
Supplementary notes  
 
Interval‐Based Allelic  Imbalanced Detection Method Simulation.  In samples with high  tumor 
content  >0.67,  all  performance  measures  were  >0.85  when  total  read  counts  were  >20x, 
reaching to >0.95 at counts above 50x. For tumor samples with purity in the mid‐range of 0.33–
0.67, sensitivity and accuracy reached to >0.85 when total read counts were >100x. In samples 
with  very  low  tumor  contents  of  ≤0.33,  the  accuracy  for  detecting  imbalanced  expressions 
reached to only 0.68 at depth >200x. 

 

 
 
 
 
 
 

Figure 1. Allelic Imbalance detection method simulation results. A) Performance across purity and sequencing depth. B) 
A:B ration for randomly selected simulated loci.  



Framework to process the allele counts.  
 

 
Figure 2. Framework that has been used for extracting allele counts for TCGA BRCA data.  

 
SNP and depth for TCGA tumor for sufficiently powered genes.  
 

 
 
 
 
 
 
 
 

Figure 3. The distribution of mean SNP and depth for sufficiently powered genes for both DNA and RNA 
counts. 



Copy‐number distribution of allele frequency in CNV profiles.  
 

 
 
Figure  4.  CNV  and  expression  attributions. A)  Schematic  that  showing  how DNA  copies,  RNA  allelic  expression  and  overall 
expression can be related. All possible combinations should be considered while interpreting the results. B) Distribution of the 
allele frequency of DNA counts in different copy‐number profiles calculated for TCGA data.      

 
Recurrent monoallelic genes. 
 

 
Figure 5. Allelic expression profile of x‐chr and known imprinted genes.   

 
Among  the  gene with  the  highest  rate  of  imbalanced  expression, we  identified  a  subset—
including BCALF1, MAP2K3 and AP3S1 —whose allelic expression is consistently restricted to a 



single  allele  across  clonal  tumor  cells.  These  patterns  suggest  potential  imprinting‐like 
regulation, where gene expression  is monoallelic due  to  inherent epigenetic programming or 
tumor‐specific silencing mechanisms. Whether through parent‐of‐origin  imprinting, epigenetic 
silencing,  or  allele‐specific  regulatory  disruption,  these  genes  appear  to  maintain  stable 
monoallelic  expression  in  the  tumor  context,  raising  the  possibility  that  they  contribute  to 
clonal identity or tumor progression.  
 

 

 
Figure 6. DNA And RNA allelic distribution of BCALF1 and MAP2K3.  

 
Subtype‐specific genes pathway enrichment. Pathway enrichment analysis of subtype‐specific 
monoallelic  gene  groups  revealed  distinct  functional  signatures  reflective  of  each  tumor 
subtype's biology. In the Basal subtype, genes exhibiting enriched monoallelic expression were 
significantly associated with Keratin type II family members, as well as pathways related to cell 
cycle regulation (adjusted p = 0.006) and DNA repair, specifically the Fanconi anemia pathway 
(adjusted  p  =  0.03).  This  suggests  a  potential  link  between  allelic  imbalance  and  critical 
processes  involved  in proliferation and genomic stability within basal‐like tumors.  In contrast, 
the  LumA/B  subtype  showed  moderate  enrichment  for  pathways  involved  in  phospholipid 
biosynthesis (adjusted p = 0.09), formation of the translation preinitiation complex (adjusted p = 
0.09),  and  pantothenate  and  CoA  biosynthesis  (adjusted  p  =  0.30),  suggesting  potential 
alterations in membrane remodeling, translational control, and coenzyme metabolism that may 
distinguish this subtype at a functional  level. These distinct pathway enrichments suggest that 
monoallelic expression in each subtype may be shaped by—or contribute to—subtype‐specific 
regulatory programs and may  influence therapeutic responsiveness or tumor progression  in a 
subtype‐dependent manner. 



 
Figure 7. Allelic expression profile of recurrent monoallelic genes in Basal.  

 

 
Figure 8. Top 10 recurrent monoallelic genes in each subtype, their exclusivity, and their copy number associations.  



Allele‐specific  expression  (ASE)  of  pioneer  transcription  factors.  ASE  of  TFs  have  been 
associated with disruption of regulatory networks and tumorigenesis. Among the 6,580 genes 
tested  for allelic expression, we  identified 307  transcription  factor genes, 8% of which  (30 of 
365)  exhibited  allelic  imbalance  in more  than  50%  of  tumors.  Therefore, we  asked whether 
imbalanced expression of TF genes had an  impact on expression of  their  target gene. To  this 
end, we stratified the tumors  into two groups with TF balanced and  imbalanced expression of 
each factor and evaluated the expression  levels of their known target genes by  looking at the 
mean expression  level between the two groups. We  identified significant differences between 
expression of  targets genes  for 10 out of 30 recurrently  imbalanced TFs,  including MYC,  JUN, 
SP1, and ELF1.   
 

 
Figure 9. Volcano plot for differential expression profiles between balance and imbalanced samples of TF genes.  

 
 
We  classified  the  breast  tumors  based  on  the  allelic  expression  profiles  across  these 
transcription  factors  and  identified  the  factors  naturally  grouped  together,  forming  patterns 
that  separated  specific  subsets  of  tumors.  There  are  two  groups  that  are  characterized  by 
imbalanced  expression  of  functionally  related  genes,  including  NCOR1,  KMT2X  and  ARID1A, 
BRCA1, CNOT7, NR3C1.  
 
 



 

Figure 10. Correlation of imbalanced samples of TF genes. Higher correlation score indicates the more imbalanced samples of 
each two gene appear together.  

 

 
Figure 11. Allelic expression profile of correlated TF genes.   



Imbalanced  expression  associations  with  clinical  outcome.  Survival  analysis  showed  that 
monoallelic versus biallelic expression of 113 genes (with more than 10 samples in each allelic 
profile  group) was  significantly  associated with  differences  in  clinical  outcomes.  Imbalanced 
expression was generally associated with poor overall survival (Give range in risk per time units) 
compared to balanced expression (in 110 cases out of 113 cases). Five genes,  including LLGL2 
(enriched  in  Basal), MLEC  (enriched  in  LumA),  TDG  (enriched  in  not‐classified),  CAPN8,  and 
ABCC8  showed worse  survival  outcomes  in  tumors with  imbalanced,  suggesting  that  allelic 
imbalance in these loci may contribute to more aggressive disease biology. In these genes, the 
average  ratio  between  the  number  of  balanced  and  imbalanced  samples  is  1.8.  Conversely, 
imbalanced expression of a  smaller  subset of genes,  including MAGED2, SET, and  ITGB5 was 
associated  with  improved  survival,  indicating  possible  context‐specific  protective  effects  or 
immune‐related mechanisms. Among these genes, MAGED2 showed monoallelic enrichment in 
Basal,  and  ITGB5  in  the not‐classified  tumor  samples,  respectively.  In  SET  and MAGED2,  the 
average  ratio  between  the  number  of  balanced  and  imbalanced  samples  is  1.5,  being 
dominated in imbalanced samples.  

 
Figure 12. Volcano plot showing differential survival ratio and p‐value between balance and imbalance samples of each gene.  

 
Comparison  to  normal  tissue. We  examined  genes  known  as  imprinted/monoallelic  genes 
which exhibit balanced allelic expression in a subset of tumor samples in sharp contrast to the 
expected monoallelic exhibited  in normal  tissue  (GTEx as  reference). For  instance, MEST and 
IGF2  are  imprinted  genes, which  clearly  lose  imprinting  in  at  least 15% of  samples  in TCGA‐
tumor.  The  loss  of  imprinting  of MEST  and  IGF2 was  not  associated with  any  breast  cancer 
subtype. Next, we examined whether there were genes which exhibited monoallelic expression 
in a significant fraction of samples both  in the tumors as well as normals. These genes would 
reflect  imprinting which has  largely been preserved even  in the tumors. With the threshold of 
50%  imbalance,  for both GTEx and TCGA, we  found RPL9 with strong evidence of monoallelic 
expression, has been reported to exhibit monoallelic expression.  
 



 
Figure 13. Genes showing highly differential allelic ratio in TCGA tumor and GTEx allele counts based on the balance/imbalance 
assessment  with  IB‐Aid method.  Y‐axis  indicates  that  in  what  percentage  of  samples  each  specific  gene  was  sufficiently 
powered, and X‐axis indicates that in what percentage of samples that specific gene showed imbalanced expression; looking at 
this information in both TCGA and GTEx (left and right). Top plots are genes with highly differentiated genes between TCGA and 
GTEx weighed towards being imbalanced in TCGA, and bottom plots are showing differentiated genes weighted towards being 
balanced in TCGA (loss of imprinting or X‐chr inactivation).  

 
When  comparing  the  prevalence  of  monoallelic  expression  between  tumors  and  matched 
normal samples, we observed some X chromosome genes displayed striking differences: while 
these genes showed a high percentage of allelic imbalance in tumors, the imbalance frequency 
was approximately halved in normal tissues (Supplementary Table 8). This pattern may reflect 
dysregulation  of  X‐chromosome  inactivation  or  escape  from  dosage  compensation  in  tumor 
cells,  leading to preferential expression of one allele. Such alterations could contribute to sex‐
linked vulnerabilities  in breast cancer and highlight a mechanism by which tumor cells exploit 
allelic imbalances. 
 
 
Gene‐variant allelic and ancestry association. Among  the exclusive genes  in  the unclassified 
group,  part  of  genes  showed  strong  association  with  allelic  imbalance,  while  other  were 
associated with both balanced and imbalanced states. This dual association suggests that these 
genes  are  allelically powered  in  this  group—likely due  to  the presence of polymorphisms or 
informative SNPs—which may underlie their distinct expression patterns. These findings further 



support  a  role  for  germline  variation  and  allele‐specific  regulation  in  shaping  subtype‐  and 
ancestry‐linked  gene  expression  in  the  unclassified  group.  Some  of  these  informative 
associations  also  show  a  clear  link  to  ancestry  (p‐values),  particularly  among  Black/African 
American  patients.  This  is  consistent  with  the  ancestral  enrichment  observed  within  the 
unclassified subgroup, where these genes display allelic patterns shaped by population‐specific 
SNP variation. The overlap between ancestry‐associated polymorphisms and allelic expression 
profiles  underscores  the  importance  of  considering  genetic  background  when  interpreting 
monoallelic expression, especially in transcriptionally unclassified tumors.  
 
We further analyzed the top phased SNPs within each gene to examine their associations across 
PAM50 subtypes and ancestry groups, stratified by balanced and imbalanced expression states. 
Some  SNPs were  consistently  associated with  the  unclassified  group  under  both  conditions, 
indicating their role as  informative markers  in this subgroup. Others showed specificity, being 
linked exclusively to either balanced or imbalanced expression, suggesting potential functional 
or  regulatory  roles.  Similarly,  several  SNPs  demonstrated  ancestry‐specific  associations, 
particularly with the Black/African American group, reinforcing the interplay between germline 
variation,  allele‐specific  expression,  and  population  background  in  shaping  transcriptional 
phenotypes. 
 

 
 

 

Adjusted p‐value 



 
Figure 14. A) Association of balanced  and  imbalanced  samples of  SDHD  gene with ethnicity  and  subtype. B) Association of 
phased SNIPs in SDHD with ethnicity and subtype; separate in balanced and imbalanced samples. C) The co‐occurrence of SNIPs 
together.       

 
 
PAM 50 markers not classifying the NA group. 
 
The PAM50  gene  set  failed  to  confidently  classify  a  subset of  tumors, which were  therefore 
labeled as NA. To  further  characterize  these unclassified  cases, we examined  the expression 
profiles  of  the  canonical  PAM50 marker  genes  alongside  additional  candidate marker  genes 
identified  from  differential  expression  analysis  of  the  NA  group.  This  combined  expression 
analysis  revealed  distinct  transcriptional  patterns  in  the  unclassified  tumors  that  were  not 
captured  by  the  PAM50 markers  alone,  suggesting  underlying  biological  heterogeneity  and 
indicating  that  these  tumors  may  represent  a  transcriptionally  distinct  subtype  or  an 
intermediate state not well defined by the existing PAM50 framework. 

SDHD 



 
Figure 15. Expression profile of the marker genes of PAM50 + the potential marker genes identified for the unclassified tumors.  

 
 

 
Figure 16. Mean z‐score expression of the marker genes of PAM50 + the potential marker genes identified for the unclassified 
tumors. 
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TCGA with marker expressions.  
Marker  genes  were  identified  by  training  on  unclassified  tumors  in  the  TCGA  cohort  and 
subsequently used to classify tumors in the independent METABRIC dataset. We then examined 
the  expression profiles of  these markers  in  TCGA  to  confirm  that  they  exhibit  coherent  and 
discriminative patterns in the training cohort that underlie the cross‐cohort classification. 
 

 
Figure 17. Expression profile of the potential marker genes of the unclassified tumors in TCGA; validated in METABRIC.     


