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Mental Health Assessments
We employed parent-rated Child Behavior Checklist (CBCL) scores to assess children's mental health. The CBCL was selected for its widespread acceptance and comprehensive examination of emotional, social, and behavioral domains, as well as its validated effectiveness across various populations and clinical contexts 1,2. Comprising 20 syndrome scales, it effectively captures a wide spectrum of neurodevelopmental psychopathologies and has been associated with brain-behavioral development, including aspects such as anxiety, inattention, and externalizing behaviors 3. As the primary behavioral assessment tool in the ABCD study, the CBCL offers a reliable and structured measure of child psychopathology, noted for its sensitivity to variations in brain structure, making it suitable for dimensional neuroimaging analyses rather than categorical diagnoses 3. Its robust cross-cultural framework and extensive validation further reinforce its relevance in exploring the connections between brain function and mental health 4.
The CBCL consists of 113 items rated by parents on a 3-point Likert scale: 0 (not true), 1 (somewhat or sometimes true), and 2 (very true or often true). These items are designed to comprehensively assess a broad spectrum of behavioral, social, and emotional problems that children may experience in the recent past, specifically over the preceding six months. From these items, eight empirically derived syndrome scales are generated, each representing specific domains of child psychopathology: the Anxious/Depressed Scale captures symptoms related to anxiety and depression; the Withdrawn/Depressed Scale assesses social withdrawal and depressive features; the Somatic Complaints Scale measures physical complaints with no clear medical basis; the Social Problems Scale evaluates difficulties in peer relationships; the Thought Problems Scale assesses unusual thought processes or perceptions; the Attention Problems Scale captures issues related to concentration and attention deficits; the Rule-Breaking Behavior Scale measures misconduct and defiant behaviors; and the Aggressive Behavior Scale assesses physical and verbal aggression. These syndrome scales allow for detailed profiling of specific symptom clusters relevant to various neuropsychiatric conditions. Beyond these syndrome scores, the CBCL aggregates these into three broadband scales that offer a broader overview of psychopathology: the Internalizing Problems scale is calculated as the sum of Anxious/Depressed, Withdrawn/Depressed, and Somatic Complaints; the Externalizing Problems scale combines Rule-Breaking and Aggressive Behavior; and the Total Problems score sums all items across the entire instrument, providing an overall index of behavioral and emotional difficulties. These broad scales are particularly useful for neurodevelopmental and neuropsychological research, as they correlate strongly with neurobiological measures and developmental trajectories.
In addition to the empirically derived scales, the CBCL incorporates DSM-oriented scales aligned with DSM-6 diagnostic categories 5. These include the Depressive Problems scale (covering dysthymia and major depressive disorder), Anxiety Problems scale (encompassing generalized anxiety, separation anxiety, and specific phobias), Somatic Problems scale (related to somatization and somatoform disorders), ADHD scale (detecting hyperactive, impulsive, and inattentive symptom clusters), Oppositional Defiant Problems scale (Oppositional Defiant Disorder), and Conduct Problems scale (related to conduct disorder). These DSM-oriented scales facilitate the clinical interpretation of the child's symptoms within established diagnostic frameworks and enhance the instrument’s utility for both research and clinical screening. The CBCL also provides supplementary symptom scales targeting specific features that may not be fully captured by the broader scales. These include the Sluggish Cognitive Tempo scale, Obsessive-Compulsive Problems scale, and Stress scale, which evaluate neurocognitive, obsessive-compulsive, and stress-related symptomatology. All these scales have demonstrated excellent psychometric properties, with high test-retest reliability (intraclass correlation coefficients ranging from 0.72 to 0.97), indicating stable and consistent measurement across time. The CBCL’s comprehensive nature, validated structure, and strong psychometric credentials make it an indispensable instrument for investigating the neural correlates of childhood mental health issues.

Cognitive Assessments
We chose the NIH Cognition Battery Toolbox (NIHTB) to evaluate children’s cognitive performance due to its strong psychometric and practical advantages 6,7. Developed under the NIH Blueprint for Neuroscience Research, the NIHTB includes seven tasks covering key cognitive domains such as memory, executive functions, attention, working memory, processing speed, and language. Its design employs item response theory (IRT) and computerized adaptive testing (CAT), ensuring age-appropriate, efficient, and reliable assessments across developmental stages. The toolbox is brief to administer, demonstrates high test-retest reliability, and has validated its effectiveness across diverse populations. Recent studies also show that NIHTB provides highly sensitive measures that effectively capture neuroimaging variations in children, with notable correlations between cognitive scores and brain structure. These strengths—comprehensiveness, robustness, and neuroimaging sensitivity—support our decision to use the NIHTB in this study 8.
The NIHTB comprises seven tasks and three composite scores that reflect key neurocognitive domains 9. It includes the Toolbox Picture Vocabulary Task, which assesses language and verbal cognition—crucial for communication, academic success, and occupational outcomes, and strongly linked to neural mechanisms of language processing 10. The Toolbox Oral Reading Recognition Task evaluates reading-related neural pathways, serving as a proxy for general intelligence and broader cognitive and socioeconomic factors 11. The Toolbox Pattern Comparison Processing Speed Test measures rapid visual processing, a sensitive indicator of cerebral integrity, often affected in brain injury and neurodegenerative conditions 12. The List Sorting Working Memory Test assesses working memory capacity, reflecting neural resources involved in maintaining and manipulating information—a core aspect of neurodevelopment during childhood 13,14. The Picture Sequence Memory Test evaluates episodic memory, an ability to recall and mentally re-experience specific episodes encoded in a time-specific manner, critical for cognitive development and vulnerable in neurodegenerative and developmental disorders 15,16. The Flanker Task 17 and Dimensional Change Card Sort 18 measure executive functions such as attention, inhibition, and cognitive flexibility—all governed by prefrontal circuits essential for goal-directed behavior. Additionally, the NIHTB provides composite scores for crystallized intelligence, fluid intelligence, and total intelligence, offering a comprehensive neuropsychological profile. Its tasks demonstrate high test-retest reliability (ICC = 0.76–0.97), supporting its robustness across age ranges from 3 to 85 years.

Resting-state fMRI and Its Preprocessing
The resting-state functional magnetic resonance imaging (fMRI) data for the Adolescent Brain Cognitive Development (ABCD) study were acquired using three different 3T scanner platforms, specifically Siemens Prisma, Philips, and GE 750 systems. The imaging protocols were harmonized across these platforms to ensure data comparability, with the following key parameters: repetition time (TR) = 800 ms, echo time (TE) = 30 ms, voxel resolution of 2.4 × 2.4 × 2.4 mm³, 60 slices per volume, flip angle (FA) = 52°, field of view (FOV) = 216 × 216 mm, phase percentage of field of view (%FOV) = 100%, and multiband acceleration factor = 6. These methodological consistencies facilitate robust multisite neuroimaging analyses in adolescent populations 19.
The baseline fMRI images from the ABCD 5.1 release 20 were preprocessed utilizing a combined approach integrating the FMRIB Software Library (FSL) v6.0 and Statistical Parametric Mapping (SPM) Toolbox within the MATLAB 2024b environment. The preprocessing pipeline included the following steps: 1) Initial volume removal: The first 10 volumes were discarded to mitigate transient signal instabilities, ensuring stabilization of radiofrequency excitation and hemodynamic responses; 2) Motion correction: Rigid body realignment was performed using the MCFLIRT tool in FSL to correct for head motion artifacts; 3) Distortion correction: susceptibility-induced distortions were corrected using field maps acquired with phase-reversed EPI sequences (AP and PA phase encoding directions). These pairs of images were processed with FSL's TOPUP tool to estimate the off-resonance field 21. The resulting field map coefficients were then applied via the APPLYTOPUP tool to rectify geometric distortions in the functional volumes; 4) Spatial normalization: The functional data were spatially normalized to the Montreal Neurological Institute (MNI) standardized space based on an EPI template. This involved resampling the data to isotropic voxels of 3 × 3 × 3 mm³ using SPM's normalization routines; and 5) Spatial smoothing: To enhance signal-to-noise ratio and accommodate inter-individual anatomical variability, the normalized images were smoothed with a Gaussian kernel of 6 mm Full Width at Half Maximum (FWHM). This systematic preprocessing approach ensures data quality and comparability, thereby facilitating reliable subsequent neurofunctional analyses within the adolescent cohort.

Imaging Data Quality Control
We conducted quality control on the preprocessed fMRI images to select subject data for further analysis. The extent to which each subject's data is normalized to the MNI space plays a crucial role in the outcomes of NeuroMark and Functional Network Connectivity (FNC) analysis. Consequently, we excluded scans that did not exhibit good normalization to the MNI standard space. Specifically, we compared individual masks with the group mask and retained those scans that demonstrated a high degree of similarity between the two. To achieve this, we first generated an individual mask for each scan based on the first fMRI time volume, designating voxels as 1 if they were greater than 90% of the whole brain mean. Next, we computed a group mask by assigning a value of 1 to voxels that had a value of 1 in more than 90% of the scans' individual masks. For each scan, we then calculated spatial correlations between the group mask and the individual mask. We assessed these correlations using voxels from the top 10 slices, the bottom 10 slices, and the entire mask, resulting in three correlation values for each scan. A scan was included for further analysis if the correlation from the top 10 slices exceeded 0.75, the correlation from the bottom 10 slices was greater than 0.55, and the whole-brain correlation surpassed 0.8. This method ensures the retention of high-quality masks and fMRI data, and it has demonstrated effectiveness in previous studies 22–24.

NeuroMark and Functional Network Connectivity
The NeuroMark framework is a robust, prior-guided independent component analysis (ICA) approach designed to derive functional connectivity features that are both scan-adaptive and readily comparable across imaging sessions, cohorts, and studies 25. To construct reliable spatial network priors, the framework utilizes two large normative datasets—the Human Connectome Project (HCP 1200 release, https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release) and the Genomics Superstruct Project (GSP, https://www.neuroinfo.org/gsp)—comprising 823 and 1005 quality-controlled participants, respectively. For each dataset, blind ICA was performed to identify reproducible intrinsic connectivity components. Individual fMRI time series were first reduced using principal component analysis (PCA) to 110 components, preserving >95% of the original variance. A second PCA on concatenated subject-level data yielded 100 group-level PCs, which were subsequently decomposed into 100 independent components (ICs) via the Infomax algorithm 26. This decomposition was repeated 100 times using ICASSO 27 to ensure stability, and the most reliable run was selected for each dataset. Spatial correspondence between HCP- and GSP-derived ICs was established using a greedy spatial correlation matching procedure. Component pairs exhibiting spatial correlations ≥ 0.40 were deemed reproducible, exceeding the threshold of r ≥ 0.25 previously shown to indicate significant cross-dataset correspondence (p < 0.005, corrected) 28. Reproducible IC pairs were further vetted based on spatial peak activations and the low-frequency characteristics of their associated time courses. This process yielded 53 high-quality IC pairs, which were subsequently used as spatial network priors for scan-specific back-reconstruction in the ABCD data. These 53 priors were classified into seven canonical large-scale domains: subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VS), cognitive-control (CC), default-mode (DM), and cerebellar (CB) domains. Component classification was determined by consensus among five ICA experts. Notably, domain assignment influences only the visualization of results and does not affect the analytic outcomes or interpretations.
Several considerations motivated our adoption of the NeuroMark framework. First, NeuroMark integrates a robust spatial template with intra-subject spatially constrained ICA, enabling the extraction of individual-level functional features that are comparable across subjects, studies, and datasets. Traditional atlas-based approaches impose fixed parcellations that facilitate reproducibility but overlook subject-specific variability, whereas fully data-driven decompositions (e.g., unconstrained ICA) capture individual differences at the cost of poor cross-dataset replicability. NeuroMark resolves this trade-off by using reproducible network priors to guide—but not rigidly dictate—single-scan decompositions, thereby preserving data-driven adaptability while ensuring cross-study consistency. Importantly, the back-reconstruction step tailors network estimates to each scan, allowing the 53-network template derived from HCP and GSP data to adapt to ABCD-specific signal properties in a way not achievable with fixed atlases. Second, recent lifespan analyses of more than 6,000 resting-state scans demonstrate that ICA-derived network architectures are remarkably stable across development, with over 80% of components reproducible from infancy through late adulthood 29. Notably, templates derived from children and adolescents (5–21 years) closely mirror adult templates, underscoring the broad generalizability of NeuroMark priors for pediatric samples such as ABCD. Third, NeuroMark has been successfully applied across diverse populations and clinical cohorts, capturing functional network alterations associated with cognition, environmental exposures, and psychiatric risk 30–34. Its whole-brain coverage—including cortical and subcortical systems—resembles high–model-order ICA solutions and enhances sensitivity to fine-grained functional organization. Applications include detecting atomoxetine-related FC increases in mild cognitive impairment, identifying neurotoxic effects of arsenic exposure in youth, and, in the ABCD cohort, revealing environment–brain–behavior interactions and deriving a brain-wide risk score predictive of childhood vulnerability to schizophrenia.
Together, these strengths and extensive validation support the use of NeuroMark in the present study to extract reliable and developmentally appropriate functional imaging features in children that are probably associated with prenatal substance exposure.
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	Intrinsic Connectivity Networks
	X
	Y
	Z

	Subcortical Domain (SC)

	Caudate (1)
	6.5
	10.5
	5.5

	Subthalamus/hypothalamus (2)
	-2.5
	-13.5
	-1.5

	Putamen (3)
	-26.5
	1.5
	-0.5

	Caudate (4)
	21.5
	10.5
	-3.5

	Thalamus (5)
	-12.5
	-18.5
	11.5

	Auditory Domain (AUD)

	Superior temporal gyrus ([STG], 6)
	62.5
	-22.5
	7.5

	Middle temporal gyrus ([MTG], 7)
	-42.5
	-6.5
	10.5

	Sensorimotor Domain (SM)

	Postcentral gyrus ([PoCG], 8)
	56.5
	-4.5
	28.5

	Left postcentral gyrus ([L PoCG], 9)
	-38.5
	-22.5
	56.5

	Paracentral lobule ([ParaCL], 10)
	0.5
	-22.5
	65.5

	Right postcentral gyrus ([R PoCG], 11)
	38.5
	-19.5
	55.5

	Superior parietal lobule ([SPL], 12)
	-18.5
	-43.5
	65.5

	Paracentral lobule ([ParaCL], 13)
	-18.5
	-9.5
	56.5

	Precentral gyrus ([PreCG], 14)
	-42.5
	-7.5
	46.5

	Superior parietal lobule ([SPL], 15)
	20.5
	-63.5
	58.5

	Postcentral gyrus ([PoCG], 16)
	-47.5
	-27.5
	43.5

	Visual Domain (VS)

	Calcarine gyrus ([CalcarineG], 17)
	-12.5
	-66.5
	8.5

	Middle occipital gyrus ([MOG], 18)
	-23.5
	-93.5
	-0.5

	Middle temporal gyrus ([MTG], 19)
	48.5
	-60.5
	10.5

	Cuneus (20)
	15.5
	-91.5
	22.5

	Right middle occipital gyrus ([R MOG], 21)
	38.5
	-73.5
	6.5

	Fusiform gyrus (22)
	29.5
	-42.5
	-12.5

	Inferior occipital gyrus ([IOG], 23)
	-36.5
	-76.5
	-4.5

	Lingual gyrus ([LingualG], 24)
	-8.5
	-81.5
	-4.5

	Middle temporal gyrus ([MTG], 25)
	-44.5
	-57.5
	-7.5

	Cognitive-control Domain (CC)

	Inferior parietal lobule ([IPL], 26)
	45.5
	-61.5
	43.5

	Insula (27)
	-30.5
	22.5
	-3.5

	Superior medial frontal gyrus ([SMFG], 28)
	-0.5
	50.5
	29.5

	Inferior frontal gyrus ([IFG], 29)
	-48.5
	34.5
	-0.5

	Right inferior frontal gyrus ([R IFG], 30)
	53.5
	22.5
	13.5

	Middle frontal gyrus ([MiFG], 31)
	-41.5
	19.5
	26.5

	Inferior parietal lobule ([IPL], 32)
	-53.5
	-49.5
	43.5

	Left inferior parietal lobue ([R IPL], 33)
	44.5
	-34.5
	46.5

	Supplementary motor area ([SMA], 34)
	-6.5
	13.5
	64.5

	Superior frontal gyrus ([SFG], 35)
	-24.5
	26.5
	49.5

	Middle frontal gyrus ([MiFG], 36)
	30.5
	41.5
	28.5

	Hippocampus ([HiPP], 37)
	23.5
	-9.5
	-16.5

	Left inferior parietal lobule ([L IPL], 38)
	-47.5
	5.5
	22.5

	Middle cingulate cortex ([MCC], 39)
	-15.5
	20.5
	37.5

	Inferior frontal gyrus ([IFG], 40)
	39.5
	44.5
	-0.5

	Middle frontal gyrus ([MiFG], 41)
	-26.5
	47.5
	5.5

	Hippocampus ([HiPP], 42)
	-24.5
	-36.5
	1.5

	Default-mode Domain (DM)

	Precuneus (43)
	-8.5
	-66.5
	35.5

	Precuneus (44)
	-12.5
	-54.5
	14.5

	Anterior cingulate cortex ([ACC], 45)
	-2.5
	35.5
	2.5

	Posterior cingulate cortex ([PCC], 46)
	-5.5
	-28.5
	26.5

	Anterior cingulate cortex ([ACC], 47)
	-9.5
	46.5
	-10.5

	Precuneus (48)
	-0.5
	-48.5
	49.5

	Posterior cingulate cortex ([PCC], 49)
	-2.5
	54.5
	31.5

	Cerebellar Domain (CB)

	Cerebellum ([CB], 50)
	-30.5
	-54.5
	-42.5

	Cerebellum ([CB], 51)
	-32.5
	-79.5
	-37.5

	Cerebellum ([CB], 52)
	20.5
	-48.5
	-40.5

	Cerebellum ([CB], 53)
	30.5
	-63.5
	-40.5



Spatial Maps of Intrinsic Connectivity Networks
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Spatial organization of intrinsic connectivity networks (ICNs) derived from the NeuroMark functional 1.0 template. The 53 ICNs are grouped into seven canonical functional domains based on established anatomical and functional criteria. For each domain, both composite representations and individual network maps are displayed. Network templates were thresholded at |t| > 10 using one-sample t-statistics computed across subject-level spatial maps. Sagittal, coronal, and axial views are presented at the peak t-value for clusters exceeding 3 cm³.

Associations between Prenatal Cannabis Exposure and Mental Health Outcomes
Table SI. Association between prenatal cannabis use and CBCL scores 
	Mental health assessments
	Cohen’s d value 
	t value
	p value

	mh_p_cbcl__dsm__adhd_tscore
	0.1371
	7.1340
	1.04×10⁻¹²

	mh_p_cbcl__dsm__anx_tscore
	0.0730
	3.7973
	1.47×10⁻⁴

	mh_p_cbcl__dsm__cond_tscore
	0.2204
	11.4663
	2.91×10⁻³⁰

	mh_p_cbcl__dsm__dep_tscore
	0.1061
	5.5219
	3.43×10⁻⁸

	mh_p_cbcl__dsm__opp_tscore
	0.1450
	7.5457
	4.86×10⁻¹⁴

	mh_p_cbcl__dsm__somat_tscore
	0.0546
	2.8404
	4.51×10⁻³

	mh_p_cbcl__ocd_tscore
	0.0895
	4.6560
	3.26×10⁻⁶

	mh_p_cbcl__sct_tscore
	0.1460
	7.5960
	3.31×10⁻¹⁴

	mh_p_cbcl__strs_tscore
	0.1455
	7.5714
	3.99×10⁻¹⁴

	mh_p_cbcl__synd__aggr_tscore
	0.1801
	9.3703
	8.67×10⁻²¹

	mh_p_cbcl__synd__anxdep_tscore
	0.0632
	3.2876
	1.01×10⁻³

	mh_p_cbcl__synd__attn_tscore
	0.1662
	8.6444
	6.17×10⁻¹⁸

	mh_p_cbcl__synd__ext_tscore
	0.1690
	8.7944
	1.66×10⁻¹⁸

	mh_p_cbcl__synd__int_tscore
	0.0708
	3.6846
	2.30×10⁻⁴

	mh_p_cbcl__synd__rule_tscore
	0.2451
	12.7504
	5.71×10⁻³⁷

	mh_p_cbcl__synd__soc_tscore
	0.1497
	7.7873
	7.47×10⁻¹⁵

	mh_p_cbcl__synd__som_tscore
	0.0563
	2.9265
	3.43×10⁻³

	mh_p_cbcl__synd__tho_tscore
	0.1330
	6.9176
	4.85×10⁻¹²

	mh_p_cbcl__synd__wthdep_tscore
	0.1109
	5.7698
	8.16×10⁻⁹

	mh_p_cbcl_tscore
	0.1415
	7.3603
	1.97×10⁻¹³



Associations between Prenatal Cannabis Exposure and Cognitive Outcomes
Table SII. Association between prenatal cannabis use and NIHTB scores 
	Cognitive assessments
	Cohen’s d value 
	t value
	p value

	nc_y_nihtb__readr__uncor_score
	-0.1218
	-6.3029
	3.04×10⁻¹⁰

	nc_y_nihtb__picvcb__uncor_score
	-0.1225
	-6.3426
	2.35×10⁻¹⁰

	nc_y_nihtb__lswmt__uncor_score
	-0.0886
	-4.5796
	4.71×10⁻⁶

	nc_y_nihtb__picsq__uncor_score
	-0.0701
	-3.6296
	2.85×10⁻⁴

	nc_y_nihtb__flnkr__uncor_score
	-0.0490
	-2.5382
	1.12×10⁻²

	nc_y_nihtb__pttcp__uncor_score
	-0.0337
	-1.7423
	0.0814

	nc_y_nihtb__crdst__uncor_score
	0.0068
	0.3560
	0.7218

	nc_y_nihtb__comp__cryst__uncor_score
	-0.1393
	-7.2056
	6.17×10⁻¹³

	nc_y_nihtb__comp__fluid__uncor_score
	0.0585
	3.0428
	2.35×10⁻³

	nc_y_nihtb__comp__tot__uncor_score
	-0.0094
	-0.4875
	0.6259



Associations between FNC and Offspring Outcomes
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Functional network connectivity (FNC) alterations associated with children’s mental health and cognitive performance. A) Associations between FNC and mental health symptoms are examined using linear mixed-effects models (LMMs). Representative phenotypes—rule-breaking behavior, conduct problems, aggressive behavior, and social problems—are shown. Corresponding t-statistic maps are displayed, with connections surviving false discovery rate (FDR) correction (p < 0.05) highlighted. B) LMMs are similarly applied to assess associations between FNC and cognitive performance. Four exemplar cognitive measures—picture vocabulary, composite crystallized cognition, oral reading recognition, and list-sorting working memory—are shown. T-statistic maps are presented, with significant FDR-corrected connections (p < 0.05) highlighted.
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