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S1. Alphabet-11 Optical Knots

In this section, we define each knot in Alphabet-11, a set of 11 different optical knots comprising nine Hopf links
with varying geometries (H1-H9) and two trefoil knots (T1 and T2). Figure S1 illustrates these knots, showing their
3D structures, corresponding field distributions in the central plane, and their respective Laguerre-Gaussian (LG)
spectra.

The LG spectrum coefficients, denoted as ¢; p,, are obtained by decomposing the electric field of each knot, Eypot,
as follows:

Eknot = Z Cl,p LGl,p (R, ®, Z); (Sl)
Lp

where LG modes are defined as:
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Here, [ is the azimuthal index, p is the radial index, zg = kow¢ is the Raleigh range, k, is the wavenumber, Llp are the
generalized Laguerre polynomials, and wy is the beam waist parameter.

Below, we provide a detailed description of each knot, outlining its construction and defining properties, with all
weights ¢, ,, listed in Table S1.

H1, H2, H3 Hopf Links

The HI1, H2, and H3 Hopf links are classical isolated optical knots that can all be obtained from the Milnor
map [1]:

qu1 = (w—v)(u +v), (S3)
where u and v are defined by the inverse stereographic projection, using the complex coordinates for the 3-sphere:
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In cylindrical coordinates at the z = 0 plane, after removing the common divisor, this transforms into:
Tuiuznz(R, @,z = 0) = 1 — 2R* — 4R? exp 2i¢p + R*. (S5)

To obtain the final LG spectrum coefficients for H1, we integrate gy, yp 3 over the LG modes at z = 0:

Cl,p (W) = dzR LG—l,p (R, (p' z= 0' W)LGO,O(R' (P. z= 0! W) qu,HZ,H3 (Rr <P, z= 0) (86)
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Fig. S1. Optical knot basis. Field phases and corresponding amplitude distributions (shown in the insets) at z = 0, along
with the LG spectra and 3D visualizations of the singularity line structures for each optical Hopf link (H1-H9) and
optical trefoil knots (T1, T2) in Alphabet-11. The names are displayed above each panel. The color bar for all amplitude
distributions in the insets is shown in the first panel and remains constant for all subsequent panels.

The parameter w defines the shape of the optical knot and must be selected within a specific range to preserve the
desired topological configuration [1,2]. The values for w are: Hl: w = 1.4, H2: w = 1.6, H3: w = 1.8.

H4 Hopf Link

To construct H4, we start with the H2 Hopf link (w =

1.6) and modify the inverse stereographic projection (S4)
by rotating the two loops of the link around the x-axis in opposite directions: one loop is rotated by 8 = /6, and the
other loop is rotated by 8 = —m/6. The transformation is given by:

X > x, y = ycos(0) — zsin(8), z — ysin(0) + zcos (0).

(87)
As a result, the final Milnor map in the z = 0 plane takes the form:



qus(R, 9,z = 0) = (+R* , . , .
+ R?[—2 — 2e712¢ — 2210 — 2(—e 7129 + ¢'2¥) cos(6,) (S8)
+ 2(—e 2% + ¢129) 5in(6,) — 2sin(B,) + e "¢ sin(6,) + e'2¥ sin(6,)]).

For a detailed derivation, see Appendix B in [3].
HS Hopf Link

To construct the H5 Hopf link, we start with the classical H2 knot with w = 1.6 and modify the inverse
stereographic projection (S4) in two steps. First, we rotate one of the loops around the z-axis by an angle a = 1 /6,
applying the transformation:

x = x cos(a) — ysin(a), y — xsin(a) + y cos(a), z -z (S9)

To compensate for the vertical displacement caused by this transformation, one lobe is shifted upward by z; = 0.3,
while the other is shifted downward by z, = —0.3. The Milnor polynomial at z = 0 for this modified Hopf link takes
the form:

qus(R, 0,z = 0) = (1 + R(2e? — 21040 — 4jei#+@)7 4 2010407 2 4 4jelb7) — 2e1%7,2)
+ R?(—2 — 4€'®9+®) — 2z, + 2,2 — 2iz, + 2,2) + R*(—2e'¥ + 2¢!(#*®)) 4+ R* (S10)
+ 2izy — 2% + 2izy — 4212, — 2iz,%2, — 2,° — 2i2,7,% + 7,°2,?).
For a detailed derivation, see [3].

H6 Hopf Link

Hopf link H6 is a numerically optimized Hopf link designed to improve stability in turbulent environments. A
detailed description of the optimization approach used for this knot is provided in [3].

H7 Hopf Link

Hopf link H7 is constructed by shifting the two loops along the z-axis in opposite directions by 0.3. The
mathematical expression for this link is essentially the same as for H5, but without any rotation, meaning the angle
issetto 0.

HS8 Hopf Link

Hopf link H8 is obtained by keeping one of the loops unchanged while rotating the other by an angle 8 = /9
along the x-axis. The procedure follows the same approach as in H4, but with a different rotation angle applied to only
one of the lobes.

H9 Hopf Link

Hopf link H9 is constructed using the same method as H5, with the only difference being the rotation angle «.
For H9, the angle is @« = m/12 instead of m/6 as used in HS. The shifts along the z direction remain the same at +0.3.

T1 Trefoil Knot

Trefoil T1 is a classical isolated optical knot obtained without modifications to the stereographic projection,
similar to Hopf links H1, H2, and H3. The Milnor map for this trefoil is defined as:

a1 = (W —v**)(u +v'), (S11)
which, upon eliminating the shared denominator, transforms at z = 0 into the following expression:
gri(R, @,z =0) =1—R* — 8R3exp 3i¢p — R* + R®. (S12)

Parameter w is set to w = 1.2.
T2 Trefoil Knot

Trefoil T2 is a numerically optimized knot designed for improved stability in a turbulent environment. The
optimization approach follows the same method used for H6 and is described in detail in [3].



Table S1. Coefficients ¢, for Alphabet-11 Knots.

Knot Indexes (I, p) in ¢, coefficients Corresponding coefficients ¢y,

H1 (0, 0), (0, 1), (0, 2), (2,0) 2.60,-6.25, 4.19, -6.05

H2 (0, 0), (0, 1), (0, 2), (2, 0) 2.98,-7.00, 4.35, -4.81

H3 (0, 0), (0, 1), (0, 2), (2, 0) 3.25,-7.44,4.40, -3.84

H4 (-2, 0), (0, 0), (0, 1), (0, 2), (2, 0) -0.64, 2.00, -7.32, 5.76, -2.97

H5 (0, 0), (0, 1), (0, 2), (1,0), (1, 1), (2, 0) 2.89,-6.53,4.01, 0.60, -0.35, -3.91

Ho (0, 0), (0, 1), (0, 2), (2, 0) 2.96,-6.22,4.74, -5.48

H7 (0, 0), (0, 1), (0, 2), (1, 0), (2,0) 3.09, -7.00, 4.29, -1.22i, -4.65

H8 (-1, 0), (-1, 1), (0, 0), (0, 1), (0, 2), (1, 0), (1, -0.97, 0.86, 2.55, -6.99, 4.82, 0.97, -0.86,
D, (2,0) -4.25

H9 (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0) 3.02-0.15i, -6.82+0.35i1, 4.18-0.21i, 0.18-

2.27i, -0.08+0.981, -4.43-0.95i
T1 (0, 0), (0, 1), (0, 2), (0, 3), (3,0) 1.71, -5.66, 6.38, -2.3, -4.36
T2 (0, 0), (0, 1), (0, 2), (0, 3), (3,0) 1.29,-3.95,7.49, -3.28, -3.98

S2. Examples of Elements of Alphabet-11 Optical Knots in Turbulence of Different Strengths

Figure S2 presents three different Hopf links — H4, H6, and H8 — under three turbulence strengths studied in this
paper: 67 = 0.05, 62 = 0.15, and 0# = 0.25. By comparing the field distributions, LG spectra, and 3D structures of
these knots after turbulence with their unperturbed counterparts shown in Fig. S1, we can observe how turbulence
affects the propagation of optical knots.

In Fig. S2a, representing the weakest turbulence case, the overall 3D structures of the knots remain nearly
unchanged, though spectral broadening is already noticeable. As turbulence strength increases, Fig. S2b shows more
pronounced spectral crosstalk, and the shape of the knots becomes increasingly distorted, though their initial structures
are still recognizable. Under the strongest turbulence, as shown in Fig. S2¢, both spectral broadening and structural
deformation become more significant, making the original knot configurations more challenging to identify.



S3. Full Spectrum-Based MSE Classification of Alphabet-11.

Figure S3 presents a confusion matrix and the corresponding average classification accuracy calculated over three
turbulence strengths (¢ 4 = 0.05,0.15, 0.25) for Alphabet-11 knots, using the complete spectral range for each knot
realization — specifically, the entire LG spectrum with indices [ = —10 to 10 and p = 0 to 10. The total classification
accuracy in this case is 28.2%, which is notably lower than the accuracy obtained with the alternative MSE-based
approach discussed in the main text (34.8%), where only the basis LG modes were used for knot classification.
Notably, in both classification methods, the turbulence-optimized optical Hopf link H5 exhibits the highest
classification accuracy and most consistent recognition across the entire Alphabet-11 basis.
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Fig. S2. Demonstration of the effect of turbulence of different strengths on optical knots based on the examples of H4,
H6, and H8. Phase distributions and corresponding fields amplitudes (insets) at z = 0, along with the LG spectrum and 3D
singularity line structures for three optical Hopf links: H4 (first column), H6 (second column), and H8 (third column), after
exposure to turbulence. (a) Knot structures after turbulence with 2 = 0.05. (b) Knot structures after turbulence with g2 =

0.15. (c) Knot structures after turbulence with 62 = 0.25.
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Fig. S3. Confusion matrix for the classification of the alphabet-11 knot basis after turbulence using spectrum-based MSE
classification with all the modes in spectra. The confusion matrix displays the percentage of each optical knot being classified
into different knot types after experiencing turbulence. The confusion matrix incorporates data from all three turbulence
strengths o 2 = 0.05,0.15, 0.25.

S4. MSE Classification of Alphabet-11 at Different Turbulence Strengths

Figure S4 presents confusion matrices for three different turbulence strengths using two MSE-based classification
methods: spectrum-based (panel a) and shape-based MSE (panel b). The first column corresponds to the weakest
turbulence with o 2 = 0.05, the second column represents moderate turbulence with o 2 = 0.15, and the third column
shows results for the strongest turbulence with ¢ 2 = 0.25.

For all three turbulence levels, the shape-based MSE method consistently achieves higher classification accuracy
compared to the spectrum-based approach. In the weakest turbulence case, the shape-based method reaches an
accuracy of 72.1%, whereas the spectrum-based approach achieves 50.3%, highlighting the advantage of incorporating
spatial structure information in turbulent environments.
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Fig. S4. Confusion matrices for the MSE-based classification of the optical knot basis after turbulence. The confusion
matrices display the percentage of each optical knot being classified into different knot types after experiencing turbulence. (a)
Spectrum-based MSE classification. (b) Shape-based MSE classification. The average classification accuracy is indicated at the
top of each panel. The first column shows the weakest turbulence case o 4 = 0.05, the second column is the moderate case o
R2=0.15, while the last column is the strongest turbulence case g 2 = 0.25.

S5. Spectrum-Based Machine Learning Algorithms
Models’ architecture

We developed two spectrum-based machine learning models for classifying structured optical fields: a fully
connected neural network (FCN) and a convolutional neural network (CNN). Both models process spectral data but
differ in how they handle spatial correlations. The FCN treats spectral coefficients as a feature vector, whereas the
CNN interprets the spectrum as a two-dimensional representation, capturing relationships between spectral
components through convolutional layers. Below, we describe the architecture and training procedures for these
models.

The Spectrum-Based FCN for Alphabet-11 is a fully connected neural network designed for spectral
classification. It consists of an input layer with 91 features, followed by a sequence of fully connected layers, each
incorporating batch normalization, ReLU activation, and dropout for regularization. The final architecture includes 12
fully connected layers. Most layers contain 1024 units, while the first and last layers contain 128 units. Each layer is
followed by batch normalization, ReLLU activation, and a dropout layer with a rate of 25% to prevent overfitting. The
output layer applies a linear transformation to map the features to 11 classes. The total number of trainable parameters
is 10,795,531. Table S2 provides a detailed description of the FCN model.

Table S2. Overview of the Spectrum-Based FCN Model Architecture

Layer Description Output Shape

Input Layer 7x13 weights [-1,91]

Fully Linear (91 — 128) + BN + ReLU + Dropout(0.25) [—1,128]
Connected 1




Fully Linear (128 — 1024) + BN + ReLU + Dropout(0.25) [-1,1024]
Connected 2

Fully Linear (1024 — 1024) + BN + ReLU + Dropout(0.25) [-1,1024]
Connected 3-11

Fully Linear (1024 — 128) + BN + ReLU + Dropout(0.25) [-1,128]
Connected 12

The Spectrum-Based CNN for Alphabet-11 is a convolutional neural network designed for spectral classification.
It processes two-dimensional spectral data using convolutional layers to capture spatial dependencies. The architecture
consists of two convolutional stages, each containing three convolutional layers with kernel size k = 3, stride s = 1,
and padding p = 1. Each layer is followed by batch normalization and ReL U activation functions. A 2D max-pooling
layer (k =2, s = 2, p = 1) is applied after each stage to reduce the spatial dimensions. The extracted features are
flattened and passed through two fully connected layers: one with 256 units (ReLU activation) and a final layer with

11 output units. The total number of trainable parameters is 311,435. See Table S3 for details.

Table S3. Overview of the Spectrum-Based CNN Model Architecture
Block Layers & Parameters Output Shape
Block 1 3 x [Conv2D(k =3, s=1, p=1)) + BN + ReLU] [-1,32,4,7]
+ MaxPool2D(k =2,s=2,p=1)
Block 2 3 x [Conv2D(k =3, s=1, p=1)) + BN + ReLU] [-1,64,6,6,6]
+ MaxPool2D(k = 2,s =2,p =1)
Fully Flatten — Linear(64x3x4—256) + ReLU — Linear(256 [-1,11]
Connected —11)

Training hyperparameters

To optimize model performance, a comprehensive hyperparameter grid search was conducted across a range of
values, including learning rate, decay schedule, dropout rates, layer sizes, and kernel configurations. The explored
parameter ranges are summarized in Table S4.

Table S4. Hyperparameter Search Space for Spectrum-Based FCN and CNN

Hyperparameter

Value

Learning rates

1073, 51073, 1074, 5x1074, 1073, 51075, 107

Decay epochs 0,5,10,25,50

Decay factors 0.1,0.2,0.5

Batch sizes 32,64,128

Dropout Rates (FCN) 0%, 10%, 25%, 50%
Number of Layers (FCN) 5,7,10,12

Layer Sizes (FCN) 256,512, 1024, 1280
Kernel Sizes (CNN) 3,5

Number of Stages (CNN) 1,2,3

Stage Lengths (CNN) 2,3

Number of Epochs 25, 50, 75, 100




Following the evaluation, the final selected hyperparameters provided optimal performance for both models.
These values are presented in Table S5. These optimized hyperparameters ensured stable training and high
classification accuracy across all turbulence strengths.

Table S5. Final Training Hyperparameters for Spectrum-Based FCN and CNN
Hyperparameter FCN Value CNN Value
Loss Function Cross-Entropy Cross-Entropy
Optimizer Adam Adam

Initial LR 5%10* 2x107

LR Decay Epochs 25 25

LR Decay Factor 0.2 0.2

Batch Size 64 64

Dropout Rate 25% -

Number of Epochs 50 50

S6. Machine Learning Classification of Alphabet-11 at Different Turbulence Strengths

Figure S5 presents confusion matrices for three different turbulence strengths using two machine learning
classification methods: (a) spectrum-based FCNN and (b) shape-based CNN. The first column corresponds to the
weakest turbulence (o 2 = 0.05), the second column represents moderate turbulence (o % = 0.15), and the third
column shows results for the strongest turbulence (¢ 4 = 0.25).

Across all turbulence levels, the shape-based CNN consistently outperforms the spectrum-based approach in
classification accuracy. In the weakest turbulence case, the shape-based method achieves 97.7% accuracy, compared
to 79.7% for the spectrum-based approach, demonstrating the benefits of incorporating spatial structure information.
Even under the strongest turbulence conditions, the shape-based method maintains an accuracy of 75.4%, while the
spectrum-based approach drops to 53.8%, further emphasizing the robustness of shape-based features in turbulent
environments.
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Fig. S5. Confusion matrices for machine learning classification of the optical knot basis after turbulence. The confusion
matrices illustrate the classification performance of Alphabet-11 knots under three turbulence strengths using two machine
learning models: (a) Spectrum-based FCNN and (b) Shape-based CNN machine learning classification. The first column
corresponds to the weakest turbulence case (g 4 = 0.05), the second column represents moderate turbulence (¢ 32 = 0.15), and
the last column shows results for the strongest turbulence (g 2 = 0.25). The average classification accuracy is indicated at the
top of each panel.

S7. Shape-Based Machine Learning Algorithms
Models’ architecture

We developed two 3D convolutional neural network (CNN) models to classify structured optical fields: one for
Alphabet-11 (optical knots) and another for Alphabet-81 (Flower beams). Both models share the same architecture,
differing only in the number of output classes, which affects the final fully connected layer. Below, we describe the
models’ architecture along with the training and tuning procedures.

The Shape-Based CNN for Alphabet-11 consists of two main processing blocks. The first block comprises three
consecutive 3D convolutional layers, each with a kernel size of 3, a stride of 1, and a padding of 1, followed by batch
normalization (BN) and a ReL U activation function to ensure stable and efficient training. A 3D max-pooling layer
with a kernel size of 2, a stride of 2, and a padding of 1 reduces spatial dimensions. The second block mirrors this
structure but increases the kernel size to 5, capturing more complex spatial features. The extracted feature maps are
flattened and passed through two fully connected layers: one with 256 neurons and ReLU activation, followed by a
final classification layer with 11 output neurons, corresponding to the number of optical knot classes. The model has
4,879,051 trainable parameters and an input volume size of 32 x 32 x 32. Table S6 provides a detailed description of
the architecture.

The Shape-Based CNN for Alphabet-81 follows the same architecture but adjusts the final fully connected layer
to have 81 output neurons, aligning with the classification task for Flower beams. This modification increases the total
number of trainable parameters to 4,897,041.

Table S6. Shape-based CNN for Alphabet-11

Block Layers & Parameters Output Shape




Convolutional 3x[Conv3D(k =3,s =1,p = 1)) + BN + ReLU] [-1,32,17,17,17]
Block 1 + MaxPool3D(k =2,s=2,p=1)

Convolutional 3 x[Conv3D(k =5,s =1,p = 1))+ BN+ ReLU] [-1,64,6,6,6]
Block 2 + MaxPool3D(k =2,s =2,p=1)

Fully Flatten — Linear(64x6x6x6—256) + ReLU — Linear(256 [-1,11]
Connected Layer | —11)

Training hyperparameters

To determine the most effective training configuration, a grid search was conducted across multiple
hyperparameters. The parameters explored in this search are summarized in Table S7.

Table S7. Hyperparameter Search Space

Hyperparameter Value

Learning rates 1073, 5%x1073, 107, 5107, 107>, 51075, 10°°
Decay epochs 0,5,10,25,50

Decay factors 0.1,0.2,0.5

Batch sizes 32,64,128

Number of epochs 25, 50, 75, 100

After evaluating these configurations, the optimal hyperparameters were selected based on the best performance
achieved on Alphabet-11 and subsequently applied to Alphabet-81. These settings provided a balance between training
stability and performance, ensuring consistent classification accuracy across different structured optical fields. The
final hyperparameters are listed in Table S8. By using these optimized parameters, both Shape-Based CNN models
effectively classify structured optical fields while maintaining robust generalization across different turbulence
conditions.

Table S8. Final Training Hyperparameters

Hyperparameter Value

Loss Function Cross-Entropy
Optimizer Adam

Initial LR 107

LR Decay Epochs 25

LR Decay Factor 0.2

Batch Size 64

S8. Full Spectrum-Based MSE Classification of Alphabet-11

This section presents the results of the classification using the spectrum-based convolutional neural network
(CNN). The confusion matrix, combining all turbulence strengths, is shown in Fig. S6. The total classification
accuracy achieved with this method is 62.6%, which is comparable to the accuracy of the spectrum-based fully
connected neural network (FCNN) used in the main text (65.2%).

The slight difference in accuracy may be attributed to classification errors and potential sub-optimal training
procedures for the spectrum-based MSE method, where the best global parameters might not have been fully optimized



during grid search. Overall, the similarity in accuracy between these methods suggests that we are approaching the
optimal classification performance achievable using spectral data.
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Fig. S6. Confusion matrix for the classification of Alphabet-11 knots after turbulence across all turbulence strengths
using the spectrum-based CNN. The confusion matrix displays the percentage of each optical knot classified into different
knot types after experiencing turbulence, using the spectrum-based CNN machine learning algorithm. The average classification
accuracy is 62.6%. The matrix incorporates data from all three turbulence strengths: ¢ 2 = 0.05, 0 4 = 0.15, and ¢ % = 0.25.

S9. Generation of Flower Beams

To determine the coefficients ¢, of the LG spectrum of Flower beams, analogous to equation (S1), we begin with
the braid representation, illustrated in Fig. S7a. In this approach, a periodic complex scalar field with braided zero-
lines is embedded in a cylinder of height of 27, within the coordinate system (x’, y’, h) defined as:

x'(h) = cos(sh),
1
{y’(h) = sin(sh), (S13)

where the parameter s determines the number of petals in the Flower beam. Introducing the substitution u(x’,y") =
x' +iy’, and v(h) = e, we obtain the Milnor map expression for a Flower beam with s = 4 full-sized petals:

qﬂower(u' ‘U) =u—v°. (814)

By utilizing the inverse stereographic projection (S4) and multiplying the expression by (R? + z2 + 1)5 at the z = 0
plane, we get the Milnor polynomial at the z = 0 plane:

Qnower(R, @,z = 0) = —(2e/R)S + (—1 4+ R*)(1 + R?)~*s, (S15)
This expression allows us to compute the LG spectrum c;,, using equation (S6). The specific case for s = 4 is given
by:
Qs or(R, 0,z =0) = —16e*/R* + (-1 + R?)(1 + R?)3. (S16)
Figure S7b illustrates the corresponding field, its LG spectrum, and the 3D structure. The different colors in the

figure represent distinct lobes, allowing us to trace their origins in the braid representation. The numbering of lobes
starts at ¢ = 0 and progresses counterclockwise. The angular intervals for each petal are defined as follows:
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The value 2 in Fig. S7b indicates that all petals are of full size. To control petal sizes, we apply the same shape
manipulation approach used for optical knots in Alphabet-11, as detailed in [3]. For each lobe defined in equation
(S17), its size can be independently adjusted by scaling the stereographic projection (S4) along the x and y axes within
the corresponding ¢ regions. This is achieved by replacing x and y with yx and yy, where y is the scaling coefficient.

In our study, we consider three scaling cases, denoted in the paper as 2, 1, and 0, with corresponding values of
y = 1,1.5, and oo. In practice, removing a lobe does not require y = oo. With a 256 X 256 resolution used for field
propagation in turbulence, any y > 50 produces no noticeable difference, as the lobe effectively disappears. Since y
scales the lobe size ~1/y? in XY plane, decreasing the lobe size infinitely or by a sufficiently large finite factor has
the same effect in a limited-resolution setting.

It is worth noting that although we refer to petals of size 1 as "half-sized" petals, their actual size reduction is not
exactly by a factor of 2. The scaling in the XY plane follows y? = 2.25, and while scaling along the z-axis is not
explicitly defined in our case, it is still present. The actual petal size along the z-axis depends on its projection from
z = 0 according to equation (S4) and is indirectly affected by the scaling in the XY plane. The final size of each half-
sized petal slightly varies for different Flower beams. For more details, see [3].

An example of a Flower beam 2220, where the first three lobes have full size 2 and the fourth lobe is removed
0, is shown in Fig. S7c. Another example, Flower beam 2120, where the second lobe is scaled by y = 1.5 and the
fourth lobe is removed 0, is presented in Fig. S7d.

The total number of Flower beam variations is determined by the size variations per petal, raised to the power s.
In our case, with three possible sizes (0, 1, and 2) and s = 4, the total number of Flower beams is: 3* = 81.
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Fig. S7. The concept of creating and modifying Flower beams. (a) Braid representation of an optical Flower beam before
applying the stereographic projection. (b) Optical Flower 2222, where all lobes are full size (2 — full size, 1 — half size, 0 —
removed). The panels show the amplitude of the field at z = 0, with the inset displaying the corresponding phase distribution,
the LG spectrum required to generate this structure, and the 3D singularity line shape in two orientations: a general view (top)
and a top-down view (bottom right). (c) Optical Flower 2220, where one lobe is removed. (d) Optical Flower 2120, where one
lobe is half the size and another is removed. Panels (b), (¢), and (d) share the same set of visualizations (phase, amplitude,
spectrum, and 3D singularity structures). The lobe colors remain consistent with (a) across all plots.

S10. Additional Examples of Flower Beams with 5 and 6 Petals

The general expression for the Milnor polynomial of a Flower beam with s full-sized petals is given by equation
(S15). In the specific cases of s = 5 and s = 6, the expressions take the following forms:

Q55 (R, 0,z = 0) = =325 R5 + (=1 + R?)(1 + R?)*,

' (S18)
Qﬁ:vaer(Rt ¢,z = 0) = —64e®/R® + (—1 + RZ)(]_ + RZ)S.

Examples of such Flower beams, including both full-lobed and modified-lobed structures, are illustrated in Fig.
S8. As the number of petals increases from 4 to 5 and 6, no significant distortions arise in the Flower beam generation
approach (panels b and d). The spectra of these beams broaden, reachinguptol =7 fors =5andl =8 fors = 6,
reflecting the increased complexity of the field structure.
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Fig. S8. Examples of Flower beams with five and six petals, including modified petal configurations. This figure presents
different Flower beam structures with s = 5 (panels a, b) and s = 6 (panels c, d). Each panel consists of: (left) the field phase
at z = 0 with the inset showing the corresponding amplitude distribution, (right) the 3D singularity structure, and (bottom) the
LG spectrum. (a) Flower beam with five full-sized petals (22222 configuration). (b) Flower beam with five petals, where the
fifth petal is half-sized and the third is removed (22021). (c) Flower beam with six full-sized petals (222222). (d) Flower beam
with six petals, where the third and sixth petals are modified (221220).

S11. Flower Beams in Turbulence

Figure S9 presents examples of Flower beams with four petals in two different configurations: 2222 (first column)
and 2120 (second column), subject to three different turbulence strengths: ¢ 2 = 0.05, 0.15, 0.25 (panels a, b, c¢). For
the weakest turbulence case (6 2 = 0.05), spectral broadening is observed, along with minor deformations in the
singularity line structure. As the turbulence strength increases, mode cross-talk in the LG spectrum becomes
significantly more pronounced, leading to greater spectral mixing. The singularity structures also experience stronger
distortions; however, their overall shape remains recognizable, retaining key features of the unperturbed case shown
in Fig. S7. This demonstrates that, despite the effects of turbulence, the fundamental structure of the Flower beams
persists, highlighting their robustness in turbulent environments.
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Fig. S9. Flower beams with four petals under different turbulence strengths. This figure illustrates the evolution of 2222
(first column) and 2120 (second column) Flower beams as turbulence strength increases. Each panel includes: (Left) The field
phase at z = 0, with the inset showing the corresponding amplitude distribution. (Right) The 3D singularity structure of the
optical beam. (Bottom) The LG spectrum of the beam after turbulence. (a) Weak turbulence case (o 2 = 0.05). (b) Moderate
turbulence case (o 4 = 0.15). (c) The strongest turbulence case (o 3 = 0.25).

S12. Confusion Matrices for Shape-Based CNN Classification on Simulated Data of Alphabet-81 at Different
Turbulence Strengths

Figures S10, S11, and S12 present confusion matrices of the optimized shape-based CNN applied to simulated
data from Alphabet-81, evaluated under three different turbulence strengths: o 2 = 0.05, 0.15, and 0.25, respectively.
Corresponding total accuracies are 92.7%, 73.6%, and 59.0%.



Shape-based CNN. a;=0.05. Total Accuracy=92.7%
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Fig. S10. Confusion matrix for the classification of Flower beams under weak turbulence (¢ % = 0. 05).
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Shape-based CNN. a; =0.15. Total Accuracy=73.6%
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Fig. S11. Confusion matrix for the classification of Flower beams under moderate turbulence (¢ % = 0.15).
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Shape-based CNN. crfz? =0.25. Total Accuracy=59.0%
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Fig. $12. Confusion matrix for the classification of Flower beams under the strongest turbulence (¢ 3 = 0.25).

S13. Estimation of the Turbulence Parameters in the Experimental Setup

To determine the refractive index structure parameter, CZ, for our experimental system, we used statistical
measurements of the beam wander of a Gaussian beam. The relationship we employed is:

C2 = 0.328(r2)D'/3L73, (S19)

where D is the beam diameter, L is the turbulence link length, and (r,2) = (x?) + (y?) represents the variance of the
beam wander displacement on the detector. Figure S13a displays the curves of the experimentally estimated C?2
obtained from 2000 realizations, along with the corresponding numerical values. Similarly, Figure S13b shows the
experimental estimates for the Fried parameter, 1y, overlaid with the numerical predictions.

Our laboratory-scale experimental setup was designed to emulate a realistic free-space optical link. It uses a beam
with a 6 mm waist propagating over an equivalent distance of 270 m, achieved through Fresnel scaling to maintain
consistent optical properties across both scenarios. Notably, to reproduce comparable scintillation levels in both
simulations and experiments, the hot air chamber had to generate stronger turbulence to compensate for the reduced



propagation distance and smaller beam size. For instance, calculating the Rytov variance 62 to estimate the order of

magnitude of C2? for such shorter propagation distance, here Ly, = 1.5m, gives the same order of magnitude as
observed in Fig. S13 (a).
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Fig. S13. Comparison of Experimental and Simulated Turbulence Parameters. (a) Experimentally measured refractive
index structure parameter C2? (blue) as a function of turbulence chamber temperature, compared with the parameter used in
simulations (black), shown against the Rytov variance g3. A total of 2000 experimental realizations were recorded. (b)

Corresponding Fried parameter 1y, values for both simulations (black) and experiments (blue), following the same format as in
panel (a).

S14. Fine-Tuning Accuracy of Shape-Based CNN on Alphabet-81 in Experiment

Figure S14 presents the classification accuracy of the shape-based CNN on Alphabet-81 as a function of the
number of fine-tuning samples obtained from experimental data. The number of experimental samples used for fine-
tuning the model, initially trained exclusively on simulation-generated data, varies from 0 to 10.

The results indicate a steady increase in accuracy as more experimental samples are incorporated into training.
However, the rate of improvement slows, eventually approaching a near-saturation level, suggesting that 10 samples
are sufficient to achieve accuracy close to its maximum potential. Notably, even with just a single experimental sample,
the total accuracy reaches 43% from 17% without extra fine-tuning, demonstrating that the model can generalize well
from limited real-world data.

This result can be explained by the fact that, in the experiment, Flower beams without turbulence already exhibit
small deviations from their ideal theoretical structures (see Fig. 4 in the main text). As a result, the machine learning
algorithm learns these intrinsic deviations inherent to each experimental Flower beam even in the absence of
turbulence, refining its classification ability. This adaptation enhances the accuracy of the model trained on simulated
data, bringing it closer to optimal performance.
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Fig. S14. Accuracy of the shape-based CNN classification on Alphabet-81 in the experiment as a function of the number
of fine-tuning samples. This figure illustrates the improvement in classification accuracy achieved by incorporating
experimental data into the training process. The x-axis represents the number of fine-tuning samples per class, while the y-axis
shows the classification accuracy on the test dataset. As the number of fine-tuning samples increases, accuracy improves but
plateaus, indicating diminishing returns with additional samples.
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