
Supporting information for

AMechanism-Data Fusion Model for Algal Growth in
Hydrologically Constrained River Segments

Ying Liu 1,&, Zhiwei Ren 1,&, Zelin Jing 1, Jihong Liu 1, Qingsong Chen 2,

3, Yurou Wang 1, Liwenze He 4,* , Yu Chen 1**

1Faculty of Environment Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China

2 Sichuan Academy of Eco-environmental Sciences, Chengdu 610000, China

3 Sichuan Province Environmental Protection Technology & Engineering Co., Ltd, Chengdu 610000, China

4 Department of Civil Engineering, Chengdu Technological University, Chengdu, 611730, People’s Republic

of China

& These authors contributed equally to this work and should be considered co-first authors

* Correspondence: hlwze1@cdtu.edu.cn

** Correspondence: chenyu1123@swjtu.edu.cn; Tel.: +86-1388-072-7070



Text S1 Parameter Uncertainty and Model Limitations in the Jiuqu River Algal Growth Model

Parameter uncertainty analysis:

In this study, we developed a dynamic algal growth model for the Jiuqu River and identified key

environmental factors influencing algal growth in the watershed using GBDT and SHAP analysis. The

model includes eight biological constants (gmax, dmax, kCODMn, kCODCr, kP, Topi, kR, R0), which are

interrelated and closely linked to monitoring data such as total phosphorus (TP), chemical oxygen

demand (CODMn, CODCr), runoff, and temperature (T) (Richter and Matuła, 2012; Solimeno et al.,

2016).

The uncertainty of these biological constants mainly stems from three aspects:

(1) Measurement errors: Monitoring data may be influenced by instrument precision limitations,

operational errors, and spatiotemporal sampling variations, all of which can affect the optimization of

biological constants (Pianosi et al., 2016; Baker et al., 2023).

(2) Seasonal variations: Fluctuations in meteorological conditions such as temperature and

sunlight duration, as well as seasonal changes in non-point source pollution, impact the algal growth

environment and consequently affect parameter values.

(3) Model limitations: Discrepancies between the dynamic model and real-world conditions

introduce additional uncertainty.

Since these eight biological constants not only reflect algal responses to environmental changes

but are also influenced by variations in input variables, analyzing their sensitivity in isolation is

insufficient to reveal their impact on model predictions. Therefore, this study does not conduct

individual sensitivity analyses of these constants.

Given the strong correlation between biological constants and input variables, as well as their

optimization based on real monitoring data, errors in the data and seasonal fluctuations may directly

affect the optimization results. To evaluate the model's predictive capability under different datasets, we

compared parameter optimization results using the first 50 data samples (from July to September, the

peak algal growth period) with those using all 161 samples spanning summer, autumn, and winter. The

results indicate that the model performs better when optimized using the first 50 samples. This may be

because, during the algal growth season, key environmental drivers dominate algal growth, making it

easier for the model to capture essential features, and the optimized biological constants exhibit higher

representativeness. In contrast, when using the full dataset for optimization, the inclusion of multiple

seasons increases data heterogeneity and complexity, potentially introducing additional noise and



reducing optimization effectiveness.

Therefore, this study recommends considering different growth stages when optimizing biological

constants using genetic algorithms. Specifically, separate optimizations based on data from the growth

season and the full lifecycle could further enhance model performance and ensure its effective

development.

Model limitations and future perspectives:

Although this study has attempted to construct an adaptable algal growth model by integrating

biological mechanisms and data-driven methods under data-limited river segment conditions, the

model still has certain limitations. First, the influence functions use simplified mathematical

expressions (such as sine, cosine, logarithmic functions), which, while based on ecological process

logic, still fall short in terms of biological mechanistic rigor compared to traditional mechanistic

models. Second, to improve the model's generalizability, some biological processes have been

approximated, which may overlook microscopic differences under specific conditions.

Moreover, the growth parameters in the model are optimized using a genetic algorithm, which,

while improving prediction accuracy, makes the model structure relatively sensitive to parameter

changes. The stability of the model under extreme conditions still needs further validation. Future

research could consider incorporating more measured physiological data to optimize the biological

interpretability of the parameters, while also integrating data assimilation and real-time monitoring

techniques to enhance the model's adaptability in various types of water bodies and during sudden

environmental events.

Text S2 Detailed Marginal Distribution Fitting Results

The goodness-of-fit of each distribution model was evaluated using the test statistics, and the

best-fitting model that most accurately reflects the actual distribution characteristics of each

environmental factor was selected. Fig.7 illustrates the distribution fitting results for the key

environmental factors and chlorophyll a concentration. By comparing the fitting results and test

statistics of different distribution models, the marginal distributions of the environmental factors and

chlorophyll a concentration were clearly identified.

Tab. S4 presents the optimal distribution fitting results for different environmental factors and

chlorophyll a, listing the best-fit distribution type for each variable. As shown in the table, CODCr and

TP are best described by the Generalized Extreme Value (GEV) distribution, while CODMn fits well



with the log-normal distribution. Both T and chlorophyll a exhibit a good fit to the exponential

distribution, whereas R is best characterized by the Weibull distribution. These fitting results establish

the optimal marginal distributions for each environmental factor, providing a robust foundation for

subsequent Copula function modeling and the calculation of warning thresholds.

Text S3 Development of the Copula Model

After determining the optimal marginal distributions for each environmental factor, the study

employed Copula functions to model the joint probability distribution between key environmental

factors and chlorophyll a concentration. To evaluate the applicability of different Copula models,

Gumbel Copula, Clayton Copula, Frank Copula, and t-Copula were compared.

Model parameters were optimized using the Maximum Likelihood Estimation (MLE) method. A

comprehensive evaluation of the models was conducted by combining the Akaike Information

Criterion (AIC) and cross-validation results. Based on these evaluations, the optimal Copula function

for each pair of environmental factors and chlorophyll a concentration was selected (see Tab. S5). The

chosen models provided a precise depiction of the nonlinear dependencies between critical

environmental factors and chlorophyll a, facilitating accurate risk assessments.

Tab. S5 presents the optimal Copula model for each key environmental factor and chlorophyll a

concentration. It reveals that the joint distributions of CODCr, CODMn, TP, T, and Runoff with

chlorophyll a are all best described using the Gaussian Copula model, indicating relatively weak

nonlinearity and strong linear characteristics in the relationships between these factors and chlorophyll

a in this watershed.



Tab. S1 Ranking of key factor contribution values of GBDT and SHAP eigenvalue screening

Ranking
Selection Methods

GBDT SHAP
1 CODMn T
2 T CODMn

3 CODCr CODCr

4 Runoff Runoff
5 TP TP
6 ORP Sunshine_Duration
7 Sunshine_Duration ORP
8 NH4+-N NH4+-N

Tab. S2 CCF analysis results of key environmental factors

Environmental
factor

T CODCr CODMn TP Runoff

Delay unit -7 -6 -6 0 -5

Tab. S3 Parameter optimization results of training different data sets

Data name
Parameter optimization

range
50 sets of optimal

parameters are trained
Optimum parameters for

complete training
gmax 0.5-5 4.78 4.16
Topi 10-25 19.81 22.83
dmax 0.5-2 0.51 0.96
kP 0.05-0.5 0.48 0.3

kCODCr 20-50 33.74 33.8
kCODMn 2-15 10.47 14.26
kR 0.5-1.5 0.9 0.53
R0 0.1-0.5 0.42 0.49

Tab. S4 Test results of optimal distribution of key environmental factors and chlorophyll a

Data name CODCr CODMn T TP Runoff Chl.a
Fit the optimal
distribution

Gev
distribution

Lognormal
distribution

Exponential
distribution

Gev
distribution

Weibull
distribution

Exponential
distribution

Tab. S5 Best Copula functions fitting different key environmental factors

Date name CODCr CODMn TP T Runoff
Optimum Copula model Gaussian Gaussian Gaussian Gaussian Gaussian



Tab. S6 Risk thresholds of different key environmental factors

Date name CODCr CODMn TP T Runoff
Risk threshold 18.78 5.2 0.09 12.21 0.04

Jiuqu River

Lanbowan
Laixi River

Fig. S7 Study Area and Sampling Site Layout (Red arrows show where the watershed flows)

Fig. S8 Feature dependency graphs of chlorophyll a concentration on different environmental factors
(CODCr, CODMn, NH₄⁺-N, TP)

Fig. S9 Feature dependency graphs of chlorophyll a concentration on different meteorological and
hydrological factors (T, Sunshine Duration, Runoff)



Fig. S10 Water quality, meteorological, hydrological data and rainfall data of Jiuqu River after
screening of key factors

Fig. S11 The comparison of model evaluation metrics before and after delay analysis correction is



shown in the figure. (a) represents the range where chlorophyll a concentration is below 50 μg/L; (b)
represents the range where chlorophyll a concentration is between 50 and 100 μg/L; and (c) represents
the range where chlorophyll a concentration exceeds 100 μg/L

Fig. S12 Distribution fitting of meteorological and hydrological factors (T, Runoff)
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