
S1 Supplemental methods1

Derivation of time-dependent mechanical parameters2

Our primary concern is to obtain an expression for r1(t) and r2(t) used to formulate the time3

dependent mechanical parameter τy(t), τc(t) and kb(t) of the 1D model. Let ableb(t) and ascar(t)4

denote the actin concentration in the developing and old cortex at any time and a0 the concentration5

of actin the mature cortex. Then we set r1(t) =
ableb(t)

a0
and r2(t) =

(
1− ascar(t)

a0

)
. The expression6

for r1(t) is precisely the fraction of actin in the developing cortex at any time. The expression for7

r2(t) represents the fraction of actin lost in the degrading cortex, which correlates positively with8

the viscosity of the fluid within the bleb. It remains to obtain expressions for the actin concentration9

in the bleb cortex ableb(t) and actin scar ascar(t).10

Recently, we introduced the following linear model for actin a(t) and myosin m(t) dynamics11

during reformation of the bleb cortex and degradation of the actin scar [1],12

da

dt
= kona − koffa a(t),

dm

dt
= konm a(t)− koffm m(t).

(S1)

The model parameters were estimated using blebbing data from Dictyostelium discoideum cells13

migrating under the same experimental conditions used to obtain the data presented in this work.14

Here, kona , koffa describe the polymerization and depolymerization rates of actin in the cortex. The15

estimated model parameters differ between reformation of the bleb cortex and degradation of the16

actin scar. Hence, we will denote the respective rates at the bleb cortex by konab , k
off
ab and those at17

the actin scar by konas , k
off
as . Whereas this model fits the experimental data on actin and myosin18

concentration in the reforming bleb cortex well, it was only able to capture the major trends of19

actin and myosin concentration in the degrading actin scar [1]. Nevertheless, the simplicity in the20

decoupling of actin dynamics from myosin make this an attractive model for estimating the relative21

concentration of actin in the bleb cortex and actin scar.22

Solving for the actin concentration a(t) from Eq. S1 we obtain23

a(t) =
konab

koffab

+

(
a(0)−

konab

koffab

)
e−koffab t

where a(0) is the initial density of actin in the reforming cortex and
konab
koffab

is the equilibrium density24

of actin (referred to elsewhere as arest). At the reforming bleb cortex a(0) = 0, thus the relative25

actin density there is given by26

ableb(t) =
konab

koffab

(1− e−koffab t). (S2)

At the degrading actin scar a(0) = a0 ̸= 0. Our estimated value for konas was near zero in [1]. Setting27

konas = 0, we obtain the actin density28

ascar(t) = a0e
−koffas t

in the degrading actin scar.29
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S1.1 Steady-state analysis30

The motivation for this section is two fold. First, we will determine the critical displacement u0 and31

linker density ρ0a necessary for initializing bleb expansion in the 1D model. Since bleb expansion32

is expected to stall over time, we will follow this analysis with an investigation of the parameters33

that control the steady-state bleb size.34

Critical displacement and linker density35

The initial conditions for our 1D bleb expansion model are the critical displacement u0 and critical36

linker density ρ0a.To calculate these values, we set u̇(t) = 0 and ρ̇a(t) = 0 in the 1D bleb expansion37

model38

du

dt
=

F1D

(τc + τy)
− (kb + kaρa)

(τc + τy)
u (S3)

dρa
dt

= kon(ρ0 − ρa)− koff (u(t))ρa (S4)

with all mechanical parameters fixed. This yields39

F1D

τc + τy
−
(
kb + kaρ

0
a

)
τc + τy

u0 = 0 (S5)

kon
[
ρ0 − ρ0a

]
− koff (u

0)ρ0a = 0. (S6)

After substituting our driving force F1D = F0e
−mu, our equilibrium solutions thus satisfy the40

following nonlinear system of equations41

u0 =
e−mu0(

kb + kaρ0a
) (S7)

ρ0a =
konρ0

kon + k0offe
δβkau0 . (S8)

Steady-state bleb size42

Recall that once the membrane detaches from the cortex, linker proteins are lost and no longer43

contribute to bleb dynamics. Hence, we set ρa = 0 and ignore its dynamics in the 1D model44

(Eq. S3). Our main equation for studying equilibrium bleb size is thus,45

u̇ =
F1D(u)

τc(t) + τy(t)
− kb(t)

τc(t) + τy(t)
u(t) (S9)

which is non-autonomous. First we convert it to an autonomous system by using the exact forms46

of kb(t), τc(t) and τy(t) given in the main paper and their rates of change47

dkb
dt

= kc
ȧbleb(t)

a0
dτc
dt

= τ0c
ȧbleb(t)

a0
dτy
dt

= −(1− θ)τ0y ȧscar.

(S10)
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Recall from Eq. S1 that48

ȧbleb = konab − koffab ableb

ȧscar = −koffas ascar.

Therefore, the complete autonomous system becomes,49

du

dt
=

F1D(u)

τc + τy
− kb

τc + τy
u

dableb
dt

= konab − koffab ableb

dascar
dt

= −koffas ascar

dkb
dt

= kc
(konab − koffab ableb)

a0

dτc
dt

= τ0c
(konab − koffab ableb)

a0
dτy
dt

= (1− θ)τ0y k
off
as ascar.

(S11)

Steady state/equilibrium solution50

At equilibrium, we have51

du

dt
=

dkb
dt

=
dτc
dt

=
dτy
dt

=
dableb
dt

=
dascar
dt

= 0,

resulting in the system of equations52

F1D(u)

τc + τy
− kb

τc + τy
u = 0 (S12)

konab − koffab ableb = 0 (S13)

−koffas ascar = 0 (S14)

kc
(konab − koffab ableb)

a0
= 0 (S15)

τ0c
(konab − koffab ableb)

a0
= 0 (S16)

(1− θ)τ0y k
off
as ascar = 0.. (S17)

We denote the equilibrium value of an arbitrary variable w as w∗. Note from Eq. S14 that a∗scar = 0,53

which implies that Eq. S17 is trivially satisfied. From Eq. S13, a∗bleb =
konab
koffab

, which also implies that54

Eq. S16 and Eq. S15 are trivially satisfied. By allowing t → ∞, we find that τ∗y = τ0y , τ
∗
c =

τ0c k
on
ab

a0k
off
ab

55

and k∗b = km +
kckonab
a0k

off
ab

. Therefore, from Eqn. S12,56

F1D(u
∗) = k∗bu

∗.
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Using the model for F (u) = F0e
−mu, the equilibrium bleb size, u∗ can be obtained by solving the57

nonlinear equation58

F0e
−mu∗ −

kck
on
ab

a0k
off
ab

u∗ = km. (S18)
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