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1. STRUCTURAL DESIGN OF BOWL-SHAPE OPTOMECHANICAL

To reduce the optical and mechanical loss induced by the four anchors, we designed two-step
etching, as mentioned in the Fabrication Section in the main text. Figure S1 shows more details of

the structures after first (dark blue) and second (light blue) etching.
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Fig. S1 | Structural design. a. Fabrication masks for the two-step etching. Blue and orange color indicate the first

and second layer, respectively. b. Dimensions at points 1,2,3,4 as marked in a.

2. THERMO-OPTICAL (TO) EFFECT

Figure S2a plot the optical transmission spectrum near 1576 nm at different temperatures. As
temperature increases, the resonance dip moves to longer wavelength, indicating an increase in the

effective refractive index. Figure S2b plots the resonance wavelengths as a function of
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temperature. A linear fit yields a TO coefficient of 3.83 x 107 K'!. The input power was
maintained at a low level to suppress potential nonlinear effects. Meanwhile, we also observed a

distinct decrease in extinction ratio and increase in linewidth as temperature increases.
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Fig. S2 | Thermo-optical measurement. a. Measured optical transmission with temperature varying from 15 to 33

°C. b. Resonance wavelength as a function of temperature with backward and forward sweeping.
3. SIMULATED TCFS OF DIFFERENT MECHANICAL MODES
Figure S3a plots a higher frequency mechanical signal measure through phase detection in Fig. 3c.

Figure S3b plots the simulated temperature coefficients of frequency (TCFs) of four modes, where

the target mode near 82 MHz shows the maximum TCFs and is consistent with experiment data.
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Fig. S3 | TCFs. a. Measured mechanical signal near 224 MHz. b. Simulated TCFs of four mechanical modes.
4. THERMAL CONDUCTANCE AND CAPACITANCE
In thermal systems, C and G are fundamental parameters that determine the dynamic and steady-

state heat transfer behavior of a device. G has three main contributions: the supporting anchors,

the surrounding air, and thermal radiation
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where kair and kin are the thermal conductivity of the air and LN. Asurface and A4 are the total
surface area of the resonator and the cross section of anchors. d, L, o, €, T are the air gap between
the resonator and substrate, anchor length, Stefan-Boltzmann constant, emissivity of LN, and
absolute temperature. The total Gth can be written as G = Ghair + Gthanchor T Gihrad. While C is
defined as pincyV, where pin, ¢, and V are the LN density, specific heat capacity, and volume.
Together, G and C determine the device’s thermal time constant 7. = C/Gw. In our bowl-shaped
optomechanical resonator, 4 & Wt, Asurface X R?, V & Rwit, where w, ¢, R, w, are the anchor width,
anchor (slab) thickness, the outer radius, and ring width of the resonator. By including the

geometric parameters in the equations (1), we get Ginair X R*/d, Gih.anchor X Wt/L, Gihrad X R,
5. FREQUENCY NOISE, ALLAN DEVIATION, AND NOISE EQUIVALENT POWER (NEP)

Frequency noise, usually quantified as the power spectral density (PSD) of the frequency
fluctuation S,(f), is especially important for optomechanical and sensing applications, as it
determines the minimum detectable frequency shifts. Originating from different noise sources, it
scales with Fourier frequency fas S, (f) ~ f%, where a=-2, -1, ..., 2, 3[ 1]. However, it doesn’t
directly show how stability evolves with measurement time z. To quantify the frequency stability

of a mechanical resonance over time, people use Allan deviation o,

_ o sin*(mf1)
oy (1) =2, Sy =iz M-
Therefore, oy also follows as a power law in 7 as g, (7) o« 7#, where u = — aTH Note that in this

paper, we consider 7 within the range of 107 s to 100 s. The standard five exponents (£, /1, 2, /!,
f2) are usually sufficient to describe most practical frequency noise sources in oscillators, which

together result in an overall Allan deviation

ay(f) = / a=—203a(0)-(3)

Among all noise sources, thermal-fluctuation-induced frequency noises establish a fundamental
limit to the frequency stability of the mechanical resonator. In the following, we investigate how
such thermal fluctuations contribute to frequency noise and analyze the corresponding scaling
behavior g, with respect to 7. One is thermodynamic noise, where the temperature fluctuation S#(f)

directly modulates the mechanical frequency, as
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S(f) = (22) $(f), ()
and S7(f) is typically Lorentzian as
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where kB and T are the Boltzmann constant and temperature. When f > ZGT”é Sr(f) o< f 0 and

1 1
0, (T) « T 2, it behaves as white frequency noise; when f < 267% ,S¢(f) o« f~% and 0, (1) « 12,

it behaves as Random-walk frequency noise. The other is thermomechanical noise, which comes

from thermal forces Sr(f) acting on the mechanical mode, as

Sf(f) _ (gOM)Z Sr(f) (5)

n mﬁff[(w%l—(zﬂf)z)z+(2nfrm)2]’
where SH(f) = 4ksTmett L. mest, T'm, and gowm are the effective mass, mechanical damping rate, and

1
optomechanical coupling rate. When f < f,,,, Sp(f) ~ const and 0,,(7) « 72, which behaves as

3
white frequency noise; when f > f,,Sz(f) = f~* and 0,,(7) 72, With the above equations,
we can fit the measured o, before and after oscillation, as shown in Fig. S4. By combining o, with
the device Gu and TCF, we can convert measured frequency fluctuations into noise-equivalent

power (NEP), which is a fundamental figure of merit for sensors and is defined as

NEP, = —ﬁ"; 26”1. %

Optimizing the resonator geometry can help to further reduce the NEP and enhance the device
performance. When operated in air, Gu,.ir dominates the thermal conductance, thus the thermal
fluctuation noise NEPT and thermomechanical displacement noise NEPthermo can be written as

using equation (2) in the main text,

f R* R3
NEPTOC m,NEPthermo(x W(S)

In this case, decreasing R and increasing d can substantially reduce both NEPt and NEPermo in
the air. Besides, enlarging w, and ¢ provides additional noise suppression, though it may lead to
increased optical and mechanical losses. When operated in vacuum, G air 18 set as 0, leaving only
the anchor and radiation terms. Since Githanchor and Ginrad are comparable, the dominant term

depends on the specific structure design.
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Fig. S4 | Allan deviation analysis. a. Reconstructed ca from oscilloscope measurement before oscillation with the

fitting curves. b. Measured ca from the frequency counter after oscillation with the fitting curves.
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