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S1 Hodge Laplacian and Homology

Let K be a finite, oriented simplicial complex. For each k£ > 0, the k—chain space Cy (K) is the
real vector space spanned by oriented k—simplices, equipped with the inner product that makes

those simplices orthonormal. The boundary operators

O : Ck = Cicty, Ok[vos...,v Z( Di[vos ..oy iy ey vi] (S1)

assemble into the chain complex

. d b
'E’Cki’CkIL’"', Ok Ok+1 = 0. (S2)
The kth homology group is
Hy (K) = ker(0k) /im(k+1), B = dim Hy (K), (S3)

which counts independent k—dimensional holes (54). In Eq. (S1), v; indicates omission of v;, and

the orientation is the canonical orientation induced by the vertex order.

With respect to the chosen inner product, let 6,1' denote the adjoint of d. It is convenient to split

the k—Hodge Laplacian into its “down” and “up” parts and write

=30, Ll =00 Ly =L, +Ll =3[0 +0418] (S4)

k+1° k+1°

All operators act on Cy(K) equipped with the simplex-orthonormal inner product, so (-)' is just

transposed with respect to that basis.

Any k—chain x € Cj admits three qualitatively distinct behaviors. It can be a gradient (an
exact k—chain) of some (k—1)—chain, x = a7 . V; it can be a curl (a coexact k—chain) induced by a
(k+1)—chain, x = 041 z; or it can simultaneously cycle and cocycle, i.e., x € ker(d) N ker(c')k 1)
which is divergence—free and curl-free. The latter are the harmonic k—chains and encode the

homology.
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The Hodge decomposition states that these three subspaces are mutually orthogonal and span Cy:

Cy = im(&Z) ® ker Ly & im(0k41), ker L = ker(dx) ﬂker(éZH) = Hy, By =dimkerLy.
(S5)
Thus every x € Cy splits uniquely as x = Xgrad + Xharm + Xcurl, With the three components pairwise

orthogonal.

Because the direct sum is orthogonal, each component can be recovered via orthogonal projection.

Using Moore—Penrose pseudoinverses,

Poad = 8 (040)) 0y Poun = 0ks1 (], 0k41) 0], (S6)

Pharm =1 — Pgrad = Peur, Xe = Pox. (S7)

Equivalently, xgraq = 6; u where u solves the normal equations aka,ju = OkX; Xcurl = Ok4+1v Where

Ops1v =0,

T
0 k+1

sl x; and Xparm 1S the residual in ker L.

The appearance of the adjoint 8; in Pgryq 18 deliberate and fundamental. Since im((')g ) is the
subspace of exact k—cochains (coboundaries), projection onto this space necessarily involves 6;
acting on the left. Had we used 9y instead, the resulting operator would project onto im(dy), the
boundary subspace associated with the next lower chain group, corresponding to Pyy. Thus the two

projectors are adjoint counterparts under discrete Hodge pairing:
Porad = 0, (8:0))*0 Peurt = 0ks1(8 Oke1)* 0!
grad K Uk ko> curl k+1\0) 1 Vk+1 k+1°

This construction ensures that Pgrag, Peurl, and Py form a complete, mutually orthogonal
decomposition of Cy, as guaranteed by the Hodge theorem for finite complexes. Equivalent
formulations appear in the discrete Hodge-theoretic treatments of Horak and Jost (55) and Lim (56),

where the operators are written as
Pgrad = 5(5*5)+5*a Py = 6" (65*)+63
where 6 = 6Z denotes the coboundary operator.
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For the case where k = 1, write B; for the vertex—edge incidence matrix and B, for the
edge-triangle incidence matrix of K (if triangles are present). Let B; € RIV*IEl be the vertex—edge
incidence (each column has one +1 and one —1 according to edge orientation), and B, € RIEXIT! the

edge—triangle incidence (entries in {0, +1} given by compatible orientation). Then
LY=B[Bi, Ll=B:B], Li=B[B +B:B]. (S8)

Here im(B;) consists of edge differences of a scalar potential on vertices (gradient space), im(B>)
consists of circulations induced by triangle potentials (curl space), and ker L; consists of edge flows
that are both divergence—free (B;x = 0) and curl—free (Bér x = 0); hence B; = dimker L recovers
the first Betti number. On a pure graph with no filled triangles (B, = 0), one simply has L; = B{ B

and ker L = ker By, the usual cycle space (57, 58).

The Hodge Laplacian introduced above not only decomposes chains into gradient, curl, and
harmonic components but also connects directly to the semiclassical picture of Witten—Morse
supersymmetric quantum mechanics (29). In this correspondence, the gradient, curl, and harmonic
parts represent, respectively, downwards and upwards gradient flows and the stationary (zero—energy)
sector of a supersymmetric Hamiltonian. Under Witten’s deformation d; = e ™'/ de'/ the Laplacian
Ay = (di + d; )? acquires exponentially small eigenvalues E;(f) ~ exp[—2t Af;/h] generated by
tunneling between distinct basins of the Morse function f. The first nonzero eigenvalue therefore
measures a tunneling gap that quantifies how strongly separated topological sectors communicate.

In the discrete combinatorial setting this role is played by

A

susy = min{d > 0:1 € o(L1)},

the smallest positive eigenvalue of the one—form Hodge block. When persistent loops are well isolated
in geometry, tunneling is suppressed and the gap widens; when loops merge or collapse, tunneling
increases and the gap closes. Across a filtration or control parameter this gap AéBSY typically
covaries with the highest persistence of homology fglax, providing a spectral proxy for topological

stability (32, 59). This connection unifies the classical Hodge decomposition, the Witten—Morse
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semiclassical analysis, and modern persistent-Laplacian formulations into a single framework linking

gradient flow, tunneling amplitude, and topological persistence.

From a spectral viewpoint, eigenpairs of L; separate according to (S5): harmonic modes (4 = 0)
span homology, whereas nonzero eigenvalues arise from gradient—type subspaces and curl-type
subspaces (32,54,55,60). Small but nonzero eigenvalues can come from either block or reflect different
geometric mechanisms (e.g., thin bridges versus wide vortical regions). Consequently, interpreting
“small eigenvalues” requires tracking their provenance across scales or filtrations; disentangling
the three families is essential for faithful geometric and topological inference (18, 32, 44, 61-65).
Relatedly, persistent homology allows quantitative connections to fractal dimensions via upper box

dimension estimates (66).

S2 Supersymmetric (SUSY) Hamiltonian and Homology

We consider N=2 supersymmetric quantum mechanics on a Z—graded Hilbert space; F is the

degree operator so that [F, Q] = Q shifts degree by +1 and [F, Q'] = -Q" by —1.
H = (D H, (S9)
k=0
with odd supercharges Q and Q7 obeying
0*=(0")?=0, H={0,0"}=0'0+00",  [F,0]=0, [F.Q]=-0", (510)

where F is the degree operator. Hence Q : Hy — Hyy1 and Q7 : Hy — H_1, and [H, F] = 0 so

H is block-diagonal in degree.

Let dy := Qlﬂk : Hiy — His and d;g = QT|Hk+1 : Hi+1 — Hy, and let Py be the projector onto

Hy. Expanding Q = 3 d;P; and 0" = 2 d_j._le, for any v € Hj we have
Hv=(0'0+00%W =0 (dyv) +0(d]_v) = d}dpv + dird]_,v € Hy. (S11)

Thus, in the degree-k subspace, the SUSY Hamiltonian block equals the k—Hodge Laplacian £
acting on k—cochains.

H|, =didi+diad_ | = Ly (S12)
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T

m—1°

At the ends of the complex, d_; = 0 and d,,, = 0, giving H Ho = dgdo and H|,, =dp-1d

Positivity follows immediately: for v € Hj,
(v, Hv) = [|divl® + lld_ vl = 0, (S13)

Here, (-, -) is the Hilbert—space inner product; positivity holds since each term is a squared norm, so

E=0ifdyv=0andd, v=0,ie.,
ker H|,, =kerdi Nkerd]_; =ker £y. (S14)

Zero-energy states are therefore simultaneously closed and coclosed (harmonic).

We use dj := Qlg, and dZ = Qqu»(kH, which is consistent with the coboundary on cochains.
Introduce the Q—cohomology

H*(Q) = kerdy /im di_,. (S15)
The Hodge decomposition yields, for every v € H,
v:dk_1u+h+d}:w, u€ Hi_1, w € Hisr1, h € ker L. (S16)

If v is dy—closed, then v is cohomologous to the unique harmonic representative /; hence, the map

[v] ¥ h induces an isomorphism

ker Hlﬂk =ker L = H*(Q) (and by duality Hy), dim ker H

=B (SI17)

All positive—energy levels appear in adjacent—degree pairs: if Hv = Ev with E > 0, then Qv and
Qv (when nonzero) are eigenvectors with the same E in degrees k+1 and k—1, respectively; only

the harmonic sector contributes to £ = 0.

When the graded Hilbert space is realized as cochains on a finite simplicial complex and dj
is the coboundary, the block identity (S12) coincides with the combinatorial Hodge Laplacian
Ly = dZ dy + dj— 1dZ_1. In particular, for a 1-dimensional block with vertex—edge incidence B and
edge—triangle incidence B;, one has £} = BlTBl + B, B/ ; its kernel encodes divergence—free and
curl-free edge flows, so dimker £; = 31 recovers the cycle space of the underlying complex (and of

a pure graph when B; = 0).
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These relations imply a practical dictionary for topology—aware spectroscopy. The degeneracy of

zero modes in degree k equals the kth Betti number, whereas the first positive eigenvalue

A

susy =min{d > 0|2 € (L)} (S18)

measures the spectral isolation of the corresponding topological sector (an “nearly harmonic” scale).
Tracking A%®) and the occupation of ker £; as external parameters (e.g., the Lorenz control p)
vary suggesting the appearance, merger, or disappearance of topological features in a way that is

algebraically exact yet numerically robust.

S3 Dynamical and topological phase transitions of the Lorenz system

We study the Lorenz flow

t=0o(y-x), y=x(p-2) -, Z=xy - pz. (519)

Here (o, 8, p) > 0 are the Prandtl number, the geometric parameter, and the Rayleigh parameter,
respectively; we later scan p while fixing (o, 8) = (10, 8/3). For each p, a long trajectory yields
a point cloud X(p) c R? (either directly in phase space or via delay embedding), and we attach
to it a parameter—dependent effective Hamiltonian H(p) that captures spectral/dynamical content.
This construction allows us to examine phase behavior through two complementary lenses. The
dynamical lens quantifies how the system explores frequency and state space; the topological lens
quantifies how the invariant geometry reorganizes across scales. In our experiments we evaluate
both families of indicators along p and interpret their concordance as evidence for dynamical and

topological phase transitions, placing special emphasis on the physical meaning of each indicator.

On the dynamical side, we probe frequency—space complexity via the spectral entropy of a

survival (Loschmidt) amplitude for a fixed probe state |y/),
C(t;p) = Wle™™PMyy = 3" Jea(p) Pe @Y, cy(p) = (Ea(p)ly).  (S20)

Let S(w;p) = |77[C(~;,o)](a))|2 be a windowed power spectrum and P(w;p) =

S(w; p)/ f S(w; p) dw its normalization. Let ¥ denote the unitary Fourier transform in 7, and
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normalize S(w) to a probability density P(w) so that f P(w) dw = 1. We then define

Haeep) = - [ do P(wip) nP(wip) (s21)

which is small when a few frequencies dominate (coherent/locked motion) and large when many
incommensurate frequencies carry comparable weights (dephasing and complex mixing). Peaks in
Hgpec (p) signal spectral broadening that typically accompanies a transition, followed by a drop once

a new regime relocks the spectrum.

The linear response to the control parameter is captured by the free-energy curvature. With a

linear deformation H(p) = Hy — p O and F(p) = —(1/B) InTr e #H ()

F’(p) = Bu((0*) = (0)?),  Bu=1/(ksT) = xo(p) >0, (S22)

and in the ground-state limit F(p) — Eo(p),

ne N (n]010)
Eolp) =2 ;O E,(p) — Eo(p)’ (523

Both formulas demonstrate enhancement by small gaps and large transition matrix elements;

pronounced peaks in F”(p) therefore locate parameter regions where the state is most sensitive to p.

The geometry of the projective Hilbert manifold is accessed through ground-state fidelity. Write

l¥o(p)) for the normalized ground state of H(p) with an arbitrary but fixed global phase convention.

F(p,p+03) = [(o(p) | vo(p+6))| =1-1 xr(p) 5> +0(5) (S24)

defines the fidelity susceptibility

(n]010)?
= (BpWoldpto) — [(Woldpwo)* = .
X () = (B0l dpw0) - [(Woldwo)] ZO (o) — Eo())?

Sharp drops in F and peaks (or finite-size precursors thereof) in yr mark rapid ground-state

(S25)

reconfiguration, a hallmark of continuous transitions.
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An additional dynamical diagnostic is the maximum Lyapunov exponent (MLE) Apnax (o), which
quantifies the mean exponential divergence of nearby trajectories in the Lorenz flow itself. Writing

0x(t) for an infinitesimal perturbation that obeys the variational equation

0f(x(1); p)

6x(1) =J(t;p)6x(1),  J(t;p) = o (S26)
with f = (%, y, Z), one defines
.1 lex ()]l
A = lim -1 , S27

where the limit is realized numerically through periodic renormalization of dx(¢) in the Benettin
algorithm. A negative A, indicates stable fixed points or periodic orbits, Apma.x = 0 corresponds to
neutral stability at a bifurcation, and a positive Apyax indicates chaotic dynamics with exponential
sensitivity to initial conditions. For the Lorenz parameters (o, 8) = (10, 8/3), the computed A« ()
changes sign near p, =~ 24.7, in agreement with the classical onset of the strange attractor. This
neighborhood has historically been described as a “preturbulent” regime in Lorenz-type flows (67).
In our analysis, this transition in Anyax aligns closely with the peaks of spectral entropy and fidelity
susceptibility, linking microscopic Hilbert-space sensitivity to macroscopic chaos in the underlying

flow.

On the topological side, we examine loop robustness in the embedded attractor by persistent

homology. The Vietoris—Rips filtration
Re(X(p)) ={o < X(p) : max d(x,y) < &} (528)

tracks Hj classes through births b and deaths d; the persistence is £ = d — b. We use the Euclidean
metric d(-, -) on the embedded point cloud X (p), and the Rips complex includes a simplex whenever
all pairwise distances within it are < €. As a compact summary we record the highest persistence
£ (p)
T+ ()

where large values indicate a clear, persistent loop (e.g., well-separated wings of the attractor),

£3(p) = max(d; =), Quopolp) = € [0, 1), (529)

whereas kinks or drops versus p mark geometric reorganizations.
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The same topological information admits a spectral representation through a supersymmetric
(SUSY) Hamiltonian. Let the graded Hilbert space H = (), Hi represent k—cochains, with Q :
H; — H1 the coboundary block d and Q7 its adjoint. The SUSY Hamiltonian Hsysy = {Q, 0"}
is block-diagonal with

Hsusyly, = didi +dird]_, = Ly, (S30)

the combinatorial Hodge Laplacian. Zero-energy states satisfy dyv = 0 and d,t_ ,v = 05 hence,
ker Hsusyly,, = ker L = H* (and by duality Hy), dimker £} = B. (S31)

For a self-adjoint matrix M, o-(M) denotes its multiset of eigenvalues; min(o (M) \ {0}) is the first

positive eigenvalue (if any).

A

susy = min{d > 0| e (L)} (S32)

is a topological gap separating harmonic 1-cycles from their first excitations; its shrinkage (reopening)

signals weakening (strengthening) of loop robustness and typically covaries with 52?" (p).

If {E,(p)}, denotes the ordered eigenvalues of H(p), we define the many-body gap as y(p) =

E(p) — Eo(p).
y(p) = E1(p) — Eo(p), (S33)

which often obeys critical scaling near p.,

y(p) ~ lp = pcl®, E(p) ~lp—pl™, y ~E7F, (S34)

and, for linear size L (or an effective sample-size proxy),

Y0, L) = L= F((p = po)L'),  ¥(pe, L) o< L7 (S35)

In practice, the minima or closures of y(p) tend to align with the peaks of F”’(p) and yr(p) because
of the small denominators in their spectral representations; at the same locations one often observes

a peak in Hypec (o) and a kink or turnover in f}f}f‘x (p) or AéBSY (p).
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The experimental campaign thus evaluates the Lorenz system via p using both dynamical (spectral
entropy, free-energy curvature, and fidelity) and topological (persistent H; and Hodge—Laplacian
spectrum gaps) indicators, and it explores their physical significance jointly: spectral broadening
and heightened response coincide with homology-carrying zero modes becoming weakly isolated.
However, the relocking of frequencies and reduced susceptibility accompany the reopening of
topological and spectral gaps. This consensus across indicators provides a robust locator of phase
boundaries and a unified interpretation of dynamic and geometric reorganization in the Lorenz

system.

S4 Pipeline Overview

The proposed framework transforms a real-valued time series into a quantum—mechanical spectral
representation whose low-energy structure encodes the persistent topology of the underlying
dynamics. By integrating classical topological data analysis (TDA) with quantum spectral estimation
in a sequential and interpretable workflow, the method converts physical and geometric information
into algebraic form, culminating in a supersymmetric (SUSY) Hamiltonian whose eigenvalue

spectrum suggests homological features.

The end-to-end process comprises five main stages, illustrated schematically in Figure 1. First, a
scalar observable from the Lorenz system is embedded into a reconstructed phase space via Takens’
delay coordinates (Section S5). The resulting point cloud X = {X (#;)} approximates the invariant
manifold of the attractor, preserving its loop topology and geometric structure.In particular, sliding-
window constructions together with persistence have proven effective for extracting topological

signatures from time-series data (68).

Next, a compact subset V = {v;}! | is extracted from X on the basis of density, topological
persistence, and geometric diversity (Section S6). This topology-aware reduction retains the regions
most relevant to persistent H; features while maintaining balanced spatial coverage. The selected

representatives are then connected into an undirected graph G = (V, E) that captures both local
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geometric adjacency and dominant loop structures (Section S7). The edge set combines a minimum
spanning tree backbone, a e—neighborhood layer, and optional ring edges derived from circular

coordinates obtained via persistent homology.

The graph’s connectivity and topology are subsequently mapped onto a symmetric quantum
probe state (Section S8). Weighted superpositions of Dicke states |Dl((")> encode local degrees, loop
participation, and feature persistence in their excitation-number populations, ensuring compatibility

with excitation-preserving SUSY dynamics.

Finally, from the constructed graph, we assemble a SUSY Hamiltonian H = QQ whose 1-form

block L1 =d Ifd 1+ dodg acts as a discrete Hodge Laplacian on edges (Section S9). Its zero-energy

(1)

kernel corresponds to the harmonic 1—cycles, whereas the first positive eigenvalue Ag/ ¢y

measures
the spectral isolation of these topological features. The Hamiltonian is simulated via a controlled
time-evolution circuit and probed through single-ancilla quantum phase estimation (QPE), yielding

the low-lying energy spectrum.

This sequence may point toward a coherent mapping from temporal dynamics to quantum spec-

. . Takens embedding . topology-aware reduction SUSY encoding
tra: time series —— point cloud graph G(V,E) ——

PE
quantum Hamiltonian H LN spectral features {Ag{}

sy 1+ Each transformation—embedding, pro-
jection, graph construction, operator synthesis, and quantum measurement—preserves structural

information while translating it across representations.

The classical components (embedding, sampling, and graph formation) compress continuous
dynamics into discrete topological summaries, whereas the quantum components (state encoding,
Hamiltonian simulation, and phase estimation) perform spectral inference without explicit matrix
diagonalization, exploiting quantum parallelism for eigenvalue extraction. This hybrid approach

combines interpretability from classical TDA with computational leverage from quantum simulation.
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The main observables emerging from the pipeline include the low-lying eigenvalues {Ey, E1, ... }
of H and their spacing y = E| — Ey, which quantify the dynamical spectral gap; the topological gap

A

susy from the I-form block £;, which measures the robustness of persistent loops; the highest

persistence {’glax obtained from classical homology, which serves as a geometric benchmark, and
the spectral entropy Hypee derived from the QPE amplitude distribution, which summarizes the
frequency-space complexity. The correlations among these quantities reveal how dynamic and
topological transitions interact under changes in the control parameter, such as the Rayleigh number

p in the Lorenz flow.

By integrating geometric embedding, topological reduction, and quantum spectral estimation
into a unified sequence, this framework provides a reproducible and physically interpretable route
for detecting, characterizing, and quantifying topological signatures in nonlinear dynamics. The
resulting hybrid representation enables both theoretical analysis and experimental realization of

contemporary quantum hardware.

S5 Time series embedding

The first stage of the pipeline transforms a one-dimensional dynamical signal into a geometric

representation suitable for topological and spectral analysis.

Following Takens’ embedding theorem (68—71), the underlying attractor of the Lorenz flow is
reconstructed from a scalar observable, producing a point cloud X c R that preserves the topology
of the original state space appropriate simplicial complexes and reconstruction choices critically

affect the recovered topology (72)..

The Lorenz system (73-75) is governed by
Xx=0(y-x), y=x(p-2)-y, =xy-pz (S36)

with the canonical parameters (o, 8, p) = (10, 8/3, 28) corresponding to the chaotic regime. This

system generates a nonperiodic attractor of fractal dimension dimgy = 2.06, which is sensitive to
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initial conditions and a complex, folded topology. Varying the Rayleigh number p induces distinct

dynamical phases, which are later examined through topological and spectral diagnostics.

From a single scalar measurement, for example, x(7), we construct an m—dimensional delay-

coordinate embedding,
X(1) = [x(t), x(t+71), x(t+27), ..., x(t+ (m — 1)7)] e R™, (S37)

where 7 is the time delay and m is the embedding dimension. Under generic smoothness and
observability conditions, this mapping is diffeomorphic to the original attractor when m > 2d 4,
where d4 denotes the attractor’s dimension. The reconstructed manifold thus faithfully captures the

invariant geometry of the flow.

The time delay 7 controls the balance between redundancy and independence among coordinates.
If 7 is too small, consecutive components become nearly collinear, yielding an artificially thin
manifold; if 7 is too large, temporal correlation is lost, and attractor fragments are generated. Two
practical selection rules are widely used: (i) choosing 7 as the first minimum of the automutual
information, which maximizes independence between coordinates, and (ii) setting 7 to the 1/e
decorrelation time of the autocorrelation function, which maintains dynamical coherence. For the
Lorenz system, 7 typically falls within [0.05, 0.2] in dimensionless time units, producing stable

embeddings with clearly separated loops.

The embedding dimension m must be large enough to unfold the attractor and prevent self-
intersections, yet small enough to remain computationally manageable. In practice, m is increased
until the fraction of false nearest neighbors (76) falls below a threshold (e.g., 1%) and the estimated
correlation dimension (77) stabilizes. For the Lorenz flow, m = 3-6 typically suffices to recover
the two-wing structure, whereas larger values further smooth sampling artifacts at the cost of

redundancy.

To ensure numerical consistency across p, several safeguards are implemented. Initial transients

of duration s are discarded to eliminate sensitivity to initial conditions; integration of Eq. (S36)
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is performed with a fixed time step At to prevent stiffness-induced distortions; trajectories are
downsampled so that the sampling stride is comparable to 7, avoiding oversampling of correlated
points; and each coordinate is normalized to unit variance before distance calculations. These

procedures maintain numerical stability and geometric consistency over parameter sweeps (78, 79).

The quality of the embedding is verified by estimating the largest Lyapunov exponent A« from
the reconstructed series (80—82). A positive Apax 1S consistent with the reconstructed dynamics
preserving the expected chaotic character. Additionally, visual inspection of the attractor projection
and its persistence diagram ensures that characteristic topological features—such as the double-wing

loop—remain intact.

The embedding yields a point cloud
X ={X(tx) eR"},, (S38)

which samples the invariant manifold of the Lorenz attractor. Euclidean distances || X; — X |> capture
local dynamical adjacency and form the geometric substrate for subsequent topological and spectral
analyses. This point cloud provides the input for the representative-point selection step (Section S6),
where density, topology, and diversity criteria are applied to extract a compact but faithful subset of

points.

Under the selected (7, m), the Lorenz embedding produces a cloud whose Vietoris—Rips filtration
results in two persistent H classes corresponding to the attractor’s wings, which is consistent with
previous studies (83, 84). These structures are stable across time windows and parameter variations,

confirming that the embedding serves as a robust precursor for quantum—topological encoding.

Takens embedding therefore transforms a scalar chaotic signal into a geometric object that retains
the essential topology of the underlying flow. The appropriate choices of T and m, combined with
numerical safeguards, ensure that the resulting point cloud faithfully represents the attractor’s loop
geometry. This embedded manifold forms the geometric foundation upon which topology preserving

reduction and supersymmetric Hamiltonian encoding are subsequently built.
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S6 Representative Point Selection

Given an embedded point cloud X = {x; € R’"}f\; |» the task is to extract a smaller subset of
representative points V = {v; };zl (n < N) that preserves the high-density regions of the attractor,
the essential loop topology captured by persistent H1, and the overall geometric diversity of the data.
This reduction yields a tractable input for graph and Hamiltonian construction while maintaining

the topological integrity of the system.

The selection process proceeds in two main stages. In the first stage, topology-aware sampling
identifies regions supporting persistent H; features and high local density. Second, a complementary
set of points is added to maximize the geometric spread, ensuring that the global features and
sparse regions are not neglected. The combination produces a compact yet topology-preserving

representative set V.

Let D(x,y) = |[x — y|l» denote the Euclidean distance, and let k be the target number of
representatives. A fraction r € (0, 1) of these, kiopo = | k7], is reserved for topological coverage,
with the remaining Kgjobat = k — kopo used for global diversity. A K-nearest-neighbor (KNN) graph
(typically K =~ 10) is constructed on X, and its shortest-path metric D, approximates geodesic

distance along the manifold.

The local density is estimated via a Gaussian kernel:

N

Z ( ||x; _x]

j=1

&

p(x;) = =), (S39)

where the bandwidth £ is chosen as the 10th percentile of pairwise distances to ensure robustness

against outliers. Positive weights are then defined as
wiep()® a1, (S40)

so that dense regions exert a stronger influence on the selection.
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To identify points most relevant to loop topology, the Vietoris—Rips persistent homology of X is
computed and the most persistent H; feature with birth—death pair (b*, d*) is located. Its midpoint
radius is

Fmid = 3(b* +d*), (S41)

sets a characteristic neighborhood scale. For each point x;, the mid-scale neighbor count
vi=#{j: D(xi,x;) < Fmia } (542)

quantifies local crowding at that scale. Points with excessively few or many neighbors are excluded

by defining the candidate set

I={i|Nmin <vi < Nmax}» Nmin ~ [0.02N],  Nmax * max{Nmin+5, [0.10N]}.  (S43)

When a dominant H; loop is present, each point x; is assigned an angular coordinate ; € [0, 27)
derived from persistent cohomology circular coordinates. The interval [0, 27) is discretized into B

bins to encourage uniform angular sampling around the loop.

The topological subset Siop, is initialized with the point of maximal density weight w" ~! within 1.

While |Siopo| < ktopo, new points are added greedily by maximizing the composite gain function

A(j) =6 AHy(h @ 0;) + Ap l_g;tiolso Dgeo (x5 %i) + Aa Ho({qi}ieSupoutj}) = Ae THO; | {0i}icSinp)s
(S44)
where H, is the Rényi entropy, g; o« p(x;) are normalized density weights, AH, (h ® 6;) measures
the entropy gain from adding 6 to the angular histogram, and II penalizes violations of a minimum
angular separation A, = 27/(1.35 kopo). The hyperparameters (dg, Ap, A4, A.) balance angular
diversity, geodesic spacing, density regularization, and collision avoidance. This greedy procedure

incrementally increases coverage of the loop while maintaining separation and balance.

Once the topological representatives are chosen, the remaining kgjopar points are selected to

maximize global diversity. For each unselected candidate, its minimum distance from the topological
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set is defined as

dmin(xj) = n:sl,ln D(-xj’ Xi), (845)

€S t0po

and a combined score

score(x;) =w; - (1 + dmin(x;)) (S46)

is computed to prioritize dense but distant regions. The highest-scoring points are successively

added to form the global coverage set Sgiobal-

The final representative set is the union
V= Stopo U Sglobal, |V| = k. (547)

The parameters (r, @, h, B, A9, Ap, A4, A.) collectively govern the trade-off between density preser-
vation, loop fidelity, and geometric spread. For Lorenz-type attractors, empirical tests show that r

values between 0.5 and 0.7 provide a stable balance.

The resulting representative points are concentrated near persistent cycles and bridge regions of
high Betti stability, while the globally selected points capture the outer geometry and noncyclic
regions. Together, they yield a compact and faithful summary of the attractor’s structure, substantially
reducing the matrix dimensions for subsequent Laplacian and SUSY Hamiltonian construction

without sacrificing the accuracy of homological inference.

In terms of computational cost, density estimation scales as O (N?) (reducible with KD-tree or
approximate-nearest-neighbor acceleration), persistent homology scales as O (N3/2) for typical point
cloud, and greedy selection scales as O (k?). The only sources of stochasticity are tie-breaking and
angular-bin initialization, which can be controlled by fixing the random seed to ensure reproducibility.
The resulting set V provides the foundation for the topological edge construction described in

Section S7.
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S7 Topological Edge Construction

Given a reduced representative point set V = {v;}!_, C R", the objective is to construct an
undirected graph G = (V, E) that preserves local geometric proximity, remains globally connected,
and exposes prominent one-dimensional cycles when they exist. This graph functions as the
1-skeleton of a simplicial complex whose Hodge Laplacian encodes the persistent H; topology of

the data.

To achieve this, the edge set E must capture both geometric adjacency and topological evidence.
We combine a global backbone built from a minimum spanning tree (MST), a local neighborhood
layer derived from an e—graph, and an optional ring augmentation guided by circular coordinates.
The resulting union is patched to ensure single-component connectivity, yielding a sparse yet

expressive graph that reflects both metric and topological structure.

We begin with the pairwise distance matrix D;; = |[v; — v,||>, from which the MST outlines a
baseline connectivity without redundant long edges:
Eyst = arg Vmin Z D;;. (548)
Te(3). ITl=n=1 Fer
This minimal tree ensures that G is connected and acyclic, providing a global scaffold upon which

additional edges can be added to recover the local structure.

The local geometry is then restored by introducing edges shorter than a data-driven threshold &.
Let U ={D;; : 1 <i < j < n} be the multiset of pairwise distances. A robust length scale is set as

the 30th percentile, £ = Qp3(U), and all pairs satisfying
E;={(i,]) : Dij < €} (549)

are connected. This e—graph preserves local neighborhoods and manifold adjacency while avoiding
excessive long-range links, thereby restoring the short-range curvature fidelity that the MST alone

omits.
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When persistent homology suggests a strong H; signal, we further augment the structure by
explicitly forming a ring that reinforces the dominant loop. Each vertex v; is assigned an angular
coordinate 6; € [0, 27) obtained from persistent cohomology, spectral embedding, or a surrogate
PCA-atan2 projection. Sorting the subset Vi, € V by 6;, we connect consecutive points with
wrap-around closure:

|Vring|_l

Eang = {Gisina)|, U {Gigr 10, (850)

k=1
embedding an explicit cycle corresponding to the most persistent homology class. If no significant

H, feature is detected, this augmentation is omitted.

The provisional edge set,

E'=EystUE; U Ering, (S51)

may still contain multiple connected components, especially when the representative points occupy
disjoint or sparsely sampled regions. To restore global connectivity, we iteratively link components

by adding the shortest intercomponent edge,

(i*,j*)=arg  _min_ Dy, (S52)

i€Cp, jeCpi1

until a single connected graph remains. The added edges form the patch set Epych.

The final edge collection is thus
E=EmsTUE:U Ering U Epatcha (S53)

ensuring that G = (V, E) is connected, locally faithful, and topologically expressive. Edges from the
MST enforce global reachability; those from E, reconstruct local geometry; and those from E e
explicitly embed the dominant one-dimensional cycle. Together, these elements guarantee that the
cycle space ker B of G accurately reflects the principal H; feature of the attractor. For loop-like
geometries such as the Lorenz double-wing attractor, ring augmentation ensures that the first Betti

number B; = 1 is preserved in the graph Laplacian L; = B By before supersymmetric extension.
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The quantile threshold Qg 3 can be tuned to data density: higher quantiles increase local connectivity
but risk introducing spurious short cycles, whereas lower values may fragment the graph. Both &
and MST edges are computed via Euclidean distances for stability, although alternative metrics such
as geodesic or diffusion distances may be substituted. Deterministic tie-breaking is applied in (S48)

and (S52) to ensure reproducibility.

The computational cost of each step scales efficiently: MST construction requires O (nlogn)
via Kruskal or Prim algorithms, the e—graph formation scales as O (n?) (or O(nlog n) with spatial
indexing), and the ring augmentation scales linearly with |V;in|. The final graph contains O (n) edges
in typical sparse settings, making it tractable for both classical Laplacian assembly and quantum
operator encoding (Section S9). All subsequent SUSY Hamiltonian blocks £ inherit this sparsity,

enabling efficient simulation via product-formula time evolution.

The constructed graph G therefore acts as a compact, topology-aware skeleton of the embedded
attractor. It faithfully preserves local neighborhoods while revealing the main loop structure identified
by persistent homology. This balance between geometric fidelity and topological simplicity is crucial
for ensuring that the SUSY Hamiltonian derived from G accurately encodes the persistent H

features in its low-energy spectrum.

S8 Dicke State Encoding

The aim is to encode the topology of the representative-point graph into a quantum probe
that predominantly resides in the symmetric subspace of (C?)®". Dicke states form a natural and
computationally efficient basis for this purpose: they capture global excitation-number symmetry,
preserve combinatorial structure, and admit compact circuit representations with logarithmic depth.

For n qubits, the weight-k Dicke state is

-1/2
n n
|D,(<)):(k) Z Xy,  k=0,1,...,n, (S54)
x€{0,1}"
|x|=k
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where {|x| = k} is the set of computational strings of Hamming weight k. These states are
orthonormal and span the (n+1)-dimensional symmetric subspace Hym, diagonalizing the collective
spin J, = % Y-y Zi with eigenvalues my = k — 5. Throughout, we use the ordering |x) = [x,_1 . .. x0)
and the subset index ind(S) = Y;c¢2" for S € {0,...,n — 1}, so that amplitudes are assigned

uniformly within each weight-k sector, and normalization ensures (D,((") | DI((',’ Y= Ok -

The topological information extracted from the graph G = (V, E) is embedded into a symmetric

superposition of Dicke sectors:

1w DY) i Ww
R T — W= ———=, ($55)
|20 we 10| %W

where the unnormalized weights wj encode both local connectivity and global loop persistence.
Local bias arises from degrees and ring participation: letting &y denote edges that lie on the
dominant cycle and deg(v) the degree of vertex v, the update
Wi «— Wi + a Z [l{u:k}+1{v:k}]+,8 Z 1 (S56)
(,v)E€&ring videg(v)=k
reinforces sectors touched by the ring and emphasizes hubs, with tunable «, § > 0 setting the relative
importance of the two contributions. Global topological strength further modulates contrast via the

persistence A of the most persistent H; class:
wr — (1+nA)wy, n >0, (S57)
which amplifies all sectors proportionally when a robust loop is present while preserving the local

bias profile.

After normalization, sector populations p; = |<D](<n) l)> =w k2 define a probability distribution

over the excitation number. The expectation
M= (k=% pi = (Wl (S58)
k

plays the role of a magnetization-like order parameter, and the variance Var(J;) = >, (k—5-M )2 Pi

yields the quantum Fisher information Fp = 4 Var(J;), linking the breadth of the excitation
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distribution to metrological sensitivity. In this way, loop prominence and heterogeneity manifest
as broadening of {p;}, nonzero M, and enhanced Fy, providing a direct statistical signature of

topological complexity.

Crucially, the supersymmetric Hamiltonian H constructed in Section S9 conserves the total

excitation number and decomposes into blocks £ acting on the weight-k sector:

n

M = 5 e, (S59)

k=0
A probe of the form (S55) therefore aligns with the block-diagonal structure of H and maximizes
overlap with homology-bearing low-energy modes. Because the excitation number is conserved,
evolution remains within the symmetric manifold—significantly reducing the Hilbert space dimension
from 2" to (n+1) and thereby lowering the simulation and QPE circuit costs. The single-ancilla

Hadamard test or QPE then accesses the autocorrelation
C(0) = Wle ™M yy = > pre ™, (S60)
k

whose spectral lines at {E}} expose near-harmonic modes tied to topological features while

preserving the symmetric-sector decomposition.

The implementation of near-term hardware requires exact or approximate preparation. Exactly
|D,((")) states can be synthesized in logarithmic depth via permutation-symmetric isometries or
tree networks of controlled rotations; approximate preparation is achievable with variational or
iterative amplitude-loading schemes. The superposition ; Wy |Dl((")) is realized by preparing a
weight register and mapping |k) |0") — |k) |D,((")), followed by uncomputing |k); normalization of
{ Wy} stabilizes amplitudes numerically. Because the excitation number is conserved under e,

there is no cross-sector leakage during evolution, which simplifies the controlled time evolution and

reduces the circuit depth in the QPE.

From a physical standpoint, graphs with balanced connectivity concentrate weights near k ~ n/2,

yielding M =~ 0 and narrower distributions; sparse or strongly cyclic graphs skew {py}, induce
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nonzero magnetization, and increase Fy. The Dicke manifold thus provides an interpretable encoding
in which loop geometry and symmetry breaking translate into measurable sector populations and
interferometric sensitivity. In summary, Dicke-state encoding turns the classical H; structure into
structured superpositions across excitation-number sectors, couples naturally to the SUSY block
structure, and yields a probe that is both conceptually transparent and hardware-efficient for quantum

spectral readout.

While the Dicke-state formalism provides a compact theoretical description, exact preparation
of |D,(<")> on current devices remains resource-intensive. In our implementation, we employed a
simplified circuit that efficiently generates the single-excitation (k=1) Dicke state |W,) = |D§”))
from [100. .. 0) via a linear sequence of controlled-R, and CNOT gates. This scheme transfers the
excitation along the register, dividing the amplitude evenly at each step and achieving depth O (n)
while maintaining high fidelity under realistic noise. Higher-weight sectors are then approximated
by composing multiple W-state layers or by variational amplitude-loading when available. Thus,
although the analytical description uses the full Dicke manifold, the experimental embedding adopts
an optimized, hardware-compatible version that retains the essential symmetry and spectral features

relevant to the QPE readout.

S9 SUSY Hamiltonian Construction

The supersymmetric Hamiltonian H is constructed on n qubits to faithfully encode the topology of
the representative-point graph G = (V, E) obtained from the data. The operator is designed to obey
the N = 2 supersymmetry algebra, preserve the excitation number, and remain efficiently simulable
on quantum hardware. The SUSY Hamiltonian coincides with the combinatorial Hodge—Laplacian.
In particular, the zero-energy sector encodes topological invariants of the graph, such as the Betti

numbers.

We define the following local operators that act on each qubit:
{I.X.Z, z,0}, z=%8F o=15% (S61)
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where z and o act as projectors onto |0) and |1), respectively. All the local letters are Hermitian and
real, and after Hermitization, the Hamiltonian 9 becomes real and symmetric. The set {I, X, Z, z, 0}
is sufficient for representing the Projected-basis SUSY Hamiltonian without introducing complex Y

rotations.

Fermionic excitations are represented by Jordan—Wigner strings that ensure proper anticommuta-
tion. For vertex i, the elementary flip operator is

X7V = ( [1 Zk)Xi. (S62)

k<i

To enforce clique consistency, we introduce complement-graph projectors. For each vertex i, let

NP ={jeV:(,))¢E, j+i}, (S63)
and define
1+7; zj, JENT,
r= ] 52=-&1" (S64)
JEN™ Jj&V 11;, otherwise.

These projectors annihilate configurations in which vertex i is excited simultaneously with a
nonneighbor, enforcing adjacency constraints. The elementary supercharge at site i is Q; = X I.JWP,-,

and the total supercharge is Q = }’; Q;, and by construction 0> =0.

The Hamiltonian functions as the anticommutator
H=0'0=>) 0/0i+ > (0]0;+00, (S65)
i i<j
which automatically commutes with the excitation number. In the O—excitation sector, H acts as
the vertex Laplacian Ly; in the 1-excitation sector, # acts as the edge Laplacian £;; and in higher

sectors,H acts as clique Laplacians for multiexcitation configurations:
n
H=P L. Li=ddi+did]_,. (S66)
k=0

This block decomposition mirrors the combinatorial Hodge structure and ensures correspondence

between harmonic subspaces and homology groups.
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Substituting the operator definitions,
e=HE o=1E, (S67)

clarifies that each local factor belongs to the {7, X, Z} Pauli family and that z, o act only as symbolic
projectors composed of them. In practice the full (1, Z) expansion of z, o is not carried out; they are
treated as diagonal control predicates. Under this symbolic treatment, H remains a sparse sum of

few-qubit Pauli operators with real coefficients.

Because each supercharge Q; acts nondiagonally on a single qubit and diagonally (via projectors)
on the rest, the interaction structure involves only qubit pairs (Z, j) that share an edge in G. For
graphs of bounded degree, the number of distinct tensor-product terms therefore scales quadratically
in n, O(n?), rather than exponentially in 4”. This estimate has been verified for the representative
Lorenz-derived graphs used here, where the compiled Hamiltonians contain a few hundred terms.

After Hermitization, the operator is real and symmetric.

The kernel of H corresponds to harmonic forms:
ker H|,_ ... = ker L = HY, (S68)

so that the multiplicity of zero eigenvalues in degree 1 equals the first Betti number ;. The smallest

nonzero eigenvalue,

(1)
Agisy

=min{d>0|21e€o(L))} (S69)
acts as a topological gap that measures the spectral isolation of persistent cycles, as formally justified
in the Supplementary Materials (Section S12). Its variation with the control parameter p tracks the

emergence, merger, and decay of topological features.

Any global energy offset ¢,/ appearing in the Pauli expansion is separated as H = c;I + (H —cI),
with phase c;t applied only to the ancilla branch during controlled evolution. This adjustment

stabilizes interferometric measurements while leaving the eigenvectors and relative gaps intact.
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For simulation, each exponential e &y Pa g implemented by reducing local letters to Z,
aggregating parity with CNOT ladders, and applying a controlled Rz(26¢) on the reference qubit
conditioned on the predicate. Because the complement-graph projectors commute, control masks
can be toggled efficiently in Gray order (85) so that successive terms differ by a single-qubit
flip. Grouping identical Pauli-letter patterns consolidates many rotations into a single Rz, and
multicontrol conjunctions are computed into an ancilla bit, replacing deep multicontrolled gates

with two MCX operations and one CRz operation.

The resulting Hamiltonian is sparse, local, and block-diagonal, explicitly preserving topological
sectors (15). For typical Lorenz-derived graphs (n ~ 10-12), the compiled operator contains a few
hundred Pauli strings and fewer than 103 controlled rotations, well within the current simulator
and NISQ capabilities. The method extends naturally to higher spatial dimensions by including
multiple excitation constraints, providing a scalable template for encoding combinatorial Laplacians

as quantum circuits.

This Hamiltonian reproduces the spectral structure of the Hodge Laplacian; its low-lying gaps
empirically covary with persistent-Laplacian features. In this way, the SUSY Hamiltonian serves as
an algebraic bridge between discrete topological data analysis and measurable quantum spectra,

enabling topological invariants to be extracted directly through quantum phase estimation.

S10 Controlled Time Evolution Circuit

For quantum phase estimation on a supersymmetric Hamiltonian 9, we synthesize the ancilla-

controlled time evolution

Uert (1) = [0)0] @ I+ [1){1] ® e™ 1", (S70)

Thus, interference between the ancilla and system registers encodes the spectral phase of H with
high fidelity (48, 86, 87). The construction proceeds term by term and is illustrated in Figure S1 and

Figure S2, whereas the Gray-order traversal used to optimize control toggles is shown in Figure S3.
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Each local factor of ‘H is drawn from the symbolic alphabet

{I,X,Z,z,0}, g=BZ  o=15Z
so that
n
H=) 6. QP P e{l.X.Zz0), (s71)
14 q:l

with real coefficients Re(6;) after Hermitization. Each term acts on a small subset of qubits, ensuring

sparsity and locality (15, 88). For a local operator H; = 6, (X) P((f), the rightmost active qubit

qESe
r = max S¢ serves as the reference site. To standardize all the terms, the nondiagonal operators are
converted to Z form via a Hadamard gate on each affected qubit, as depicted in the left half of
Figure S2. In the present construction, all off-diagonal couplings originate from X-type flip terms in

the supercharges. The Y operator does not appear because no complex phase rotations are required;

all the coeflicients are real after Hermitization.

After basis alignment, a CNOT ladder
L= ]_[ CNOT(q—r) (S72)
qeSe\{r}
collects the parity of all Z factors onto the reference qubit (89), ensuring LZ( [1ges, Zy)Le = Z,.
The controlled evolution for that term then reduces to a single Rz (2 Re(6,)t) rotation on qubit r,
conditioned on the ancilla and any projector controls. The right halves of Figure S1 and Figure S2
show this structure: parity is gathered on r, the ancilla-controlled rotation applies the phase, and all

intermediate operations are uncomputed to restore the original basis.

Projector symbols z = (I+Z) /2 and o = (I-Z) /2 correspond to |0)- and |1)-controls, respectively.
To unify them, temporary X gates toggle |0)-controls into the |1) basis, and a multiqubit conjunction

is computed into an auxiliary predicate qubit,
I, = AND (ancilla, C\, c\¥), (S73)

where ancilla denotes the interference qubit used in the Hadamard-test or the QPE protocol. It is

initialized in (]0) +|1))/V?2 and controls whether the system register undergoes time evolution: the
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|0) branch remains idle, whereas the |1) branch activates the controlled evolution e ~“**. The sets C (()f)
and C 1(5) index the projector-controlled qubits associated with z- and o-type predicates, respectively.
The composite predicate I, therefore represents the logical AND of all active controls—ancilla,

|0)-controls, and |1)-controls—and acts as a single effective control (90, 91) for the rotation gate.

Each local exponential term is then written as

Ui(t) = Up Upg [RZ(Z Re(6¢)t) on qubit r controlled by Hg] UlTadUg, (S74)

where Uy, collects the basis transformations (e.g., H or R, (—m/2) rotations), and Uj,g is the CNOT
ladder circuit that aggregates the parity of all Z-type factors onto the rightmost active qubit
r = max S, before the controlled rotation.

P

This construction ensures that each local factor ® qes, Pa

is implemented with minimal control

overhead while preserving the full commutation structure.

Since all Ry rotations commute, terms sharing the same control mask and reference qubit can be
merged. To minimize the number of control toggles between successive terms, the control masks are
scheduled in Gray order, as shown in Figure S3, where consecutive masks differ by only a single bit.
Predicate caching further lowers the depth by computing the logical AND once, applying one CRz,

and uncomputing it.

The total time evolution over duration ¢ is approximated via product formulas (15, 88). A first-order

Trotter step

010 = | | etr)
¢
achieves O(1?) accuracy, whereas the symmetric second-order step
Ua(1) = 01(2/2) U1 (-1/2)°
suppresses the error to O(#?), with the bound

||e—i(Hl _ U(t)” = 0| r?%x [[He, He 1l | -
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A global energy offset H = c;I + (H — c;I) is handled by applying e~/ only to the ancilla’s |1)

branch, stabilizing the interferometric phase without affecting the eigenvectors or relative gaps.

After grouping and optimization, the circuit depth is dominated by a few parity ladders and
multicontrol rotations, whereas most remaining operations are commuting single-qubit Rz gates.
For typical systems with n ~ 10 qubits, a complete controlled evolution requires ~ 10* primitive
gates. Gray-ordered scheduling and commuting-group compilation reduce entangling depth by
a factor of 3—5 while maintaining spectral fidelity at the 107> level in the extracted gap y. The
resulting construction provides an efficient and hardware-compatible realization of Ugyi(?) suitable

for Hadamard-test and QPE-based spectroscopic estimation of supersymmetric energy gaps (28, 92).

This Projected-basis compilation not only reduces the circuit depth but also emulates the structural
evolution of the combinatorial Laplacian under topological filtration. As noted in the persistent
spectral framework of Meng and Xia (93), the number and strength of off-diagonal Laplacian entries
vary systematically as simplices are added or removed along a filtration, producing a continuous
growth and decay of coupling terms that governs spectral transitions. In our implementation, the
Projected-basis realizes this mechanism at the operator level: Pauli-grouped commuting terms encode
diagonal potentials, whereas Projected-basis operations selectively activate or suppress off-diagonal

couplings corresponding to newly formed or annihilated simplices. Consequently, the controlled

time-evolution operator U(z) = e~"*" mimics the dynamic modulation of connectivity observed in
persistent Laplacian models, ensuring that the evolution of the quantum spectrum reproduces the

same addition-removal process of Laplacian couplings that drives the filtration-dependent spectra.

S11 Quantum phase estimation (eigenvalue extraction)

We recover the eigenvalues of the supersymmetric Hamiltonian / by analysing the time

autocorrelation of a prepared probe state. For a normalized state |i/), the correlation function is

C(t) = Wle ™My = > a;e ™, ay=KEWIP, a; 20, Y a;=1, (S75)
J

J
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so that the frequency content consists of spectral lines at {E;} with nonnegative weights {a;}. The
measurement is performed via a single-ancilla Hadamard test (Figure S4): the ancilla prepares
(|0)+|1))/V2, interferes with a reference branch with a data branch undergoing controlled evolution
e ™M and is measured along X or Y, yielding (X) = R C(¢) and (Y) = — J C(¢). The correlation
function C(¢) is sampled on a uniform grid t; = k At for k = 0,...,T—1. Identity offsets are
removed by writing H = ¢;I + (H — c;I) and applying the global phase e’ only to the ancilla’s

|1) branch, so that the measured phases reflect H — c;1.

Because the Hadamard test measures the expectation value Tr(p e ~***) for an arbitrary density
operator p, the same circuit applies without modification to statistical mixtures or decohered
superpositions. In practice, we emulate such mixedness by averaging over random single—qubit Z
phases within the Hadamard—test loop, effectively transforming p = |y X/ into p = Bz [Z|y Xw|ZT]
and suppressing off—diagonal coherences between Dicke sectors. In particular, for the Dicke—encoded

—iExt

“HEy = ¥ pre ,

probe p = X\i Pk |D]E")>(D,(<") |, the measured correlator becomes C(7) = Tr(p e
so the interferometric signal directly represents a weighted spectral average over symmetric sectors.
Thus, mixedness arising from imperfect preparation, dephasing, or intentional classical weighting is

inherently incorporated in the measured autocorrelation, and no circuit modification is required.

Formally, the equivalence between this averaged Hadamard-test measurement and a true
mixed-state expectation can be seen by expanding the coherent probe |¢) = \/L]_V Y.leyona
computational basis. The interferometric estimator yields

Wle ™M) =+ 3 (@le M) = %Ew—”‘% F 5 D) (576)

e,e’ e+e’

The first term corresponds exactly to the mixed—state trace Tr(p e ~"71") for p = % > leXel, whereas
the second term contains off—diagonal coherences between distinct basis states. Under temporal
averaging or random—phase dephasing, these cross terms vanish because their phases oscillate at
frequencies w, — w,, leading to

0 |1 , .
WleMly) = < > (ele™ ey = Tr(p ™). (S77)

e
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Hence, the Hadamard test on a uniform superposition state reproduces the expectation value of
an incoherent statistical ensemble without requiring any additional ancilla or explicit purification.
In other words, quantum interference within the single Hadamard—test circuit naturally performs
the same linear averaging that would otherwise arise from tracing out an ancillary subsystem in a

purified mixed state.

A tapered discrete transform with window wy (e.g., Hann) is then formed as
T-1 _
C(wy) = Z wi C(te) €9, wp==—, £=0,...,T -1, (S78)
k=0

given frequency resolution Aw = 27/(TAt) over the unaliased band [0, 7/At]. With M repetitions

per tx, shot noise is approximately white with

SE[C(1)] ~ \/#W, (S79)

and is shaped by the window response |W (w)| in |C (w)|. Eigenfrequencies appear as peaks of |C (w);
letting w, be a discrete maximizer with neighbors A_ = |C(w¢-1)|, Ao = |C(we)], Ax = |C(wes)],
quadratic interpolation refines the location and amplitude,

A_-A . A_—A,)?
i O =we + 6 Aw, A:AO—S(A( 2A0+3-A)'
- +

(S80)

For SUSY blocks probing H, a zero mode manifests near w ~0; to avoid leakage, a guard width

Q, = k Aw with k € [1,3] is enforced and the smallest positive frequency is estimated as

A~

$=min{d;: & >Q),  £=1/7. (S81)

If no zero mode is present, the two lowest refined peaks yield Eo, £, and the gap ¥ = E| — Ej.

To cross-check FFT peaks, a parametric estimator fits a sum of complex exponentials to {C(#x)}
via a shift-invariant method (Prony/ESPRIT): Hankel matrices (Hy, H;) are formed, an effective rank
7 is chosen by SVD thresholding, and the generalized eigenproblem Hiv = AHyv yields z; ~ e iEA

and hence £ ; = —arg(z;)/At. Sweeping 7 over a small range and intersecting stable roots returns a

smallest positive consistent element Yprony that is compared against the windowed-DFT estimate.
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Phase wrap-around is controlled by enforcing ||H — c;I|| < n/At (via norm or Gershgorin
bounds). Ambiguities are further disambiguated by acquiring a secondary dataset with spacing At’

whose ratio to Ar is far from low-order rationals; a true line must lie in the intersection

A(AL) = {OB) + Zmy - A(A) = {0 + 2E Y (S82)

from which the unique joint solution within the interpolation error bars is selected. A dedicated
zero-mode test compares the near-zero band power to its sidebands (94, 95),

D ICwol,  Pe=3 > ICw)P (S83)

lwe|<Q; Q;<|we|£2Q,

and declares a zero mode when R = /Py, exceeds a calibrated threshold, stabilizing 8| counting

against spectral leakage.

The final aggregation combines the smallest nonzero from the refined FFT and Prony/ESPRIT

via a conservative median,
’5; = median(’j;FFTa ?Prony) > (884)
optionally weighted by inverse residuals (peak-fit error vs. reconstruction error). Uncertainty is

quantified by a block bootstrap over time: resampling {C(#;)} in blocks at least as wide as the

window main lobe yields {#?)} for percentile intervals. Near an isolated line, a fast error proxy is

win A n
SE[0] ~ 222 o A/, (S85)

Jo
with window constant Byi, (Hann: ~ 0.5) and peak SNR p; for zero mode, SE[y] = SE[®],

otherwise, the two lowest-peak errors add in quadrature. A Cramér—Rao proxy,

2

Var(E) > (S86)

< 2 .2
Ly gty

emphasizes the value of a longer total span T'At.

Resource—accuracy tradeoffs follow from the target gap vy, requiring TAzr 2 27 /y,. A decrease
in At enlarges the Nyquist band but increases the number of controlled evolutions for a fixed span,
—iHt

with total sampling cost T x M. Trotterized simulation of e with step ot incurs

e = (1)1l = O max | [He. He ). (860
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while a symmetric second-order formula reduces this to O(#3). Short-term calibration points verify
linear phase growth, and slow drifts are removed via a global linear fit prior to spectral estimation.
The spectral entropy Sspec = — 2.; pi log p; computed from line strengths p; = AilY j Aj summarizes

mode complexity and is reported alongside .

Peak identification from |C(w)| follows a robust spectral-gap picking procedure. After applying a
Hann window and detrending to suppress DC leakage, the analysis is restricted to a fixed search
band [w)y, whi] = [0, 0.8] within the Nyquist interval. Within this band, candidate peaks are local
maxima that exceed a robust threshold 7 = median(S) + 1.4826 k, MAD(S), which suppresses
noise-dominated fluctuations. Each candidate is refined via parabolic interpolation for subbin
accuracy, and optional harmonic guards exclude integer multiples of an estimated fundamental
frequency weg within tolerance dnarm- A selection policy then determines the representative spectral
line: nearest_to_estimate chooses the candidate closest to weg (default), whereas min_significant
or lowest_nonzero favour the smallest nonzero significant peak. If no valid candidate remains, the
strongest in-band maximum serves as fallback. This combination of band restriction, DC/harmonic
guards, and median-MAD thresholding yields a stable and noise-resilient estimate of the fundamental

spectral gap.

An end-to-end procedure thus proceeds as follows: acquire complex correlators on a primary
grid (and optionally a secondary At’), form windowed spectra, detect and refine peaks via (S80),
apply zero-mode and alias guards, crosscheck with Prony/ESPRIT, aggregate to 7 with a confidence
interval, and finally report £ = 1/ together with {p;} and Sspec and calibration diagnostics. For
systems of ~10—15 qubits, grouped Pauli—projector synthesis keeps each long-time controlled
evolution at practical depth while preserving near-zero multiplicities and the first spectral gap with

subpercent bias under noiseless calibration.
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S12 Proof of the Spectral Bound between Energy Gap and Persistence

We derive a spectral bound that relates the Laplacian energy gap to the persistence of topological
features observed during a filtration {K,}. The main theorem states that the persistence (d — b) of a

homological feature born at t = b and disappearing at t = d satisfies
Z‘(d - b) + (p + 1)dp,max 2 /lﬁ,m (Ap(Kb))a (888)

where L denotes the effective Lipschitz constant of spectral variation, and where d nax is the
maximal number of adjacent (p — 1)-simplices for any p—simplex. A larger local spectral gap

shortens the persistence, whereas a vanishing gap leads to long-lived harmonic modes.

First, recall that for any Hermitian matrix H, the Courant—Fischer theorem expresses the k-th

eigenvalue as

T T
H H
Ax(H) = min max T max min > x. (S89)
dim U=k xeU\{0} xTx  dimV=n—k+1xeV\{0} xTx
If H = UTAU with eigenvalues 4 < --- < 4, and Ux = a, then
Zi /lia’~2 a;
Ry(x)==""L =Y &’  a=-—, (S90)
>} Z‘ o C x|
so that MaXyespan{ey,....ex } RH(x) = Ag.
Now consider a block Hermitian matrix
A B 1 pt
M = , S=A-BC 'B',
BT C

with A Hermitian and C > 0. At the minimizing point y*(x) = —C~!BTx, the Rayleigh quotient

satisfies
. * X 2,1
Rar(ry ) = Rs() 1+ L) < Ry, (s91)
and from the min—max relation one obtains
A (M) < A (S), Akra(M) > 25(S), (592)

where d = dim(C). Applying this result to A, (K;) and its persistent form A;,”) yields
(B (KD) < A(AF™) < Agra(Ap (KD). ($93)
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Next, note that the p—Laplacian algorithm decomposes into upwards and downwards components:

Ap = Ap,up + Ap,dOWIl’ Ap,up = 6p+1a;+15 Ap,down = a;ap

The upwards part represents (p + 1)—dimensional fillings, whereas the downwards part encodes

adjacency among (p — 1)-simplices. The Schur relation applied to A, , yields
A (Bpup(KD) < A (Apid) < Akra(Dpup(K)). (S94)
Because A, = Ap up + Ap down, the following bounds hold:

Ak (Ap (Kt)) > A (Ap,up(Kt)) + /lmin(Ap,down(Kt))’ (595)

Ak(Ap (Kt)) < Ak(Ap,up(Kt)) + ﬂmax(Ap,down(Kt))- (596)

Combining these gives a two-sided interlacing for the persistent Laplacian:

Ak (Ap (Kt)) - /lmax(Ap,down (Kt)) + /lmin(Ap,down(Ks))

< /lk(AI(pS’t)) < /1k+d(Ap(Kt)) - /lmax(Ap,down(Ks)) + ﬂmin(Ap,down(Kt))- (597)

This shows that the spectrum of the persistent Laplacian is bounded between those of the ordinary

Laplacian, with corrections governed by the spectral range of A, jown.

To relate these bounds to geometric variation, consider the inequality between two Hermitian

matrices A and B:
x"Bx=x"Ax+x"(B—-A)x <x"Ax +||B - Al|||x||*. (S98)
Taking the infimum over all normalized x yields
Ak(B) < Ak (A) +|B - All. (599)
If the Laplacian varies Lipschitz-continuously with respect to z,

1Ay (K1) = Ap (Kl < Lt = 5], (5100)

S38



then the corresponding eigenvalues satisfy
A(Ap(Ky)) = A (A,(Ky)) = Lt = s]. (S101)
The downwards Laplacian’s spectral width provides a combinatorial correction term. Since
width(Ap down(K5s)) = Amax = Amin < (p + 1)dp max, (5102)

where d,, denotes the maximum number of p-dimensional simplices that are adjacent to any given

(p — 1)-dimensional simplex o, we obtain

ﬂmax(Ap,down(Kt)) - /lmin(Ap,down(Ks)) < (p + 1)dp,max + L,(t - s), (5103)

and thus the persistent Laplacian obeys

A = (A (K)) = L(t =5) = (p+ Ddpmas,  L=L+L". (S104)

The behavior of individual eigenmodes can be analysed perturbatively. For H(e) = Hy + €V with

exl1,
_g© 2 E‘M
E,=E, +€e(on,Von)+e 24 0 _ p0) + (S105)

If E(()O) = ( is isolated, it remains zero until the degeneracy is lifted, as shown in Kato’s Perturbation
Theory for Linear Operators (96). Hence, a homological feature persists while its Laplacian mode

stays within the zero eigenspace:

g, (AN =0t <d),  g,,(AY) >0. (S106)

The stability of the zero eigenspace can be formalized via the Riesz projector
1 -1
Ho(2) = 5— ¢ (2 = Ap(Ky))™ dz, (5107)
2ri Jr,
where I'; encloses the isolated eigenvalue 0. If £ = A, (K;) — A,(K), then

IE Ly g (S108)

N N

o (7) — o (s)[ <
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As long as L|t — s| < yy = A41(A,(Ky)), the rank of the projector—and therefore the Betti
number—remains invariant:

rank I1y(7) = rank Iy (s). (S109)

A death of homology thus requires that the spectral gap y closes.

When a homological feature is born at 7 = b, the smallest nonzero eigenvalue Ag,,, (A, (Kp))
defines a local energy gap. As filtration continues, this feature persists as long as Ag,,,, (Agf’ ”)) ~ (.
Its eventual disappearance at t = d occurs when this zero mode lifts to a finite value. When the

spectral inequality (S104) is used, this transition can only occur if
A8, (Ap(Kp)) = L(d = b) = (p + 1)dp max < 0, (S110)
which rearranges to the quantitative persistence condition
L(d - b))+ (p+D)dpmax = Ap,,, (A (Kp)). (S111)

In other words, the death of a homological feature requires that the cumulative spectral variation
across (b, d) surpasses the initial Laplacian energy gap at b. If this threshold is not reached, the

zero mode—and hence the topological feature—remains stable.

Finally, because the Laplacian encodes gradients, curls, and divergences of the field, its eigenvalues
describe the curvature of the local energy landscape. A large spectral gap A; corresponds to strong
restoring forces that stabilize the topology, whereas A; — O represents a topological phase transition
where harmonic modes emerge. The ordinary Laplacian gap thus quantifies the robustness of
homological structures: the closure of this gap signals the annihilation of a topological cycle.
Equation (S111) unifies energy-gap dynamics and persistent homology by showing that the local
spectral curvature (or SUSY energy gap) provides a quantitative bound on the persistence of
homological features, offering a spectral-geometric interpretation of topological stability consistent

with the SUSY behavior observed in the Lorenz system.
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|a) (anc)
q1 —& S,
[ 171
92 — H| H}
q3 (ref) D Rz(26,t) -

~i0p1Pg®Pg,®Pq,

Figure S1: Controlled time evolution for one local term U, (z) = e Basis rotations convert

X /Y to Z, CNOT: collect parity on g3, and an ancilla-controlled Rz (26,t) realizes the exponential.

la) (anc)
0 —{] 0
92 | Ry(—7/2) R (7/2)
g3 (ref r) B Rz(2Re(6,)t) F——

_ ()
Figure S2: Controlled time evolution for one local factor U (t) = e 10ct Qqese Pa” Here Py, =X,Py, =Y,
P, = Z. CNOTSs collect the Z-parity onto the rightmost reference qubit » = g3; an ancilla-controlled

Rz(2Re(8;)t) implements the phase; then,they uncompute.

flip bit 0 flip bit 1 flip bit 0 flip bit 2 flip bit 0 flip bit 1 flip bit 0

Figure S3: Gray-order traversal of a 3-bit control mask. Consecutive masks differ by a single bit, minimizing

the number of control toggles (X gates) between terms that share the same Pauli-letter pattern.

|a) (anc) { H]| [HH~~<F (X)=RC(@)

) (sys) e
|a) (anc) —{ H stHHH~F @)y =-3¢@)
) (sys) e i1

Figure S4: Hadamard-test circuits for a single sample time 7. The controlled-e " block is synthesized as
Uecn (1) (Sec. S10). Measuring X (top) yields R C(7); inserting ST and then measuring X (bottom) yields
-3 C(1).
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Figure S5: Quantum and classical diagnostics for the Lorenz system at p = 36. (A) Time-series input
and (B) 3D attractor embedding. (C) Hodge Laplacian matrix and (D) complex-plane trajectory of the QPE
amplitude. (E) Real-imaginary waveform, (F) amplitude-phase trace, and (G, H) QPE spectra from the
simulation and IBM hardware. Broad, merged spectral peaks indicate weak topological separation in the early

chaotic regime.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at p = 37. Slight narrowing of
spectral lines and partial clustering of low-frequency modes mark the initial development of the quasi-periodic

structure.
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Figure SS: Quantum and classical diagnostics for the Lorenz system at p = 38. Spectral entropy begins to
decline, and distinct peaks emerge in both the simulator and hardware spectra, indicating partial organization

of the attractor’s loop geometry.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at p = 39. Discrete peaks become
more pronounced and near-zero components start to separate from the continuum. Topological coherence

strengthens as the attractor approaches double-wing formation.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at p = 40. Both the simulation and
hardware show clear harmonic-mode isolation and maximal phase-space regularity. Near-zero clusters narrow

sharply, marking the onset of topological stabilization.
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Figure S5: Quantum and classical diagnostics for the Lorenz system at p = 41. The Hodge—Laplacian
spectrum exhibits its widest gap and cleanest harmonic—excited separation, coinciding with maximal H;

persistence. The complex-plane trajectories are nearly circular, confirming spectral coherence.

S47



Lorenz trajectory
@ Representatives

@® Representatives (N=7)
20
10
g
X
0
-10
-20
4 25 50 75 100 125 150 175 200
time index

o 100 200 300 00 500

<
N \\
w AN\
N
AR\
\§\\\ N
. N
300 N \g“ -
\ ) :
. \§ \ A
o0 AN N - ‘
. N ‘
. 3

rho=42 — Real | Imag (separate)

tho=42 — Amplitude / Phase

= Smuanon e
—— B oCTAL e

mplitde 2]

-0

a0

100
1071 1071
_ 102 _ 1072
3 3
El g
> 107 > 107
£ £10
£ 107 £ 107
g 8
& &
10°¢ 10°¢
1077 1077
107 107
0.0 01 02 .3 .4 05 06 07 08 0.0 01 02 03 04 05 0.6 07 08
Energy w [rad/time]

Energy w [rad/time]

Figure S5: Quantum and classical diagnostics for the Lorenz system at p = 42. Spectral broadening
and partial peak overlap indicate the onset of fopological coherence breaking, where harmonic modes lose

phase alignment across scales. The harmonic sector remains visible but less isolated, marking the gradual

destabilization of the coherent loop.
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Table S1: Summary of hardware specifications for ibm_kingston. Error metrics refer to per-gate Pauli

error rates at the calibration time; CLOPS denotes circuit layer operations per second.

Qubits 156
Processor type Heron r2
QPU version 1.0.0
Basis gates cz, id, rx, rz, rzz, sx, X
Best two-qubit error 8.88 x 107
Two-qubit error (layered) 3.42 %1073
Median CZ error 1.93x 1073
Median SX error 2.372%x 1074
Median readout error 8.606 x 1073
Median T; 262.42 us
Median T3 119.55 us
CLOPS (throughput) 250K
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