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[bookmark: _dyezii8qgor7]Text S1. What drives the modelled expansion of generation and storage technologies
While the main text focuses on electricity generation results from the GridPath-CSPG1 model, here we compare those outputs with annual generation data from GCAM-China2 to assess consistency between the models and explore the drivers of generation technology expansion. In both frameworks, technology expansion is primarily influenced by cost-competitiveness and resource availability. However, in GridPath-CSPG, the need for flexible resources to maintain grid reliability under high renewable penetration also plays a critical role.

Across both decarbonization pathways, GCAM-China and the corresponding GridPath-CSPG scenarios generally yield consistent trends in generation mixes, with a few key differences (Supplementary Fig. S29). For example, coal, nuclear, and hydropower generation in GridPath-CSPG’s Base scenario closely aligns with GCAM-China projections for both near-term (2035) and long-term (2060) horizons. The key differences include a greater expansion of rooftop solar in GCAM-China, driven by a policy constraint that allocates a portion of future building energy demand to rooftop solar (Supplementary Fig. S28), regardless of its utility-scale cost competitiveness—an assumption aligned with some real-world practices in China. We did not apply this constraint as a default condition in the GrdiPath-CSPG scenarios, considering uncertainty in this assumption, but tested its implications with a sensitivity scenario (Supplementary Text S2). GridPath-CSPG also projects a relatively lower expansion of concentrated solar power (CSP) than GCAM-China, which is related to the cost-competitiveness and resource availability, as explained below. This result, however, is consistent with similar studies using coupled integrated assessment and power system models that also reported lower solar uptake in power system models3,4, likely because deployment of solar in the power models is intertwined with additional costs for transmission, storage, and curtailments. Other key differences include a greater preference for onshore wind in GridPath-CSPG scenarios, with reliance on CCS and battery storage for grid flexibility. Interestingly, in the NoCCS scenario, the generation mix is nearly identical to that of GCAM-China—but with a substantial expansion of battery storage—highlighting the value of GridPath-CSPG’s operational granularity in representing flexible resource needs.

In GridPath-CSPG, expansion decisions are primarily governed by technology-level cost-competitiveness and productivity, reflected in their levelized cost of electricity (LCOE)5 and capacity factors, respectively (Supplementary Fig. S13). Technologies with lower LCOEs are prioritized under cost optimization. For example, even after 2050, the LCOEs of rooftop solar, CSP, and onshore wind remain higher than that of nuclear (Supplementary Fig. S13a), despite costs substantially declining for variable renewable energy (VRE) technologies. These higher LCOEs, driven in part by declining capacity factors (Supplementary Fig. S13b), help explain their limited expansion in the Base scenario. The falling capacity factors of VRE technologies over time result from earlier deployment of the most productive (i.e., highest capacity factor) sites.

Resource availability constraints further shape expansion patterns. Rooftop solar and CSP generally expand only after cost-competitive options—such as utility-scale solar PV, hydropower, and onshore wind—reach their resource or policy limits (Supplementary Fig. S14). For example, rooftop solar expansion becomes significant only once PV, wind, and hydro potential are fully utilized and when nuclear and CCS-based technologies are constrained. Solar CSP follows a similar trajectory. As GridPath-CSPG minimizes total system costs—including capital, operating, and transmission investments—rooftop and CSP remain secondary options unless cheaper alternatives are no longer feasible. However, it is worth noting that GridPath-CSPG does not capture certain distributed benefits of rooftop solar, such as alleviating local transmission congestion or reducing distribution losses. These potential advantages, though not modeled here, could make rooftop solar more attractive in real-world planning contexts.

[bookmark: _6ezgcgereurs]Text S2. Robustness of results under sensitivity scenarios 
To test the robustness of our conclusions, we assess sensitivity scenarios focusing on generation and capacity mixes, total system costs, and underutilized capacity. The three scenarios based on alternative cost trajectories from ATB-2019 and ATB-2023 exhibit greater long-term (2060) integration of solar technologies compared to the Base scenario (Supplementary Fig. S30), reflecting the relatively conservative cost assumptions for solar in our default setup (Supplementary Figs. S25–S27). As a result, these scenarios yield lower overall system costs compared to the DispCoal scenario (Supplementary Fig. S31), reinforcing our main findings.
The two climate-impacted hydropower scenarios, based on RCP 4.5 and RCP 8.5, show higher hydropower dispatch despite similar capacity levels by 2060 (Supplementary Fig. S30). This appears to be driven by higher capacity factors during typically dry months (e.g., November–January) under climate-forced conditions (Supplementary Fig. S32). The increased hydropower dispatch in these months reduces reliance on CCS, solar PV, and curtailment (Supplementary Fig. S33). The NoPRM scenario shows no expansion of gas-fired generation compared to the Base case, confirming the role of gas as a capacity reserve under the planning reserve margin constraint. Both the climate-impacted and NoPRM scenarios yield significantly lower system costs and underutilized capacities than the DispCoal case, further supporting our conclusions.
In the RPS Rooftop scenario, mandated rooftop deployment leads to higher battery storage requirements and system costs that are 4% above the DispCoal scenario. However, this cost gap may be overstated, as our model does not fully capture the potential grid benefits of distributed rooftop solar. Overall, these sensitivity analyses affirm the robustness of our conclusions across a range of uncertainties, including future technology costs, climate impacts on hydropower, and policy and reliability constraints.

[bookmark: _7mt0r1ur9xkl]
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Fig. S1: Key inputs and outputs of GCAM-China’s energy, water, and land modules as part of an integrated global multi-sectoral model.
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Fig. S2: Spatial domains of (a) GCAM-China and (b) GridPath-CSPG with annual electricity demand and transmission capacity, as of 2020. GCAM-China disaggregates the energy-economic system of the China region into 31 province-level sub-regions and six electricity grid regions that are also embedded in the global GCAM model.
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Fig. S3: For a typical load zone, disaggregation of GCAM-China’s annual electricity demand for the building, industry, and transport sectors into month-hourly loads, which serve as inputs to GridPath-CSPG.
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Fig. S4: For the Slower and Faster Transition pathways in GCAM-China, (a-b) annual electricity demand by three sectors and export nodes, and (c-d) corresponding hourly demand for typical days in July (as an example) for 2035 and 2060. Electricity demand from buildings, industry, and transport follows similar patterns in both pathways (a-b), with industry accounting for about half of annual demand. Notably, the electrification of transport (e.g., EV charging) is projected to substantially increase nighttime peak demand in future years (c-d).
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Fig. S5: For the two decarbonization pathways in GCAM-China, annual fossil fuel and industrial processes (FFI) CO2 emissions by sectors under (a) Slower Transition and (b) Faster Transition to carbon neutrality, and (c) only the electricity sector. The national-level results are shown in the top panels, while the bottom panels show the regional results for the five provinces within CSPG.
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Fig. S6: Share of electricity generation from renewable resources (i.e., solar, wind, and hydropower technologies, but excluding bioenergy) in annual electricity generation over 2020-2060 for the two decarbonization pathways in GCAM-China.
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Fig. S7: Shares of the key technologies in CSPG’s annual electricity generation for the 2020-2060 period in the core GridPath-CSPG scenarios under the two decarbonization pathways. To compare the results under the two pathways, the results for ‘Faster’ and ‘Slower’ transitions are shown in dotted and dashed lines, respectively, while the line colors represent the GridPath-CSPG scenarios.
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Fig. S8: Annual generation (TWh) by key technologies in CSPG for the 2020-2060 period in the core GridPath-CSPG scenarios under the two decarbonization pathways. To compare the results under the two pathways, the results for ‘Faster’ and ‘Slower’ transitions are shown in dotted and dashed lines, respectively, while the line colors represent the GridPath-CSPG scenarios.
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Fig. S9: Under the ‘Slower Transition’, annual electricity generation mix (a) and capacity mix (b) for 2035 and 2060 in the five core scenarios in GridPath-CSPG. The results for the alternative scenarios are shown as a difference from the ‘Base’ scenario. Specified capacities include existing and under-construction capacities.
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Fig. S10: Under the ‘Faster Transition’, annual electricity generation mix (a) and capacity mix (b) for 2035 and 2060 under the core scenarios in GridPath.
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Fig. S11: Under the ‘Slower Transition’, annual electricity generation mix (a) and capacity mix (b) for 2035 and 2060 in the three variations of the ‘DispCoal’ scenario, compared to the ‘Base’ scenario.
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Fig. S12: Under the ‘Slower Transition’, annual electricity generation mix (a) and capacity mix (b) for 2035 and 2060 in the two variations of the ‘Base’ and ‘DispCoal’ scenarios, where the existing coal power plants are assumed to be retrofitted with CCS by 2035. The results of the CCS retrofit scenarios are compared with the core ‘Base’ and ‘DispCoal’ scenarios.
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Fig. S13: Technology-wise average (a) levelized cost of electricity (LCOE) and (b) capacity factors of the newly selected generation capacities across the core GridPath-CSPG scenarios.
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Fig. S14: Level of deployment of the candidate capacities of hydro, wind, and solar technologies in the GridPath-CSPG scenarios.
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Fig. S15: Under the ‘Faster Transition’, the existing, under-construction, and new capacities of key generation technologies for 2035 and 2060 in the core GridPath-CSPG scenarios, compared to the corresponding GEM data. The ‘new’ capacity for GEM data represent the capacities under development at various pre-construction (e.g., pre-permitted, permitted, and announced) stages.
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Fig. S16: CSPG’s hourly electricity generation in (a) 2035 and (b) 2060 for the GridPath-CSPG scenarios under the Slower Transition. The results are presented for three representative months to illustrate the impact of seasonal variability. The results for Faster Transition are similar and hence, not shown.
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Fig. S17: For 2035, province-level new generation and transmission capacity, and inter-provincial flow of electricity in the GridPath-CSPG scenarios under the ‘Slower Transition’.
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Fig. S18: For 2035, province-level new generation and transmission capacity, and inter-provincial flow of electricity in the GridPath-CSPG scenarios under the ‘Faster Transition’.
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Fig. S19: For 2060, province-level new generation and transmission capacity, and inter-provincial flow of electricity in the GridPath-CSPG scenarios under the ‘Faster Transition’.
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Fig. S20: Under Slower Transition, total electricity flow and required new transmission capacities across the GridPath-CSPG scenarios for 2035 and 2060. The results for the Faster Transition are similar and hence, not shown.
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Fig. S21: In the GridPath-CSPG scenarios under the ‘Faster Transition’, (a) net present value of the system-wide total costs over 2020-2060, (b) underutilized generation capacities by technologies (all non-coal technologies are aggregated as ‘Other’) for 2035 and 2060, and (c) box plot distribution of the annual capacity factors (CFs) of the coal power fleets (including existing, under-construction, and newly-selected fleets) under each core scenario. The box plot and estimation of underutilized capacities are typical of Fig. 5.
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Fig. S22: In the GridPath-CSPG scenarios under the ‘Slower Transition’ and for 2035 and 2060, technology-wise aggregated (a) capacity of power plants with capacity factors below their technology-specific expected benchmark, as shown in Table S8, and (b) effective load-carrying capacity (ELCC) of power plants that contribute to satisfy the planning reserve margin (PRM). The PRM is assumed to be 15% higher than the system-wide annual peak demand for each period.
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Fig. S23: In the GridPath-CSPG scenarios under the ‘Slower Transition’, box plot distribution of the annual capacity factors (CFs) of the key generation and storage technologies. The box plot shows the inter-quartile range of the plant- or fleet-level capacity factors, defined as the distance between the first and third quartiles with the median shown by notch (and horizontal line), whereas the lower (upper) whiskers extend up to the minimum (maximum) value.
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Fig. S24: Curtailment rates of the hydro, wind, and solar technologies in the GridPath-CSPG scenarios under the Slower Transition.
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Fig. S25: Trajectories of capital costs of the generation technologies in GCAM-China (also used in GridPath-CSPG), compared to ATB-20236 and ATB-2019’s ‘Low’ and ‘High’ projections7.

[image: ]
Fig. S26: Trajectories of fixed O&M costs of the generation technologies in GCAM-China (also used in GridPath-CSPG), compared to ATB-2023 and ATB-2019’s ‘Low’ and ‘High’ projections.
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Fig. S27: Trajectories of fuel prices in GridPath-CSPG, adapted from ref.1.
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Fig. S28: Share of future building electricity demand assumed to be met by rooftop solar under the two decarbonization pathways in GCAM-China.
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Fig. S29: For 2035 and 2060, comparison of electricity generation mix between GCAM-China and three corresponding scenarios in GridPath-CSPG under Slower Transition.
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Fig. S30: Annual electricity generation mix (a) and capacity mix (b) for 2035 and 2060 in the seven sensitivity scenarios in GridPath, shown as a difference from the ‘Base’ scenario. Typical results for the GridPath-CSPG scenarios under ‘Slower Transition’ are shown.
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Fig. S31: Net present value of the system-wide total costs over 2020-2060 for seven sensitivity scenarios compared to the DispCoal scenario.
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Fig. S32: Monthly capacity factors of CSPG’s existing and planned hydropower sites under historical and two future climate conditions (represented by two RCPs). Each box represents the distribution of the site-level capacity factors, with the lower and upper bounds representing the minimum and maximum, boxes representing the second and third quartiles, and the notch in the middle representing the median.
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Fig. S33: CSPG’s hourly electricity generation in 2035 for the two sensitivity scenarios with climate-impacted hydropower availability compared to the Base scenario.
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Table S1: List of generation technologies and their capital and O&M costs (for 2020), and lifetime assumptions used in GCAM-China and GridPath-CSPG. The trajectories of the capital and O&M costs out to 2100 are shown in Figs. S25 and S26. The data is adopted from ref.2.
	Technologies
	Costs for 2020 (in 2020USD)
	 

	GCAM-China
	GridPath-CSPG
	Capital costs (USD/KW)
	Fixed O&M costs (USD/MWh)
	Var O&M costs (USD/MWh)
	Lifetime (yrs)

	biomass (conv)
	Biomass_Conv
	3979
	118
	6
	60

	biomass (IGCC)
	Biomass_IGCC
	5858
	167
	8
	60

	biomass (conv CCS)
	Biomass_CCS
	7493
	142
	8
	60

	biomass (IGCC CCS)
	Biomass_IGCC_CCS
	8535
	201
	10
	60

	coal (conv pul)
	Coal_Conv
	3815
	35
	5
	60

	coal (IGCC)
	Coal_IGCC
	4018
	57
	8
	60

	coal (conv pul CCS)
	Coal_CCS
	5843
	84
	10
	60

	coal (IGCC CCS)
	Coal_IGCC_CCS
	6511
	111
	12
	60

	gas (steam/CT)
	Gas_CT
	913
	13
	8
	45

	gas (CC)
	Gas_CC
	1001
	11
	3
	45

	gas (CC CCS)
	Gas_CCS
	2204
	35
	8
	45

	refined liquids (steam/CT)
	Oil_CT
	913
	13
	8
	45

	refined liquids (CC)
	Oil_CC
	1001
	11
	3
	45

	refined liquids (CC CCS)
	Oil_CCS
	2608
	42
	9
	45

	Nuclear
	Nuclear
	6397
	106
	2
	60

	geothermal
	Geothermal
	4778
	143
	0
	30

	hydro
	Hydro
	2500
	17
	0
	100

	 
	PS Hydro
	2500
	19
	0
	100

	wind (onshore)
	Wind_On
	1550
	49
	0
	30

	wind (offshore)
	Wind_Off
	3632
	127
	0
	25

	solar (PV)
	Solar_PV
	1825
	15
	0
	30

	solar (csp)
	Solar_CSP
	4086
	50
	4
	30

	solar (rooftop)
	Solar_RT
	2914
	21
	0
	30

	Battery
	Battery
	1898
	47
	0
	30

	PV_storage
	As battery
	 
	 
	 
	 

	CSP_storage
	As battery
	 
	 
	 
	 

	wind_storage
	As battery
	 
	 
	 
	 


 
Table S2: Number of candidate sites and potential capacities (with data sources) of hydro, wind, solar, and geothermal technologies used in GridPath-CSPG.
	Technology
	Projects
	Capacity (GW)
	Spatial resolution
	Source

	Geothermal
	5
	5.5
	lumped by provinces
	Shi et al.8 and Luo et al.9

	Hydro
	22
	50.1
	site level
	Jin et al.1,10 and ref. therein

	PS Hydro
	44
	53.7
	site level
	As Hydro

	Solar PV
	451
	411
	site level
	RE-Zoning11 and GEM data12

	Solar RT
	451
	411
	site level
	As Solar PV

	Solar CSP
	451
	411
	site level
	As Solar PV

	Wind Off
	3
	32.7
	site level
	As Solar PV

	Wind On
	364
	151
	site level
	As Solar PV


 

Table S3: Operational techno-economic parameters of thermal generation technologies in GridPath-CSPG. The data is adopted from ref.1,10.
	Technologies
	Operation type
	Min stable fraction
	Heat rate (MMBtu/MWh)
	Start-up cost (USD/MW)
	Ramping rate
	Min up time (hrs)
	Min down time (hrs)

	Biomass_Conv
	commit-dispatch
	0.7
	13.50
	88
	3%
	8
	8

	Biomass_IGCC
	commit-dispatch
	0.7
	13.55
	88
	3%
	8
	8

	Biomass_CCS
	commit-dispatch
	0.7
	13.55
	88
	3%
	8
	8

	Biomass_IGCC_CCS
	commit-dispatch
	0.7
	13.60
	88
	3%
	8
	8

	Coal_Conv
	commit-dispatch
	0.6
	8.49
	147
	1%
	8
	10

	Coal_IGCC
	commit-dispatch
	0.6
	9.20
	119
	2%
	12
	12

	Coal_CCS
	commit-dispatch
	0.6
	8.49
	147
	1%
	8
	10

	Coal_IGCC_CCS
	commit-dispatch
	0.6
	9.30
	119
	2%
	12
	12

	Gas_CT
	commit-dispatch
	0.3
	9.72
	88
	8%
	4
	8

	Gas_CC
	commit-dispatch
	0.3
	9.63
	88
	7%
	4
	10

	Gas_CCS
	commit-dispatch
	0.3
	9.72
	88
	7%
	4
	10

	Oil_CT
	commit-dispatch
	0.7
	11.48
	69
	10%
	0
	0

	Oil_CC
	commit-dispatch
	0.7
	11.48
	69
	10%
	0
	0

	Oil_CCS
	commit-dispatch
	0.7
	11.48
	69
	10%
	0
	0

	Nuclear
	must run
	0.8
	 
	 
	 
	 
	 

	Geothermal
	must run
	0.9
	 
	 
	 
	 
	 


 
Table S4: Operational techno-economic parameters of power storage technologies used in GridPath-CSPG. The data is adopted from ref.1.
	Technologies
	Operation type
	Dis/Charging efficiency
	Min op. duration (hrs)
	Max op. duration (hrs)

	Battery
	storage
	0.92
	2
	12

	PS Hydro
	storage
	0.88
	2
	24


 


Table S5: CO2 emission factors by fuel type, used in GridPath-CSPG. The emission factors for other generation technologies, including fossil-fired and biomass power plants with CCS, are assumed as zero. The data is based on ref.13, adopted from ref.1. 
	Fuel
	CO2 intensity (tons/MMBtu)

	Coal (without CCS)
	0.106

	Gas (without CCS)
	0.058

	Oil (without CCS)
	0.058

	Biomass (without CCS)
	0.029


 
Table S6: Sensitivity scenarios in GridPath-CSPG, with default conditions shown in italic font. 
	Scenario names
	Expansion of conventional coal plants
	Operational parameters of coal plants
	CCS retrofit to existing coal plants
	Expansion of renewable technologies
	Expansion of CCS technologies
	Future capital and O&M costs of generation technologies
	Climate conditions of hydropower availability
	Planning reserve margin (PRM)

	DispCoal (Unconstrained New Coal)
	Unconstrained
	Similar gas-fired plants with combustion turbines (see Table S7)
	Not considered
	No RPS strategy
	Unconstrained
	As in GCAM-China
	Historical
	15% of annual peak demand

	DispCoal (Typical HRate & StCost)
	The planned coal-fired (without CCS) capacity in the GEM data is assumed to be installed by 2035
	Similar to gas-fired plants with combustion turbines, except that typical values of heat rate and start-up costs are used
	As default
	As default
	As default
	As default
	As default
	As default

	Base (Retro CCS to Exist Coal)
	As default
	Typical parameters as in Table S3
	Existing coal plants are assumed to be retrofitted with CCS from 2035
	As default
	As default
	As default
	As default
	As default

	DispCoal (Retro CCS to Exist Coal)
	As ‘DispCoal’
	Typical parameters as in Table S3
	Ás above
	As default
	As default
	As default
	As default
	As default

	RPS Rooftop
	As default
	As default
	As default
	Generation floor for  Rooftop Solar is set above the GCAM-China level
	As default
	As default
	As default
	As default

	ATB-2023
	As default
	As default
	As default
	As default
	As default
	As per ATB-2023’s projection
	As default
	As default

	ATB-2019 Low
	As default
	As default
	As default
	As default
	As default
	As per ATB-2019’s ‘low’ projection
	As default
	As default

	ATB-2019 High
	As default
	As default
	As default
	As default
	As default
	As per ATB-2019’s ‘high’ projection
	As default
	As default

	Hydro RCP4.5
	As default
	As default
	As default
	As default
	As default
	As default
	RCP 4.5
	As default

	Hydro RCP8.5
	As default
	As default
	As default
	As default
	As default
	As default
	RCP 8.5
	As default

	NoPRM
	As default
	As default
	As default
	As default
	As default
	As default
	As default
	No PRM constraints



Table S7: Operational techno-economic parameters of conventional coal power plants used in different variations of the ‘DispCoal’ scenario, compared to the typical values used in the rest of the scenarios.
	Operational parameters
	Typical values
	In the 'DispCoal' and 'DispCoal (Unconstrained New Coal)' scenarios
	In the 'DispCoal (Typical HRate & StCost)' scenario

	Ramping rate
	1%
	8%
	8%

	Min up time (hrs)
	8
	4
	4

	Min down time (hrs)
	10
	8
	8

	Min stable fraction
	0.6
	0.3
	0.3

	Heat rate (MMBtu/MWh)
	8.49
	9.72
	8.49

	Start-up cost (USD/MW)
	147
	88
	147



Table S8: Global and Asia’s average capacity factors (CFs) of key generation technologies (assumed the same for sub-technologies), as presented in Bolson et al.14, based on which the minimum expected CFs are determined in this study.
	Technologies
	Global average over 2000-2015
	Asia’s average over 2000-2015
	Minimum expected CF

	Battery
	-
	-
	0.20

	Biomass
	0.55
	0.37
	0.37

	Coal
	0.60
	0.56
	0.56

	Gas
	0.46
	0.38
	0.38

	Oil
	0.28
	0.28
	0.28

	Nuclear
	0.81
	0.76
	0.80

	Geothermal
	0.74
	0.65
	0.65

	Hydropower
	0.43
	0.37
	0.35

	Solar
	0.12
	0.12
	0.10

	Wind
	0.22
	0.23
	0.20
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