Supplementary Informations
1.Habitat Procedure
Habitat analysis is a systematic approach that integrates patients’ clinical characteristics, pathological parameters, and multidimensional biological information to comprehensively delineate individual differences and identify potential molecular features associated with clinical outcomes. The significance of this method lies in its ability to reveal inter-patient heterogeneity from a multidimensional perspective, thereby providing valuable insights into disease mechanisms and informing personalized therapeutic strategies. Accordingly, the detailed technical workflow of habitat analysis is described in the Supplementary Materials, and the analysis was conducted through the following major steps:
1.1. Comprehensive Radiomic Feature Extraction: This process involved extracting detailed local features from each voxel in the dataset using a  moving window. These features encompass a variety of measurements and attributes, including intensity, texture, and other statistical properties, which are crucial for understanding the intricate details of the dataset. Such detailed insights enable more precise modeling and analysis.
In this study, 19 radiomic features were extracted from each voxel, offering a multidimensional characterization of each subregion. These features included a range of shape descriptors, textural features, and first-order statistical attributes. The specific features extracted were: firstorder_Entropy, firstorder_MeanAbsoluteDeviation, firstorder_Median, glcm_DifferenceAverage, glcm_DifferenceEntropy, glcm_DifferenceVariance, glcm_Imc1, glcm_Imc2, glcm_InverseVariance, glcm_JointEnergy, glcm_JointEntropy, glcm_SumEntropy, glrlm_LongRunEmphasis, glrlm_RunEntropy, glrlm_RunVariance, glszm_SizeZoneNonUniformityNormalized, glszm_SmallAreaHighGrayLevelEmphasis, ngtdm_Contrast, and ngtdm_Strength.
1.2. In-depth Clustering Analysis: The K-means algorithm was utilized to analyze the multidimensional feature space derived from the radiomic features. The algorithm was applied with varying numbers of cluster centers, ranging from 3 to 9, to categorize distinct habitat regions within the tumor. The performance of the clustering was evaluated using the Calinski-Harabasz score, ensuring the selection of the most statistically significant clustering arrangement.
The K-means algorithm functions by partitioning data into K distinct clusters. It iteratively updates the centroids of these clusters to minimize the sum of squares within each cluster. The central component of the K-means algorithm is the objective function, which is optimized to achieve effective clustering.

·  is the objective function.
·  is the number of data points.
·  is the number of clusters.
·  is a binary indicator (1 if data point  is in cluster , 0 otherwise).
·  is the ith data point.
·  is the centroid of cluster .
·  is the squared Euclidean distance between data point  and centroid .
1.3. Habitat Region Synthesis: Following the clustering analysis, subregions with identical cluster IDs were amalgamated. This synthesis resulted in the formation of comprehensive habitat regions, each representing a unique microenvironmental characteristic within the tumor.
[bookmark: feature-extraction]2. Habitat Feature Extraction and Selection
2.1. Feature Extraction
In this study, we organized handcrafted features into three primary categories: geometry, intensity, and texture. Each category was designed to capture distinct aspects of tumor characteristics. Geometric features delineate the shape and structural boundaries of the tumor, intensity features assess the voxel brightness levels across the tumor, providing insights into the tumor's radiologic density, and texture features quantify spatial patterns within the tumor using advanced techniques such as Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), and Neighboring Gray Tone Difference Matrix (NGTDM).
[bookmark: feature-selection]Radiomic feature extraction was performed on the entire Volume of Interest (VOI) as well as targeted subregions within the tumor, allowing for a detailed intra-tumor heterogeneity analysis. Given the nature of unsupervised clustering algorithms used in this process, we utilized the K-Nearest Neighbors (KNN) method to assign labels to unclustered areas, thereby maintaining consistency across defined habitat regions. All extraction processes were conducted using the pyradiomics tool (version 3.0.1), adhering strictly to the Imaging Biomarker Standardization Initiative (IBSI) guidelines to ensure high-quality and reproducible results.
2.2. Feature Selection
Statistics: We standardized all extracted features using Z-scores to normalize their distribution. The formula for the Z-score is given by:

where  is the feature value,  is the mean of the feature values, and  is the standard deviation.
Statistical significance of the features was determined through t-tests, with only those radiomic features demonstrating a p-value of less than 0.05 being retained for further analysis.
Correlation: To refine the feature set, we employed Pearson’s correlation coefficient to evaluate the redundancy between features. The Pearson correlation coefficient  is calculated as:

where  and  are the feature values of the two variables being compared.
Highly correlated features (with correlation coefficients exceeding 0.9) were critically assessed, and a greedy recursive deletion strategy was implemented. This method selectively removed features with the highest redundancy to ensure the preservation of maximum representational ability of the remaining features. Furthermore, to prevent model overfitting, we applied the minimum Redundancy Maximum Relevance (mRMR) algorithm, which helped in maximizing the informational uniqueness of the selected features.
Lasso: For the construction of the radiomic signature, the final selection of features was conducted using the LASSO regression model, which reduces the regression coefficients towards zero. The regularization in LASSO is controlled by the parameter  and the objective function is:

where  is the vector of outcomes,  is the matrix of feature values,  are the coefficients, and  is the regularization penalty. Optimal  values were determined through 10-fold cross-validation, focusing on minimizing the mean standard error, thus ensuring that the most statistically robust features were retained for model development.
3. Pathomics Patch Level Model Training
Data Augmentation: Prior to model training, all image patches underwent Z-score normalization across RGB channels to standardize intensity distributions. To improve model robustness and mitigate overfitting, online augmentation techniques were applied during training, including random cropping, horizontal flipping, and vertical flipping, thereby increasing data diversity. For the test cohort, preprocessing was restricted to normalization to maintain consistency in evaluation.
Training: Three widely used CNN architectures—ResNet50, ResNet18, and DenseNet121—were trained at the patch level to evaluate their performance and provide a benchmark for subsequent multi-instance learning aggregation. Model initialization employed transfer learning, with parameters pre-trained on the ImageNet dataset, ensuring the reuse of generic visual features and accelerating convergence. Training was optimized using stochastic gradient descent (SGD) with softmax cross-entropy loss. To further enhance generalization, we adopted a cosine decay learning rate schedule, defined as:

where  is the minimum learning rate,  is the maximum learning rate, and  denotes the number of training epochs. This dynamic adjustment of the learning rate facilitated smoother convergence and improved model stability across heterogeneous datasets.
4. Multi Instance Learning for WSI Fusion
Following the completion of the training phase for our deep learning model, we advanced to the stage of predicting labels and their corresponding probabilities for each individual patch extracted from WSI. These probabilities were not evaluated in isolation; instead, they were integrated using sophisticated classifiers to derive cohesive predictions at the WSI level. To effectively aggregate the probabilities associated with individual patches, we implemented two innovative machine learning methodologies designed to capture and utilize the complex data structure inherent in WSIs:
4.1. Patch Prediction: Each slice was analyzed using the deep learning model to derive probabilities and labels, denoted as  and , retained to two decimal places.
4.2. Multi Instance Learning Feature Aggregation:
4.2.1 Histogram Feature Aggregation:
· Distinct numbers were treated as "bins" to count occurrences across types.
· Frequencies of  and  in each bin were tallied and normalized using min-max normalization, resulting in  and .
4.2.2 Bag of Words (BoW) Feature Aggregation:
· A dictionary was constructed from unique elements in  and .
· Each slice was represented as a vector noting the frequency of each dictionary element, with a TF-IDF transformation applied to emphasize informative features.
· This resulted in a BoW feature representation for each slice, encapsulating both the presence and significance of features.
4.2.3 Feature Early Fusion: We integrated , , , and  using a feature concatenation method (), combining these into a single comprehensive feature vector:

5. Transformer-Based Feature Fusion Process
After obtaining the selected habitat features, pathology features aggregated through multi-instance learning, and clinical variables, we constructed a unified multi-omics feature set. The detailed pipeline is described as follows:
[bookmark: X64586e1ad581f94204fd90d7156d98f8f61b1df]5.1 Feature Extraction and Tokenization
For the Transformer-based multi-omics fusion model, the feature construction process was directly grounded in the outputs of the preceding single-modality signatures. Specifically, we first derived the final discriminative feature sets from each modality—radiomics (habitat-based imaging), pathology (multi-instance learning–aggregated features), and clinical data—by applying LASSO regression within their respective signature construction pipelines. These LASSO-selected features were then used as the standardized inputs for the fusion stage, ensuring that only the most relevant and non-redundant variables contributed to the downstream integration.
To harmonize the heterogeneous dimensionality across modalities, each set of selected features was projected into a common latent space via a two-layer multilayer perceptron (MLP) with 16 and 8 hidden units. This mapping step provided uniform representations while preserving modality-specific information. The resulting embeddings from the three modalities were concatenated into a structured 3 × 8 feature matrix, which served as the input sequence for the Transformer. By treating each modality as an independent token, the Transformer was able to model inter-modality dependencies through its self-attention mechanism, thereby capturing higher-order interactions that single-modality models could not achieve. This feature construction strategy ensured that the Transformer leveraged the distilled, high-value features from each signature while simultaneously enabling cross-omics contextual learning.
[bookmark: X279f3f247212b6b95e6229855f9e0ba63c28ea1]5.2 Embedding and Positional Encoding
The input tokens , where  is the number of patches and , were first passed through a linear embedding layer and supplemented with learnable positional encodings  to retain spatial order information:

[bookmark: Xf8f6b626402459c8e3b70c3e29966f56d1035d9]5.3 Transformer Encoder Architecture
We used a standard Transformer encoder structure, consisting of multi-head self-attention and position-wise feed-forward networks. The core operation of the multi-head self-attention mechanism is defined as:


where , and  are learnable projection matrices.
Each self-attention output is passed through a residual connection and a feed-forward layer:

Layer normalization and residual connections are applied after each sub-layer to stabilize training:

[bookmark: X6af0922d9db7bc014f23e01de7ee313ce78f063]5.4 Feature Fusion and Aggregation
After passing through the Transformer layers, the output token representations  were aggregated using global average pooling:

This fused representation was then used as the final feature vector for downstream prediction.
[bookmark: X93b11502d66b5e8a2113da3b985cd8a469c678a]5.5 Prediction Head
The fused feature vector  was passed through a fully connected layer followed by a softmax activation to generate the final probability of grade classification.
[bookmark: Xefd108c7ef98084f3b406defed5f3b25e3e85e6]5.6 Training Configuration
The Transformer model was trained using Stochastic Gradient Descent (SGD) with the following hyperparameters:
· Batch size (bs): 8
· Initial learning rate: 0.01
· Learning rate scheduler: Cosine decay
· Epochs: 200
· Loss function: Cross-entropy loss
· Optimizer: SGD with momentum
