
 

1 
 

 Uncooled low-noise thin-film optomechanical resonator for thermal 
sensing on lithium niobate  

 Yue Yu,1,2,3,† Ran Yin,1,2,† Ian Anderson,4 Yinan Wang,4 Jack Kramer,4 Chun-Ho Lee,1,2 Xinyi 

Ren,1,2 Zaijun Chen,1,2 Michelle Povinelli,2 Dan Wasserman,4 Ruochen Lu,4 and Mengjie Yu1,2,3 
1Department of Electrical Engineering and Computer Sciences, University of California, 

Berkeley, Berkeley, CA, 94720, USA. 
2Ming Hsieh Department of Electrical and Computer Engineering, University of Southern 

California, Los Angeles, CA, 90089, USA. 
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, 

USA 
4Chandra Family Department of Electrical and Computer Engineering, The University of Texas 

at Austin, TX, 78712, USA 
 †These authors contributed equally 

 

1. STRUCTURAL DESIGN OF BOWL-SHAPE OPTOMECHANICAL  

To reduce the optical and mechanical loss induced by the four anchors, we designed two-step 

etching, as mentioned in the Fabrication Section in the main text. Figure S1 shows more details of 

the structures after first (dark blue) and second (light blue) etching.  

 

Fig. S1 | Structural design. a. Fabrication masks for the two-step etching. Blue and orange color indicate the first 

and second layer, respectively. b. Dimensions at points 1,2,3,4 as marked in a. 

2. THERMO-OPTICAL (TO) EFFECT  

Figure S2a plot the optical transmission spectrum near 1576 nm at different temperatures. As 

temperature increases, the resonance dip moves to longer wavelength, indicating an increase in the 

effective refractive index. Figure S2b plots the resonance wavelengths as a function of 
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temperature. A linear fit yields a TO coefficient of 3.83 × 10−5 K−1. The input power was 

maintained at a low level to suppress potential nonlinear effects. Meanwhile, we also observed a 

distinct decrease in extinction ratio and increase in linewidth as temperature increases.  

 

Fig. S2 | Thermo-optical measurement. a. Measured optical transmission with temperature varying from 15 to 33 

°C. b. Resonance wavelength as a function of temperature with backward and forward sweeping. 

3. SIMULATED TCFS OF DIFFERENT MECHANICAL MODES  

Figure S3a plots a higher frequency mechanical signal measure through phase detection in Fig. 3c. 

Figure S3b plots the simulated temperature coefficients of frequency (TCFs) of four modes, where 

the target mode near 82 MHz shows the maximum TCFs and is consistent with experiment data. 

 

Fig. S3 | TCFs. a. Measured mechanical signal near 224 MHz. b. Simulated TCFs of four mechanical modes. 

4. THERMAL CONDUCTANCE AND CAPACITANCE  

In thermal systems, C and Gth are fundamental parameters that determine the dynamic and steady-

state heat transfer behavior of a device. Gth has three main contributions: the supporting anchors, 

the surrounding air, and thermal radiation  
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 where kair and kLN are the thermal conductivity of the air and LN. Asurface and A are the total 

surface area of the resonator and the cross section of anchors. d, L, σ, ϵ, T are the air gap between 

the resonator and substrate, anchor length, Stefan-Boltzmann constant, emissivity of LN, and 

absolute temperature. The total Gth can be written as Gth = Gth,air + Gth,anchor + Gth,rad. While C is 

defined as ρLNcpV, where ρLN, cp, and V are the LN density, specific heat capacity, and volume. 

Together, Gth and C determine the device’s thermal time constant τc = C/Gth. In our bowl-shaped 

optomechanical resonator, A ∝ wt, Asurface ∝ R2, V ∝ Rwrt, where w, t, R, wr are the anchor width, 

anchor (slab) thickness, the outer radius, and ring width of the resonator. By including the 

geometric parameters in the equations (1), we get Gth,air ∝ R2/d, Gth,anchor ∝ wt/L, Gth,rad	∝ R2. 

5. FREQUENCY NOISE, ALLAN DEVIATION, AND NOISE EQUIVALENT POWER (NEP) 

Frequency noise, usually quantified as the power spectral density (PSD) of the frequency 

fluctuation Sy(f), is especially important for optomechanical and sensing applications, as it 

determines the minimum detectable frequency shifts. Originating from different noise sources, it 

scales with Fourier frequency f as 𝑆3(𝑓) ∼ 𝑓4, where α = −2, −1, ..., 2, 3 [ 1]. However, it doesn’t 

directly show how stability evolves with measurement time τ. To quantify the frequency stability 

of a mechanical resonance over time, people use Allan deviation σy 

𝜎35(𝜏) = 2∫ 𝑆3(𝑓)
678((:0;)
(:0;))

𝑑𝑓.=
>  (2) 

Therefore, σy also follows as a power law in τ as 𝜎3(𝜏) ∝ 𝜏?, where 𝜇 = − 4@A
5

. Note that in this 

paper, we consider τ within the range of 10−4 s to 100 s. The standard five exponents (f2, f1, f0, f−1, 

f−2) are usually sufficient to describe most practical frequency noise sources in oscillators, which 

together result in an overall Allan deviation 

𝜎3(𝑓) = 8∑ 𝜎3,45 (𝜏)5
4BC5 . (3) 

Among all noise sources, thermal-fluctuation-induced frequency noises establish a fundamental 

limit to the frequency stability of the mechanical resonator. In the following, we investigate how 

such thermal fluctuations contribute to frequency noise and analyze the corresponding scaling 

behavior σy with respect to τ. One is thermodynamic noise, where the temperature fluctuation ST(f) 

directly modulates the mechanical frequency, as  
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and ST(f) is typically Lorentzian as  
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where kB and T are the Boltzmann constant and temperature. When 𝑓 ≫ G,-
5:H

	 , 𝑆0(𝑓) ∝ 𝑓> and 
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.
), 

it behaves as Random-walk frequency noise. The other is thermomechanical noise, which comes 

from thermal forces SF(f) acting on the mechanical mode, as  
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where SF(f) = 4kBTmeff Γm. meff, Γm, and gOM are the effective mass, mechanical damping rate, and 

optomechanical coupling rate. When 𝑓 ≪ 𝑓K	, 𝑆Q(𝑓) ≈ const and 𝜎3(𝜏) ∝ 𝜏
.
), which behaves as 

white frequency noise; when 	𝑓 ≫ 𝑓K	, 𝑆Q(𝑓) ≈ 𝑓CE and 𝜎3(𝜏) ∝ 𝜏
2
),  With the above equations, 

we can fit the measured σy before and after oscillation, as shown in Fig. S4. By combining σy with 

the device Gth and TCF, we can convert measured frequency fluctuations into noise-equivalent 

power (NEP), which is a fundamental figure of merit for sensors and is defined as  

𝑁𝐸𝑃D =
√;S$(;)G,-

DHQ
. (7) 

Optimizing the resonator geometry can help to further reduce the NEP and enhance the device 

performance. When operated in air, Gth,air dominates the thermal conductance, thus the thermal 

fluctuation noise NEPT and thermomechanical displacement noise NEPthermo can be written as 

using equation (2) in the main text,  

𝑁𝐸𝑃D ∝ 8
T(

U#)!)(2
, 𝑁𝐸𝑃!"1&K+ ∝ 8

T2

U#!()
. (8) 

In this case, decreasing R and increasing d can substantially reduce both NEPT and NEPthermo in 

the air. Besides, enlarging wr and t provides additional noise suppression, though it may lead to 

increased optical and mechanical losses. When operated in vacuum, Gth,air is set as 0, leaving only 

the anchor and radiation terms. Since Gth,anchor and Gth,rad are comparable, the dominant term 

depends on the specific structure design. 
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Fig. S4 | Allan deviation analysis. a. Reconstructed σA from oscilloscope measurement before oscillation with the 

fitting curves. b. Measured σA from the frequency counter after oscillation with the fitting curves. 
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