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S1. Alphabet-11 Optical Knots 

In this section, we define each knot in Alphabet-11, a set of 11 different optical knots comprising nine Hopf links 

with varying geometries (H1–H9) and two trefoil knots (T1 and T2). Figure S1 illustrates these knots, showing their 

3D structures, corresponding field distributions in the central plane, and their respective Laguerre-Gaussian (LG) 

spectra. 

The LG spectrum coefficients, denoted as 𝑐𝑙,𝑝, are obtained by decomposing the electric field of each knot, 𝐸knot, 

as follows: 

𝐸knot =∑𝑐𝑙,𝑝 LG𝑙,𝑝(𝑅, 𝜑, 𝑧)

𝑙,𝑝

, (S1) 

where LG modes are defined as: 
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Here, 𝑙 is the azimuthal index, 𝑝 is the radial index, 𝑧R = 𝑘0𝑤0
2 is the Raleigh range, 𝑘0 is the wavenumber, 𝐿𝑝

𝑙  are the 

generalized Laguerre polynomials, and 𝑤0 is the beam waist parameter. 

Below, we provide a detailed description of each knot, outlining its construction and defining properties, with all 

weights 𝑐𝑙,𝑝 listed in Table S1. 

H1, H2, H3 Hopf Links 

The H1, H2, and H3 Hopf links are classical isolated optical knots that can all be obtained from the Milnor 

map [1]: 

𝑞H1 = (𝑢 − 𝑣)(𝑢 + 𝑣), (S3) 

where 𝑢 and 𝑣 are defined by the inverse stereographic projection, using the complex coordinates for the 3-sphere: 

𝑢(𝑅, 𝜙, 𝑧) =
𝑅2 + 𝑧2 − 1 + 2𝑖𝑧

𝑅2 + 𝑧2 + 1
, 

𝑣(𝑅, 𝜙, 𝑧) =
2𝑅𝑒𝑖𝜙

𝑅2 + 𝑧2 + 1
. 

(S4) 

In cylindrical coordinates at the 𝑧 = 0 plane, after removing the common divisor, this transforms into: 

𝑞H1,H2,H3(𝑅, 𝜑, 𝑧 = 0) = 1 − 2𝑅
2 − 4𝑅2 exp 2𝑖𝜙 + 𝑅4. (S5) 

To obtain the final LG spectrum coefficients for H1, we integrate 𝑞H1,H2,H3 over the LG modes at 𝑧 = 0: 

𝑐𝑙,𝑝(𝑤) = ∫∫ 𝑑2𝑹
ℝ2

LG−𝑙,𝑝(𝑅, 𝜑, 𝑧 = 0,𝑤)LG0,0(𝑅, 𝜑, 𝑧 = 0,𝑤)𝑞H1,H2,H3(𝑅, 𝜑, 𝑧 = 0). (S6) 



The parameter 𝑤 defines the shape of the optical knot and must be selected within a specific range to preserve the 

desired topological configuration [1,2]. The values for 𝑤 are: H1: 𝑤 = 1.4, H2: 𝑤 = 1.6, H3: 𝑤 = 1.8.  

H4 Hopf Link 

To construct H4, we start with the H2 Hopf link (𝑤 =  1.6) and modify the inverse stereographic projection (S4) 

by rotating the two loops of the link around the 𝑥-axis in opposite directions: one loop is rotated by 𝜃 = 𝜋/6, and the 

other loop is rotated by 𝜃 = −𝜋/6. The transformation is given by: 

𝑥 → 𝑥, 𝑦 → 𝑦 cos( 𝜃) − 𝑧 sin( 𝜃) , 𝑧 → 𝑦 sin( 𝜃) + 𝑧 cos ( 𝜃). (S7) 

As a result, the final Milnor map in the 𝑧 = 0 plane takes the form: 

 

Fig. S1. Optical knot basis. Field phases and corresponding amplitude distributions (shown in the insets) at 𝑧 = 0, along 

with the LG spectra and 3D visualizations of the singularity line structures for each optical Hopf link (H1–H9) and 

optical trefoil knots (T1, T2) in Alphabet-11. The names are displayed above each panel. The color bar for all amplitude 

distributions in the insets is shown in the first panel and remains constant for all subsequent panels. 



𝑞H4(𝑅, 𝜑, 𝑧 = 0) = (+𝑅4

+ 𝑅2[−2 − 2𝑒−𝑖2𝜑 − 2𝑒2𝑖𝑎 − 2(−𝑒−𝑖2𝜑 + 𝑒𝑖2𝜑) cos(𝜃1)

+ 2(−𝑒−𝑖2𝜑 + 𝑒𝑖2𝜑) sin(𝜃1) − 2 sin(𝜃1) + 𝑒
−𝑖2𝜑 sin(𝜃1) + 𝑒

𝑖2𝜑 sin(𝜃1)]). 
(S8) 

For a detailed derivation, see Appendix B in [3]. 

H5 Hopf Link 

To construct the H5 Hopf link, we start with the classical H2 knot with 𝑤 =  1.6 and modify the inverse 

stereographic projection (S4) in two steps. First, we rotate one of the loops around the 𝑧-axis by an angle 𝛼 = 𝜋/6, 

applying the transformation: 

𝑥 → 𝑥 cos(𝛼) − 𝑦 sin(𝛼) , 𝑦 → 𝑥 sin(𝛼) + 𝑦 cos(𝛼) , 𝑧 → 𝑧. (S9) 

To compensate for the vertical displacement caused by this transformation, one lobe is shifted upward by 𝑧1 = 0.3, 

while the other is shifted downward by 𝑧2 = −0.3. The Milnor polynomial at 𝑧 = 0 for this modified Hopf link takes 

the form: 

𝑞H5(𝑅, 𝜑, 𝑧 = 0) = (1 + 𝑅(2𝑒𝑖𝜑 − 2𝑒𝑖(𝜑+𝛼) − 4𝑖𝑒𝑖(𝜑+𝛼)𝑧1 + 2𝑒
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(S10) 

For a detailed derivation, see [3]. 

H6 Hopf Link 

Hopf link H6 is a numerically optimized Hopf link designed to improve stability in turbulent environments. A 

detailed description of the optimization approach used for this knot is provided in [3]. 

H7 Hopf Link 

Hopf link H7 is constructed by shifting the two loops along the 𝑧-axis in opposite directions by 0.3. The 

mathematical expression for this link is essentially the same as for H5, but without any rotation, meaning the angle 𝛼 

is set to 0. 

H8 Hopf Link 

Hopf link H8 is obtained by keeping one of the loops unchanged while rotating the other by an angle 𝜃 = 𝜋/9 

along the 𝑥-axis. The procedure follows the same approach as in H4, but with a different rotation angle applied to only 

one of the lobes. 

H9 Hopf Link 

Hopf link H9 is constructed using the same method as H5, with the only difference being the rotation angle 𝛼. 

For H9, the angle is 𝛼 = 𝜋/12 instead of 𝜋/6 as used in H5. The shifts along the 𝑧 direction remain the same at ±0.3. 

T1 Trefoil Knot 

Trefoil T1 is a classical isolated optical knot obtained without modifications to the stereographic projection, 

similar to Hopf links H1, H2, and H3. The Milnor map for this trefoil is defined as: 

𝑞T1 = (𝑢 − 𝑣1.5)(𝑢 + 𝑣1.5), (S11) 

which, upon eliminating the shared denominator, transforms at 𝑧 = 0 into the following expression: 

𝑞T1(𝑅, 𝜑, 𝑧 = 0) = 1 − 𝑅
2 − 8𝑅3 exp 3𝑖𝜙 − 𝑅4 + 𝑅6. (S12) 

Parameter 𝑤 is set to 𝑤 = 1.2. 

T2 Trefoil Knot 

Trefoil T2 is a numerically optimized knot designed for improved stability in a turbulent environment. The 

optimization approach follows the same method used for H6 and is described in detail in [3]. 

 



Table S1. Coefficients 𝑐𝑙,𝑝 for Alphabet-11 Knots. 

Knot  Indexes (𝑙, 𝑝) in 𝑐𝑙,𝑝 coefficients Corresponding coefficients 𝑐𝑙,𝑝 

H1 (0, 0), (0, 1), (0, 2), (2, 0) 2.60, -6.25, 4.19, -6.05 

H2 (0, 0), (0, 1), (0, 2), (2, 0) 2.98, -7.00, 4.35, -4.81 

H3 (0, 0), (0, 1), (0, 2), (2, 0) 3.25, -7.44, 4.40, -3.84 

H4 (-2, 0), (0, 0), (0, 1), (0, 2), (2, 0) -0.64, 2.00, -7.32, 5.76, -2.97 

H5 (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0) 2.89, -6.53, 4.01, 0.60, -0.35, -3.91 

H6 (0, 0), (0, 1), (0, 2), (2, 0) 2.96, -6.22, 4.74, -5.48 

H7 (0, 0), (0, 1), (0, 2), (1, 0), (2, 0) 3.09, -7.00, 4.29, -1.22i, -4.65 

H8 (-1, 0), (-1, 1), (0, 0), (0, 1), (0, 2), (1, 0), (1, 

1), (2, 0) 

-0.97, 0.86, 2.55, -6.99, 4.82, 0.97, -0.86, 

-4.25 

H9 (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0) 3.02-0.15i, -6.82+0.35i, 4.18-0.21i, 0.18-

2.27i, -0.08+0.98i, -4.43-0.95i 

T1 (0, 0), (0, 1), (0, 2), (0, 3), (3, 0) 1.71, -5.66, 6.38, -2.3, -4.36 

T2 (0, 0), (0, 1), (0, 2), (0, 3), (3, 0) 1.29, -3.95, 7.49, -3.28, -3.98 

 

S2. Examples of Elements of Alphabet-11 Optical Knots in Turbulence of Different Strengths 

Figure S2 presents three different Hopf links – H4, H6, and H8 – under three turbulence strengths studied in this 

paper: 𝜎𝑅
2 = 0.05, 𝜎𝑅

2 = 0.15, and 𝜎𝑅
2 = 0.25. By comparing the field distributions, LG spectra, and 3D structures of 

these knots after turbulence with their unperturbed counterparts shown in Fig. S1, we can observe how turbulence 

affects the propagation of optical knots. 

In Fig. S2a, representing the weakest turbulence case, the overall 3D structures of the knots remain nearly 

unchanged, though spectral broadening is already noticeable. As turbulence strength increases, Fig. S2b shows more 

pronounced spectral crosstalk, and the shape of the knots becomes increasingly distorted, though their initial structures 

are still recognizable. Under the strongest turbulence, as shown in Fig. S2c, both spectral broadening and structural 

deformation become more significant, making the original knot configurations more challenging to identify. 



 

S3. Full Spectrum-Based MSE Classification of Alphabet-11. 

Figure S3 presents a confusion matrix and the corresponding average classification accuracy calculated over three 

turbulence strengths (𝜎 𝑅
2 = 0.05, 0.15, 0.25) for Alphabet-11 knots, using the complete spectral range for each knot 

realization – specifically, the entire LG spectrum with indices 𝑙 = −10 to 10 and 𝑝 = 0 to 10. The total classification 

accuracy in this case is 28.2%, which is notably lower than the accuracy obtained with the alternative MSE-based 

approach discussed in the main text (34.8%), where only the basis LG modes were used for knot classification. 

Notably, in both classification methods, the turbulence-optimized optical Hopf link H5 exhibits the highest 

classification accuracy and most consistent recognition across the entire Alphabet-11 basis. 

 

Fig. S2. Demonstration of the effect of turbulence of different strengths on optical knots based on the examples of H4, 

H6, and H8. Phase distributions and corresponding fields amplitudes (insets) at 𝑧 = 0, along with the LG spectrum and 3D 

singularity line structures for three optical Hopf links: H4 (first column), H6 (second column), and H8 (third column), after 

exposure to turbulence. (a) Knot structures after turbulence with 𝜎𝑅
2 = 0.05. (b) Knot structures after turbulence with 𝜎𝑅

2 =
0.15. (c) Knot structures after turbulence with 𝜎𝑅

2 = 0.25. 



  

Fig. S3. Confusion matrix for the classification of the alphabet-11 knot basis after turbulence using spectrum-based MSE 

classification with all the modes in spectra. The confusion matrix displays the percentage of each optical knot being classified 

into different knot types after experiencing turbulence. The confusion matrix incorporates data from all three turbulence 

strengths 𝜎 𝑅
2 = 0.05, 0.15, 0.25. 

S4. MSE Classification of Alphabet-11 at Different Turbulence Strengths 

Figure S4 presents confusion matrices for three different turbulence strengths using two MSE-based classification 

methods: spectrum-based (panel a) and shape-based MSE (panel b). The first column corresponds to the weakest 

turbulence with 𝜎 𝑅
2 = 0.05, the second column represents moderate turbulence with 𝜎 𝑅

2 = 0.15, and the third column 

shows results for the strongest turbulence with 𝜎 𝑅
2 = 0.25.  

For all three turbulence levels, the shape-based MSE method consistently achieves higher classification accuracy 

compared to the spectrum-based approach. In the weakest turbulence case, the shape-based method reaches an 

accuracy of 72.1%, whereas the spectrum-based approach achieves 50.3%, highlighting the advantage of incorporating 

spatial structure information in turbulent environments. 

 



 

Fig. S4. Confusion matrices for the MSE-based classification of the optical knot basis after turbulence. The confusion 

matrices display the percentage of each optical knot being classified into different knot types after experiencing turbulence. (a) 

Spectrum-based MSE classification. (b) Shape-based MSE classification. The average classification accuracy is indicated at the 

top of each panel. The first column shows the weakest turbulence case 𝜎 𝑅
2 = 0.05, the second column is the moderate case 𝜎 

𝑅2=0.15, while the last column is the strongest turbulence case 𝜎 𝑅
2 = 0.25.  

 

S5. Spectrum-Based Machine Learning Algorithms 

Models’ architecture 

We developed two spectrum-based machine learning models for classifying structured optical fields: a fully 

connected neural network (FCN) and a convolutional neural network (CNN). Both models process spectral data but 

differ in how they handle spatial correlations. The FCN treats spectral coefficients as a feature vector, whereas the 

CNN interprets the spectrum as a two-dimensional representation, capturing relationships between spectral 

components through convolutional layers. Below, we describe the architecture and training procedures for these 

models. 

The Spectrum-Based FCN for Alphabet-11 is a fully connected neural network designed for spectral 

classification. It consists of an input layer with 91 features, followed by a sequence of fully connected layers, each 

incorporating batch normalization, ReLU activation, and dropout for regularization. The final architecture includes 12 

fully connected layers. Most layers contain 1024 units, while the first and last layers contain 128 units. Each layer is 

followed by batch normalization, ReLU activation, and a dropout layer with a rate of 25% to prevent overfitting. The 

output layer applies a linear transformation to map the features to 11 classes. The total number of trainable parameters 

is 10,795,531. Table S2 provides a detailed description of the FCN model. 

Table S2. Overview of the Spectrum-Based FCN Model Architecture 

Layer Description Output Shape 

Input Layer 7x13 weights [−1,91] 

Fully 

Connected 1 

Linear (91 → 128) + BN + ReLU + Dropout(0.25) [−1,128] 



Fully 

Connected 2 

Linear (128 → 1024) + BN + ReLU + Dropout(0.25) [−1,1024] 

Fully 

Connected 3-11 
Linear (1024 → 1024) + BN + ReLU + Dropout(0.25) 

 

[−1,1024] 

Fully 

Connected 12 

Linear (1024 → 128) + BN + ReLU + Dropout(0.25) [−1,128] 

 

The Spectrum-Based CNN for Alphabet-11 is a convolutional neural network designed for spectral classification. 

It processes two-dimensional spectral data using convolutional layers to capture spatial dependencies. The architecture 

consists of two convolutional stages, each containing three convolutional layers with kernel size 𝑘 = 3, stride 𝑠 = 1, 

and padding 𝑝 = 1. Each layer is followed by batch normalization and ReLU activation functions. A 2D max-pooling 

layer (𝑘 = 2, 𝑠 = 2, 𝑝 = 1) is applied after each stage to reduce the spatial dimensions. The extracted features are 

flattened and passed through two fully connected layers: one with 256 units (ReLU activation) and a final layer with 

11 output units. The total number of trainable parameters is 311,435. See Table S3 for details. 

Table S3. Overview of the Spectrum-Based CNN Model Architecture 

Block Layers & Parameters Output Shape 

Block 1 3 × [Conv2D(𝑘 = 3, 𝑠 = 1, 𝑝 = 1)) + BN + ReLU]  

+ MaxPool2D(𝑘 = 2, 𝑠 = 2, 𝑝 = 1) 

[−1,32,4,7] 

Block 2 3 × [Conv2D(𝑘 = 3, 𝑠 = 1, 𝑝 = 1)) + BN + ReLU]  

+ MaxPool2D(𝑘 = 2, 𝑠 = 2, 𝑝 = 1) 

[−1,64,6,6,6] 

Fully 

Connected 

Flatten → Linear(64×3×4→256) + ReLU → Linear(256 

→11) 

[−1,11] 

 

Training hyperparameters 

To optimize model performance, a comprehensive hyperparameter grid search was conducted across a range of 

values, including learning rate, decay schedule, dropout rates, layer sizes, and kernel configurations. The explored 

parameter ranges are summarized in Table S4. 

Table S4. Hyperparameter Search Space for Spectrum-Based FCN and CNN 

Hyperparameter Value 

Learning rates 10−3, 5×10−3, 10−4, 5×10−4, 10−5, 5×10−5, 10−6 

Decay epochs 0,5,10,25,50 

Decay factors 0.1,0.2,0.5 

Batch sizes 32,64,128 

Dropout Rates (FCN) 0%, 10%, 25%, 50% 

Number of Layers (FCN) 5, 7, 10, 12 

Layer Sizes (FCN) 256, 512, 1024, 1280 

Kernel Sizes (CNN) 3, 5 

Number of Stages (CNN) 1, 2, 3 

Stage Lengths (CNN) 2, 3 

Number of Epochs 25, 50, 75, 100 

 



Following the evaluation, the final selected hyperparameters provided optimal performance for both models. 

These values are presented in Table S5. These optimized hyperparameters ensured stable training and high 

classification accuracy across all turbulence strengths. 

 

Table S5. Final Training Hyperparameters for Spectrum-Based FCN and CNN 

Hyperparameter FCN Value CNN Value 

Loss Function Cross-Entropy Cross-Entropy 

Optimizer Adam Adam 

Initial LR 5×10-4 2×10-5 

LR Decay Epochs 25 25 

LR Decay Factor 0.2 0.2 

Batch Size 64 64 

Dropout Rate 25% - 

Number of Epochs 50 50 

 

S6. Machine Learning Classification of Alphabet-11 at Different Turbulence Strengths 

Figure S5 presents confusion matrices for three different turbulence strengths using two machine learning 

classification methods: (a) spectrum-based FCNN and (b) shape-based CNN. The first column corresponds to the 

weakest turbulence (𝜎 𝑅
2 = 0.05), the second column represents moderate turbulence (𝜎 𝑅

2 = 0.15), and the third 

column shows results for the strongest turbulence (𝜎 𝑅
2 = 0.25). 

Across all turbulence levels, the shape-based CNN consistently outperforms the spectrum-based approach in 

classification accuracy. In the weakest turbulence case, the shape-based method achieves 97.7% accuracy, compared 

to 79.7% for the spectrum-based approach, demonstrating the benefits of incorporating spatial structure information. 

Even under the strongest turbulence conditions, the shape-based method maintains an accuracy of 75.4%, while the 

spectrum-based approach drops to 53.8%, further emphasizing the robustness of shape-based features in turbulent 

environments. 

 



 

Fig. S5. Confusion matrices for machine learning classification of the optical knot basis after turbulence. The confusion 

matrices illustrate the classification performance of Alphabet-11 knots under three turbulence strengths using two machine 

learning models: (a) Spectrum-based FCNN and (b) Shape-based CNN machine learning classification. The first column 

corresponds to the weakest turbulence case (𝜎 𝑅
2 = 0.05), the second column represents moderate turbulence (𝜎 𝑅

2 = 0.15), and 

the last column shows results for the strongest turbulence (𝜎 𝑅
2 = 0.25). The average classification accuracy is indicated at the 

top of each panel. 

S7. Shape-Based Machine Learning Algorithms 

Models’ architecture 

We developed two 3D convolutional neural network (CNN) models to classify structured optical fields: one for 

Alphabet-11 (optical knots) and another for Alphabet-81 (Flower beams). Both models share the same architecture, 

differing only in the number of output classes, which affects the final fully connected layer. Below, we describe the 

models’ architecture along with the training and tuning procedures. 

The Shape-Based CNN for Alphabet-11 consists of two main processing blocks. The first block comprises three 

consecutive 3D convolutional layers, each with a kernel size of 3, a stride of 1, and a padding of 1, followed by batch 

normalization (BN) and a ReLU activation function to ensure stable and efficient training. A 3D max-pooling layer 

with a kernel size of 2, a stride of 2, and a padding of 1 reduces spatial dimensions. The second block mirrors this 

structure but increases the kernel size to 5, capturing more complex spatial features. The extracted feature maps are 

flattened and passed through two fully connected layers: one with 256 neurons and ReLU activation, followed by a 

final classification layer with 11 output neurons, corresponding to the number of optical knot classes. The model has 

4,879,051 trainable parameters and an input volume size of 32 × 32 × 32. Table S6 provides a detailed description of 

the architecture. 

The Shape-Based CNN for Alphabet-81 follows the same architecture but adjusts the final fully connected layer 

to have 81 output neurons, aligning with the classification task for Flower beams. This modification increases the total 

number of trainable parameters to 4,897,041. 

Table S6. Shape-based CNN for Alphabet-11  

Block Layers & Parameters Output Shape 



Convolutional 

Block 1 

3 × [Conv3D(𝑘 = 3, 𝑠 = 1, 𝑝 = 1)) + BN + ReLU]  

+ MaxPool3D(𝑘 = 2, 𝑠 = 2, 𝑝 = 1) 

[−1,32,17,17,17] 

Convolutional 

Block 2 

3 × [Conv3D(𝑘 = 5, 𝑠 = 1, 𝑝 = 1)) + BN + ReLU]  

+ MaxPool3D(𝑘 = 2, 𝑠 = 2, 𝑝 = 1) 

[−1,64,6,6,6] 

Fully 

Connected Layer 

Flatten → Linear(64×6×6×6→256) + ReLU → Linear(256 

→11) 

[−1,11] 

 

Training hyperparameters 

To determine the most effective training configuration, a grid search was conducted across multiple 

hyperparameters. The parameters explored in this search are summarized in Table S7. 

Table S7. Hyperparameter Search Space 

Hyperparameter Value 

Learning rates 10−3, 5×10−3, 10−4, 5×10−4, 10−5, 5×10−5, 10−6 

Decay epochs 0,5,10,25,50 

Decay factors 0.1,0.2,0.5 

Batch sizes 32,64,128 

Number of epochs 25, 50, 75, 100 

 

After evaluating these configurations, the optimal hyperparameters were selected based on the best performance 

achieved on Alphabet-11 and subsequently applied to Alphabet-81. These settings provided a balance between training 

stability and performance, ensuring consistent classification accuracy across different structured optical fields. The 

final hyperparameters are listed in Table S8. By using these optimized parameters, both Shape-Based CNN models 

effectively classify structured optical fields while maintaining robust generalization across different turbulence 

conditions. 

 

Table S8. Final Training Hyperparameters 

Hyperparameter Value 

Loss Function Cross-Entropy 

Optimizer Adam 

Initial LR 10−5 

LR Decay Epochs 25 

LR Decay Factor 0.2 

Batch Size 64 

 

S8. Full Spectrum-Based MSE Classification of Alphabet-11  

This section presents the results of the classification using the spectrum-based convolutional neural network 

(CNN). The confusion matrix, combining all turbulence strengths, is shown in Fig. S6. The total classification 

accuracy achieved with this method is 62.6%, which is comparable to the accuracy of the spectrum-based fully 

connected neural network (FCNN) used in the main text (65.2%). 

The slight difference in accuracy may be attributed to classification errors and potential sub-optimal training 

procedures for the spectrum-based MSE method, where the best global parameters might not have been fully optimized 



during grid search. Overall, the similarity in accuracy between these methods suggests that we are approaching the 

optimal classification performance achievable using spectral data. 

  

Fig. S6. Confusion matrix for the classification of Alphabet-11 knots after turbulence across all turbulence strengths 

using the spectrum-based CNN. The confusion matrix displays the percentage of each optical knot classified into different 

knot types after experiencing turbulence, using the spectrum-based CNN machine learning algorithm. The average classification 

accuracy is 62.6%. The matrix incorporates data from all three turbulence strengths: 𝜎 𝑅
2 = 0.05, 𝜎 𝑅

2 = 0.15, and 𝜎 𝑅
2 = 0.25. 

 

S9. Generation of Flower Beams 

To determine the coefficients 𝑐𝑙,𝑝 of the LG spectrum of Flower beams, analogous to equation (S1), we begin with 

the braid representation, illustrated in Fig. S7a. In this approach, a periodic complex scalar field with braided zero-

lines is embedded in a cylinder of height of 2𝜋, within the coordinate system (𝑥′, 𝑦′, ℎ) defined as: 

{
𝑥′(ℎ) =   𝑐𝑜𝑠(sℎ),

𝑦′(ℎ) =  𝑠𝑖𝑛(sℎ),
 (S13) 

where the parameter 𝑠 determines the number of petals in the Flower beam. Introducing the substitution 𝑢(𝑥′, 𝑦′) =
𝑥′ + 𝑖𝑦′, and 𝑣(ℎ) = 𝑒𝑖ℎ, we obtain the Milnor map expression for a Flower beam with 𝑠 = 4 full-sized petals: 

𝑞flower(𝑢, 𝑣) = 𝑢 − 𝑣
𝑠 . (S14) 

By utilizing the inverse stereographic projection (S4) and multiplying the expression by (𝑅2 + 𝑧2 + 1)𝑠 at the 𝑧 = 0 

plane, we get the Milnor polynomial at the 𝑧 = 0 plane: 

𝑄flower(𝑅, 𝜑, 𝑧 = 0) = −(2𝑒𝑖𝑓𝑅)𝑠 + (−1 + 𝑅2)(1 + 𝑅2)−1+𝑠. (S15) 

This expression allows us to compute the LG spectrum 𝑐𝑙,𝑝 using equation (S6). The specific case for 𝑠 = 4 is given 

by: 

𝑄flower
𝑠=4 (𝑅, 𝜑, 𝑧 = 0) = −16𝑒4𝑖𝑓𝑅4 + (−1 + 𝑅2)(1 + 𝑅2)3. (S16) 

Figure S7b illustrates the corresponding field, its LG spectrum, and the 3D structure. The different colors in the 

figure represent distinct lobes, allowing us to trace their origins in the braid representation. The numbering of lobes 

starts at 𝜑 = 0 and progresses counterclockwise. The angular intervals for each petal are defined as follows: 
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 (S17) 

The value 2 in Fig. S7b indicates that all petals are of full size. To control petal sizes, we apply the same shape 

manipulation approach used for optical knots in Alphabet-11, as detailed in [3]. For each lobe defined in equation 

(S17), its size can be independently adjusted by scaling the stereographic projection (S4) along the 𝑥 and 𝑦 axes within 

the corresponding 𝜑 regions. This is achieved by replacing 𝑥 and 𝑦 with 𝛾𝑥 and 𝛾𝑦, where 𝛾 is the scaling coefficient. 

In our study, we consider three scaling cases, denoted in the paper as 2, 1, and 0, with corresponding values of 

𝛾 = 1, 1.5, and ∞. In practice, removing a lobe does not require  𝛾 = ∞. With a 256 × 256 resolution used for field 

propagation in turbulence, any 𝛾 > 50 produces no noticeable difference, as the lobe effectively disappears. Since 𝛾 

scales the lobe size ~1/𝛾2  in 𝑋𝑌 plane, decreasing the lobe size infinitely or by a sufficiently large finite factor has 

the same effect in a limited-resolution setting.  

It is worth noting that although we refer to petals of size 1 as "half-sized" petals, their actual size reduction is not 

exactly by a factor of 2. The scaling in the 𝑋𝑌 plane follows 𝛾2 = 2.25, and while scaling along the 𝑧-axis is not 

explicitly defined in our case, it is still present. The actual petal size along the 𝑧-axis depends on its projection from 

𝑧 = 0 according to equation (S4) and is indirectly affected by the scaling in the 𝑋𝑌 plane. The final size of each half-

sized petal slightly varies for different Flower beams. For more details, see [3]. 

An example of a Flower beam 2220, where the first three lobes have full size 2 and the fourth lobe is removed 

0, is shown in Fig. S7c. Another example, Flower beam 2120, where the second lobe is scaled by 𝛾 = 1.5 and the 

fourth lobe is removed 0, is presented in Fig. S7d. 

The total number of Flower beam variations is determined by the size variations per petal, raised to the power 𝑠. 
In our case, with three possible sizes (0, 1, and 2) and 𝑠 =  4, the total number of Flower beams is: 34 = 81. 



 

Fig. S7. The concept of creating and modifying Flower beams. (a) Braid representation of an optical Flower beam before 

applying the stereographic projection. (b) Optical Flower 2222, where all lobes are full size (2 – full size, 1 – half size, 0 – 

removed). The panels show the amplitude of the field at 𝑧 = 0, with the inset displaying the corresponding phase distribution, 

the LG spectrum required to generate this structure, and the 3D singularity line shape in two orientations: a general view (top) 

and a top-down view (bottom right). (c) Optical Flower 2220, where one lobe is removed. (d) Optical Flower 2120, where one 

lobe is half the size and another is removed. Panels (b), (c), and (d) share the same set of visualizations (phase, amplitude, 

spectrum, and 3D singularity structures). The lobe colors remain consistent with (a) across all plots. 

S10. Additional Examples of Flower Beams with 5 and 6 Petals 

The general expression for the Milnor polynomial of a Flower beam with 𝑠 full-sized petals is given by equation 

(S15). In the specific cases of 𝑠 =  5 and 𝑠 = 6, the expressions take the following forms: 

𝑄flower
𝑠=5 (𝑅, 𝜑, 𝑧 = 0) = −32𝑒5𝑖𝑓𝑅5 + (−1 + 𝑅2)(1 + 𝑅2)4, 

𝑄flower
𝑠=6 (𝑅, 𝜑, 𝑧 = 0) = −64𝑒6𝑖𝑓𝑅6 + (−1 + 𝑅2)(1 + 𝑅2)5. 

(S18) 

Examples of such Flower beams, including both full-lobed and modified-lobed structures, are illustrated in Fig. 

S8. As the number of petals increases from 4 to 5 and 6, no significant distortions arise in the Flower beam generation 

approach (panels b and d). The spectra of these beams broaden, reaching up to 𝑙 = 7 for 𝑠 = 5 and 𝑙 = 8 for 𝑠 = 6, 

reflecting the increased complexity of the field structure.  



 

Fig. S8. Examples of Flower beams with five and six petals, including modified petal configurations. This figure presents 

different Flower beam structures with 𝑠 = 5 (panels a, b) and 𝑠 = 6 (panels c, d). Each panel consists of: (left) the field phase 

at 𝑧 = 0 with the inset showing the corresponding amplitude distribution, (right) the 3D singularity structure, and (bottom) the 

LG spectrum. (a) Flower beam with five full-sized petals (22222 configuration). (b) Flower beam with five petals, where the 

fifth petal is half-sized and the third is removed (22021). (c) Flower beam with six full-sized petals (222222). (d) Flower beam 

with six petals, where the third and sixth petals are modified (221220). 

 

S11. Flower Beams in Turbulence 

Figure S9 presents examples of Flower beams with four petals in two different configurations: 2222 (first column) 

and 2120 (second column), subject to three different turbulence strengths: 𝜎 𝑅
2 = 0.05, 0.15, 0.25 (panels a, b, c). For 

the weakest turbulence case (𝜎 𝑅
2 = 0.05), spectral broadening is observed, along with minor deformations in the 

singularity line structure. As the turbulence strength increases, mode cross-talk in the LG spectrum becomes 

significantly more pronounced, leading to greater spectral mixing. The singularity structures also experience stronger 

distortions; however, their overall shape remains recognizable, retaining key features of the unperturbed case shown 

in Fig. S7. This demonstrates that, despite the effects of turbulence, the fundamental structure of the Flower beams 

persists, highlighting their robustness in turbulent environments. 



 

Fig. S9. Flower beams with four petals under different turbulence strengths. This figure illustrates the evolution of 2222 

(first column) and 2120 (second column) Flower beams as turbulence strength increases. Each panel includes: (Left) The field 

phase at 𝑧 = 0, with the inset showing the corresponding amplitude distribution. (Right) The 3D singularity structure of the 

optical beam. (Bottom) The LG spectrum of the beam after turbulence. (a) Weak turbulence case (𝜎 𝑅
2 = 0.05). (b) Moderate 

turbulence case (𝜎 𝑅
2 = 0.15). (c) The strongest turbulence case (𝜎 𝑅

2 = 0.25). 

S12. Confusion Matrices for Shape-Based CNN Classification on Simulated Data of Alphabet-81 at Different 

Turbulence Strengths 

Figures S10, S11, and S12 present confusion matrices of the optimized shape-based CNN applied to simulated 

data from Alphabet-81, evaluated under three different turbulence strengths: 𝜎 𝑅
2 = 0.05, 0.15, and 0.25, respectively. 

Corresponding total accuracies are 92.7%, 73.6%, and 59.0%. 

 



 

Fig. S10. Confusion matrix for the classification of Flower beams under weak turbulence (𝝈 𝑹
𝟐 = 𝟎. 𝟎𝟓).  

 



 

Fig. S11. Confusion matrix for the classification of Flower beams under moderate turbulence (𝝈 𝑹
𝟐 = 𝟎. 𝟏𝟓). 

 



 

Fig. S12. Confusion matrix for the classification of Flower beams under the strongest turbulence (𝝈 𝑹
𝟐 = 𝟎. 𝟐𝟓). 

 

S13. Estimation of the Turbulence Parameters in the Experimental Setup 

To determine the refractive index structure parameter, 𝐶𝑛
2, for our experimental system, we used statistical 

measurements of the beam wander of a Gaussian beam. The relationship we employed is: 

𝐶𝑛
2 = 0.328〈𝑟𝑐

2〉𝐷1/3𝐿−3, (S19) 

where 𝐷 is the beam diameter, 𝐿 is the turbulence link length, and 〈𝑟𝑐
2〉 = 〈𝑥2〉 + 〈𝑦2〉 represents the variance of the 

beam wander displacement on the detector. Figure S13a displays the curves of the experimentally estimated 𝐶𝑛
2 

obtained from 2000 realizations, along with the corresponding numerical values. Similarly, Figure S13b shows the 

experimental estimates for the Fried parameter, 𝑟0, overlaid with the numerical predictions.  

Our laboratory-scale experimental setup was designed to emulate a realistic free-space optical link. It uses a beam 

with a 6 mm waist propagating over an equivalent distance of 270 m, achieved through Fresnel scaling to maintain 

consistent optical properties across both scenarios. Notably, to reproduce comparable scintillation levels in both 

simulations and experiments, the hot air chamber had to generate stronger turbulence to compensate for the reduced 



propagation distance and smaller beam size. For instance, calculating the Rytov variance 𝜎𝑅
2 to estimate the order of 

magnitude of 𝐶𝑛
2 for such shorter propagation distance, here 𝐿lab = 1.5m, gives the same order of magnitude as 

observed in Fig. S13 (a). 

 

Fig. S13. Comparison of Experimental and Simulated Turbulence Parameters. (a) Experimentally measured refractive 

index structure parameter 𝐶𝑛
2 (blue) as a function of turbulence chamber temperature, compared with the parameter used in 

simulations (black), shown against the Rytov variance 𝜎𝑅
2. A total of 2000 experimental realizations were recorded. (b) 

Corresponding Fried parameter 𝑟0 values for both simulations (black) and experiments (blue), following the same format as in 

panel (a). 

S14. Fine-Tuning Accuracy of Shape-Based CNN on Alphabet-81 in Experiment 

Figure S14 presents the classification accuracy of the shape-based CNN on Alphabet-81 as a function of the 

number of fine-tuning samples obtained from experimental data. The number of experimental samples used for fine-

tuning the model, initially trained exclusively on simulation-generated data, varies from 0 to 10. 

The results indicate a steady increase in accuracy as more experimental samples are incorporated into training. 

However, the rate of improvement slows, eventually approaching a near-saturation level, suggesting that 10 samples 

are sufficient to achieve accuracy close to its maximum potential. Notably, even with just a single experimental sample, 

the total accuracy reaches 43% from 17% without extra fine-tuning, demonstrating that the model can generalize well 

from limited real-world data. 

This result can be explained by the fact that, in the experiment, Flower beams without turbulence already exhibit 

small deviations from their ideal theoretical structures (see Fig. 4 in the main text). As a result, the machine learning 

algorithm learns these intrinsic deviations inherent to each experimental Flower beam even in the absence of 

turbulence, refining its classification ability. This adaptation enhances the accuracy of the model trained on simulated 

data, bringing it closer to optimal performance. 

 

Fig. S14. Accuracy of the shape-based CNN classification on Alphabet-81 in the experiment as a function of the number 

of fine-tuning samples. This figure illustrates the improvement in classification accuracy achieved by incorporating 

experimental data into the training process. The 𝑥-axis represents the number of fine-tuning samples per class, while the 𝑦-axis 

shows the classification accuracy on the test dataset. As the number of fine-tuning samples increases, accuracy improves but 

plateaus, indicating diminishing returns with additional samples. 
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