅𝑆 (𝑥), (S91)

and from the min–max relation one obtains

𝜆𝑘 (𝑀) ≤ 𝜆𝑘 (𝑆), 𝜆𝑘+𝑑 (𝑀) ≥ 𝜆𝑘 (𝑆), (S92)

where 𝑑 = dim(𝐶). Applying this result to Δ𝑝 (𝐾𝑡) and its persistent form Δ
(𝑠,𝑡)
𝑝 yields

𝜆𝑘 (Δ𝑝 (𝐾𝑡)) ≤ 𝜆𝑘 (Δ(𝑠,𝑡)𝑝 ) ≤ 𝜆𝑘+𝑑 (Δ𝑝 (𝐾𝑡)). (S93)
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Next, note that the 𝑝–Laplacian algorithm decomposes into upwards and downwards components:

Δ𝑝 = Δ𝑝,up + Δ𝑝,down, Δ𝑝,up = 𝜕𝑝+1𝜕
†
𝑝+1, Δ𝑝,down = 𝜕†𝑝𝜕𝑝 .

The upwards part represents (𝑝 + 1)–dimensional fillings, whereas the downwards part encodes

adjacency among (𝑝 − 1)–simplices. The Schur relation applied to Δ𝑝,up yields

𝜆𝑘 (Δ𝑝,up(𝐾𝑡)) ≤ 𝜆𝑘 (Δ(𝑠,𝑡)𝑝,up) ≤ 𝜆𝑘+𝑑 (Δ𝑝,up(𝐾𝑡)). (S94)

Because Δ𝑝 = Δ𝑝,up + Δ𝑝,down, the following bounds hold:

𝜆𝑘 (Δ𝑝 (𝐾𝑡)) ≥ 𝜆𝑘 (Δ𝑝,up(𝐾𝑡)) + 𝜆min(Δ𝑝,down(𝐾𝑡)), (S95)

𝜆𝑘 (Δ𝑝 (𝐾𝑡)) ≤ 𝜆𝑘 (Δ𝑝,up(𝐾𝑡)) + 𝜆max(Δ𝑝,down(𝐾𝑡)). (S96)

Combining these gives a two-sided interlacing for the persistent Laplacian:

𝜆𝑘 (Δ𝑝 (𝐾𝑡)) − 𝜆max
(
Δ𝑝,down(𝐾𝑡)

)
+ 𝜆min

(
Δ𝑝,down(𝐾𝑠)

)
≤ 𝜆𝑘

(
Δ
(𝑠,𝑡)
𝑝

)
≤ 𝜆𝑘+𝑑

(
Δ𝑝 (𝐾𝑡)

)
− 𝜆max

(
Δ𝑝,down(𝐾𝑠)

)
+ 𝜆min

(
Δ𝑝,down(𝐾𝑡)

)
. (S97)

This shows that the spectrum of the persistent Laplacian is bounded between those of the ordinary

Laplacian, with corrections governed by the spectral range of Δ𝑝,down.

To relate these bounds to geometric variation, consider the inequality between two Hermitian

matrices 𝐴 and 𝐵:

𝑥T𝐵𝑥 = 𝑥T𝐴𝑥 + 𝑥T(𝐵 − 𝐴)𝑥 ≤ 𝑥T𝐴𝑥 + ∥𝐵 − 𝐴∥∥𝑥∥2. (S98)

Taking the infimum over all normalized 𝑥 yields

𝜆𝑘 (𝐵) ≤ 𝜆𝑘 (𝐴) + ∥𝐵 − 𝐴∥. (S99)

If the Laplacian varies Lipschitz-continuously with respect to 𝑡,

∥Δ𝑝 (𝐾𝑡) − Δ𝑝 (𝐾𝑠)∥ ≤ 𝐿 |𝑡 − 𝑠 |, (S100)
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then the corresponding eigenvalues satisfy

𝜆𝑘 (Δ𝑝 (𝐾𝑡)) ≥ 𝜆𝑘 (Δ𝑝 (𝐾𝑠)) − 𝐿 |𝑡 − 𝑠 |. (S101)

The downwards Laplacian’s spectral width provides a combinatorial correction term. Since

width(Δ𝑝,down(𝐾𝑠)) = 𝜆max − 𝜆min ≤ (𝑝 + 1)𝑑𝑝,max, (S102)

where 𝑑𝑝 denotes the maximum number of 𝑝-dimensional simplices that are adjacent to any given

(𝑝 − 1)-dimensional simplex 𝜎, we obtain

𝜆max(Δ𝑝,down(𝐾𝑡)) − 𝜆min(Δ𝑝,down(𝐾𝑠)) ≤ (𝑝 + 1)𝑑𝑝,max + 𝐿′(𝑡 − 𝑠), (S103)

and thus the persistent Laplacian obeys

𝜆𝑘 (Δ(𝑠,𝑡)𝑝 ) ≥ 𝜆𝑘 (Δ𝑝 (𝐾𝑠)) − 𝐿̃ (𝑡 − 𝑠) − (𝑝 + 1)𝑑𝑝,max, 𝐿̃ = 𝐿 + 𝐿′. (S104)

The behavior of individual eigenmodes can be analysed perturbatively. For 𝐻 (𝜖) = 𝐻0 + 𝜖𝑉 with

𝜖 ≪ 1,

𝐸𝑚 = 𝐸
(0)
𝑚 + 𝜖 ⟨𝜙𝑚, 𝑉𝜙𝑚⟩ + 𝜖2

∑︁
𝑛≠𝑚

|⟨𝜙𝑚, 𝑉𝜙𝑛⟩|2

𝐸
(0)
𝑚 − 𝐸 (0)𝑛

+ · · · . (S105)

If 𝐸 (0)0 = 0 is isolated, it remains zero until the degeneracy is lifted, as shown in Kato’s Perturbation

Theory for Linear Operators (96). Hence, a homological feature persists while its Laplacian mode

stays within the zero eigenspace:

𝜆𝛽𝑝+1 (Δ
(𝑏,𝑡)
𝑝 ) ≈ 0 (𝑡 < 𝑑), 𝜆𝛽𝑝+1 (Δ

(𝑏,𝑑)
𝑝 ) > 0. (S106)

The stability of the zero eigenspace can be formalized via the Riesz projector

Π0(𝑡) =
1

2𝜋𝑖

∮
Γ𝑡

(𝑧𝐼 − Δ𝑝 (𝐾𝑡))−1 𝑑𝑧, (S107)

where Γ𝑡 encloses the isolated eigenvalue 0. If 𝐸 = Δ𝑝 (𝐾𝑡) − Δ𝑝 (𝐾𝑠), then

∥Π0(𝑡) − Π0(𝑠)∥ ≤
∥𝐸 ∥
𝛾𝑠
≤ 𝐿

𝛾𝑠
|𝑡 − 𝑠 |. (S108)
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As long as 𝐿 |𝑡 − 𝑠 | < 𝛾𝑠 = 𝜆1(Δ𝑝 (𝐾𝑠)), the rank of the projector—and therefore the Betti

number—remains invariant:

rankΠ0(𝑡) = rankΠ0(𝑠). (S109)

A death of homology thus requires that the spectral gap 𝛾 closes.

When a homological feature is born at 𝑡 = 𝑏, the smallest nonzero eigenvalue 𝜆𝛽𝑝+1 (Δ𝑝 (𝐾𝑏))

defines a local energy gap. As filtration continues, this feature persists as long as 𝜆𝛽𝑝+1 (Δ
(𝑏,𝑡)
𝑝 ) ≃ 0.

Its eventual disappearance at 𝑡 = 𝑑 occurs when this zero mode lifts to a finite value. When the

spectral inequality (S104) is used, this transition can only occur if

𝜆𝛽𝑝+1 (Δ𝑝 (𝐾𝑏)) − 𝐿̃ (𝑑 − 𝑏) − (𝑝 + 1)𝑑𝑝,max ≤ 0, (S110)

which rearranges to the quantitative persistence condition

𝐿̃ (𝑑 − 𝑏) + (𝑝 + 1)𝑑𝑝,max ≥ 𝜆𝛽𝑝+1 (Δ𝑝 (𝐾𝑏)). (S111)

In other words, the death of a homological feature requires that the cumulative spectral variation

across (𝑏, 𝑑) surpasses the initial Laplacian energy gap at 𝑏. If this threshold is not reached, the

zero mode—and hence the topological feature—remains stable.

Finally, because the Laplacian encodes gradients, curls, and divergences of the field, its eigenvalues

describe the curvature of the local energy landscape. A large spectral gap 𝜆1 corresponds to strong

restoring forces that stabilize the topology, whereas 𝜆1→0 represents a topological phase transition

where harmonic modes emerge. The ordinary Laplacian gap thus quantifies the robustness of

homological structures: the closure of this gap signals the annihilation of a topological cycle.

Equation (S111) unifies energy-gap dynamics and persistent homology by showing that the local

spectral curvature (or SUSY energy gap) provides a quantitative bound on the persistence of

homological features, offering a spectral–geometric interpretation of topological stability consistent

with the SUSY behavior observed in the Lorenz system.
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|𝑎⟩ (anc)
𝑞1

𝑞2 𝐻 𝐻

𝑞3 (ref) 𝑅𝑍 (2 𝜃ℓ𝑡)

Figure S1: Controlled time evolution for one local term𝑈ℓ (𝑡) = 𝑒−𝑖 𝜃ℓ 𝑡𝑃𝑞1⊗𝑃𝑞2⊗𝑃𝑞3 . Basis rotations convert

𝑋/𝑌 to 𝑍 , CNOTs collect parity on 𝑞3, and an ancilla-controlled 𝑅𝑍 (2𝜃ℓ 𝑡) realizes the exponential.

|𝑎⟩ (anc)
𝑞1 𝐻 𝐻

𝑞2 𝑅𝑥 (−𝜋/2) 𝑅𝑥 (𝜋/2)

𝑞3 (ref 𝑟) 𝑅𝑍 (2 Re(𝜃ℓ)𝑡)

Figure S2: Controlled time evolution for one local factor𝑈ℓ (𝑡) = 𝑒−𝑖 𝜃ℓ 𝑡
⊗

𝑞∈𝑆ℓ
𝑃
(ℓ)
𝑞 . Here 𝑃𝑞1 = 𝑋 , 𝑃𝑞2 = 𝑌 ,

𝑃𝑞3 = 𝑍 . CNOTs collect the 𝑍-parity onto the rightmost reference qubit 𝑟 = 𝑞3; an ancilla-controlled

𝑅𝑍 (2 Re(𝜃ℓ)𝑡) implements the phase; then,they uncompute.

000 001 011 010 110 111 101 100
flip bit 0 flip bit 1 flip bit 0 flip bit 2 flip bit 0 flip bit 1 flip bit 0

Figure S3: Gray-order traversal of a 3-bit control mask. Consecutive masks differ by a single bit, minimizing

the number of control toggles (𝑋 gates) between terms that share the same Pauli-letter pattern.

|𝑎⟩ (anc) 𝐻 𝐻 ⟨𝑋⟩ = ℜ𝐶 (𝑡)

|𝜓⟩ (sys) 𝑒−𝑖H 𝑡

|𝑎⟩ (anc) 𝐻 𝑆† 𝐻 ⟨𝑌⟩ = −ℑ𝐶 (𝑡)

|𝜓⟩ (sys) 𝑒−𝑖H 𝑡

Figure S4: Hadamard-test circuits for a single sample time 𝑡. The controlled-𝑒−𝑖H𝑡 block is synthesized as

𝑈ctrl(𝑡) (Sec. S10). Measuring 𝑋 (top) yields ℜ𝐶 (𝑡); inserting 𝑆† and then measuring 𝑋 (bottom) yields

−ℑ𝐶 (𝑡).
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Figure S5: Quantum and classical diagnostics for the Lorenz system at 𝜌 = 36. (A) Time-series input

and (B) 3D attractor embedding. (C) Hodge Laplacian matrix and (D) complex-plane trajectory of the QPE

amplitude. (E) Real-imaginary waveform, (F) amplitude-phase trace, and (G, H) QPE spectra from the

simulation and IBM hardware. Broad, merged spectral peaks indicate weak topological separation in the early

chaotic regime.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at 𝜌 = 37. Slight narrowing of

spectral lines and partial clustering of low-frequency modes mark the initial development of the quasi-periodic

structure.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at 𝜌 = 38. Spectral entropy begins to

decline, and distinct peaks emerge in both the simulator and hardware spectra, indicating partial organization

of the attractor’s loop geometry.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at 𝜌 = 39. Discrete peaks become

more pronounced and near-zero components start to separate from the continuum. Topological coherence

strengthens as the attractor approaches double-wing formation.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at 𝜌 = 40. Both the simulation and

hardware show clear harmonic-mode isolation and maximal phase-space regularity. Near-zero clusters narrow

sharply, marking the onset of topological stabilization.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at 𝜌 = 41. The Hodge–Laplacian

spectrum exhibits its widest gap and cleanest harmonic–excited separation, coinciding with maximal 𝐻1

persistence. The complex-plane trajectories are nearly circular, confirming spectral coherence.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at 𝜌 = 42. Spectral broadening

and partial peak overlap indicate the onset of topological coherence breaking, where harmonic modes lose

phase alignment across scales. The harmonic sector remains visible but less isolated, marking the gradual

destabilization of the coherent loop.
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Table S1: Summary of hardware specifications for ibm_kingston. Error metrics refer to per-gate Pauli

error rates at the calibration time; CLOPS denotes circuit layer operations per second.

Qubits 156

Processor type Heron r2

QPU version 1.0.0

Basis gates cz, id, rx, rz, rzz, sx, x

Best two-qubit error 8.88 × 10−4

Two-qubit error (layered) 3.42 × 10−3

Median CZ error 1.93 × 10−3

Median SX error 2.372 × 10−4

Median readout error 8.606 × 10−3

Median 𝑇1 262.42 𝜇s

Median 𝑇2 119.55 𝜇s

CLOPS (throughput) 250 K
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