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S1 Supplemental methods

Derivation of time-dependent mechanical parameters

Our primary concern is to obtain an expression for r;(¢) and r2(t) used to formulate the time
dependent mechanical parameter 7,(t), 7.(t) and ky(t) of the 1D model. Let apep(t) and ascer(t)
denote the actin concentration in the developing and old cortex at any time and ag the concentration

of actin the mature cortex. Then we set 7 (t) = a“;ig(t) and ra(t) = (1 - as%(@) The expression
for 1 (t) is precisely the fraction of actin in the developing cortex at any time. The expression for
ro(t) represents the fraction of actin lost in the degrading cortex, which correlates positively with
the viscosity of the fluid within the bleb. It remains to obtain expressions for the actin concentration
in the bleb cortex ap.p(t) and actin scar aseqr(t).

Recently, we introduced the following linear model for actin a(t) and myosin m(t) dynamics

during reformation of the bleb cortex and degradation of the actin scar [1],

d
o =R =k a),
dni (S1)

The model parameters were estimated using blebbing data from Dictyostelium discoideum cells
migrating under the same experimental conditions used to obtain the data presented in this work.
Here, k27, kgf 7 describe the polymerization and depolymerization rates of actin in the cortex. The
estimated model parameters differ between reformation of the bleb cortex and degradation of the

actin scar. Hence, we will denote the respective rates at the bleb cortex by k7', Z{: 7 and those at

the actin scar by k27, kgf;f . Whereas this model fits the experimental data on actin and myosin

concentration in the reforming bleb cortex well, it was only able to capture the major trends of
actin and myosin concentration in the degrading actin scar [1]. Nevertheless, the simplicity in the
decoupling of actin dynamics from myosin make this an attractive model for estimating the relative
concentration of actin in the bleb cortex and actin scar.

Solving for the actin concentration a(t) from Eq. S1 we obtain

(t) ab + (0) kab k1l
a(t) = 2= a(0) — 2% | e "
koff kZlJ:f

where a(0) is the initial density of actin in the reforming cortex and :ngﬁf is the equilibrium density

ab
of actin (referred to elsewhere as arest). At the reforming bleb cortex a(0) = 0, thus the relative

actin density there is given by
ko _off
ableb(t) = ;ﬁf (1 —e€ Fap t)' (82)
kab

At the degrading actin scar a(0) = ag # 0. Our estimated value for k27 was near zero in [1]. Setting
kg% = 0, we obtain the actin density

ff
ascar(t) = aoe_kgs t

in the degrading actin scar.
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S1.1 Steady-state analysis

The motivation for this section is two fold. First, we will determine the critical displacement u® and
linker density pY necessary for initializing bleb expansion in the 1D model. Since bleb expansion
is expected to stall over time, we will follow this analysis with an investigation of the parameters
that control the steady-state bleb size.

Critical displacement and linker density

The initial conditions for our 1D bleb expansion model are the critical displacement u? and critical
linker density pY.To calculate these values, we set 4(t) = 0 and p,(¢) = 0 in the 1D bleb expansion

model
du Fip (kb + kapa)

o7 — S3
dt  (1e+1y) (Te + 1y) " (S3)

dpa
ar kon(po — pa) — korp(u(t))pa (S4)

with all mechanical parameters fixed. This yields
F kp + kapl
1D _ ( b + pa) UO _ O (85)
Te+ Ty Te+ Ty

kon [PO - Pg] - koff(uo)pg =0. (86)

mu - our equilibrium solutions thus satisfy the

After substituting our driving force Fip = Fpe™
following nonlinear system of equations

0

0 e—mu
_ S7
T o + kapl) (57)
kon
2 & (S8)

- kon + kgffeéﬁkauo '

Steady-state bleb size

Recall that once the membrane detaches from the cortex, linker proteins are lost and no longer
contribute to bleb dynamics. Hence, we set p, = 0 and ignore its dynamics in the 1D model
(Eq. S3). Our main equation for studying equilibrium bleb size is thus,

_ FlD (u) _ kb (t)
Te(t) +1y(t) - Te(t) + 7y (2)

u(t) (S9)

which is non-autonomous. First we convert it to an autonomous system by using the exact forms
of ky(t), 7c(t) and 7,(t) given in the main paper and their rates of change

dky apen(t)

=2 =k,

dt ap

% _ 7_C() ableb(t) (Sl())
ao

dry 0.

E = —(1 — Q)Tyascar.
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Recall from Eq. S1 that

: of f
apier = gy — kg’ apien

. _ o
Ascar = _kagfascar'

Therefore, the complete autonomous system becomes,

du . F1D(u) kb

dt TC+Ty_TC+Tyu
dapyep
Ut _ g 0
da
;;LW = _kaogfascar
dk ko — ko)
dky _ (ko — K37 apien)
dt ¢ a
dre _ o (ke — Koy anr)
dt ¢ a
dr,
dT?f = (1 - 0)mk asear.

Steady state/equilibrium solution

At equilibrium, we have

du

dky _ dre _ dry _

dt  dt  dt dt dt

resulting in the system of equations

Fip(u) ke
Te+ Ty Te+ Ty
on _ poffo. . —
ab b~ Obled
_kaog:fascar =0
(kep — Kb’ anen)

u=20

ke =0
ao
o Ukp — kot anen) _
C CL()
(1= )79k agear = 0..

dableb . dascar

dt

=0,

(S11)

(S12)

(S13)
(S14)

(S15)

(S16)
(S17)

We denote the equilibrium value of an arbitrary variable w as w*. Note from Eq. S14 that a}.,,. = 0,

which implies that Eq. S17 is trivially satisfied. From Eq. S13, aj;,, = :;c‘.—fz;, which also implies that
ab

Eq. 516 and Eq. 515 are trivially satisfied. By allowing ¢ — oo, we find that 7; =

kehep
aokzgf ’

and k; = kp, +

Therefore, from Eqn. S12,

Fip(u®) = kyu™.

0g.on
C kab

ag k;l{f

0 * Te
Ty Te =




s7 Using the model for F(u) = Fype™ ™", the equilibrium bleb size, u* can be obtained by solving the
ss  nonlinear equation

u* = k. (S18)
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