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Text S1 Parameter Uncertainty and Model Limitations in the Jiuqu River Algal Growth Model

Parameter uncertainty analysis:

In this study, we developed a dynamic algal growth model for the Jiuqu River and identified key
environmental factors influencing algal growth in the watershed using GBDT and SHAP analysis. The
model includes eight biological constants (gmax, dmax, Kcopmm, kcoocr, ke, Topi, kr, Ro), which are
interrelated and closely linked to monitoring data such as total phosphorus (TP), chemical oxygen
demand (CODwmn, CODcy), runoff, and temperature (T) (Richter and Matuta, 2012; Solimeno et al.,
2016).

The uncertainty of these biological constants mainly stems from three aspects:

(1) Measurement errors: Monitoring data may be influenced by instrument precision limitations,
operational errors, and spatiotemporal sampling variations, all of which can affect the optimization of
biological constants (Pianosi et al., 2016; Baker et al., 2023).

(2) Seasonal variations: Fluctuations in meteorological conditions such as temperature and
sunlight duration, as well as seasonal changes in non-point source pollution, impact the algal growth
environment and consequently affect parameter values.

(3) Model limitations: Discrepancies between the dynamic model and real-world conditions
introduce additional uncertainty.

Since these eight biological constants not only reflect algal responses to environmental changes
but are also influenced by variations in input variables, analyzing their sensitivity in isolation is
insufficient to reveal their impact on model predictions. Therefore, this study does not conduct
individual sensitivity analyses of these constants.

Given the strong correlation between biological constants and input variables, as well as their
optimization based on real monitoring data, errors in the data and seasonal fluctuations may directly
affect the optimization results. To evaluate the model's predictive capability under different datasets, we
compared parameter optimization results using the first 50 data samples (from July to September, the
peak algal growth period) with those using all 161 samples spanning summer, autumn, and winter. The
results indicate that the model performs better when optimized using the first 50 samples. This may be
because, during the algal growth season, key environmental drivers dominate algal growth, making it
easier for the model to capture essential features, and the optimized biological constants exhibit higher
representativeness. In contrast, when using the full dataset for optimization, the inclusion of multiple

seasons increases data heterogeneity and complexity, potentially introducing additional noise and



reducing optimization effectiveness.

Therefore, this study recommends considering different growth stages when optimizing biological
constants using genetic algorithms. Specifically, separate optimizations based on data from the growth
season and the full lifecycle could further enhance model performance and ensure its effective
development.

Model limitations and future perspectives:

Although this study has attempted to construct an adaptable algal growth model by integrating
biological mechanisms and data-driven methods under data-limited river segment conditions, the
model still has certain limitations. First, the influence functions use simplified mathematical
expressions (such as sine, cosine, logarithmic functions), which, while based on ecological process
logic, still fall short in terms of biological mechanistic rigor compared to traditional mechanistic
models. Second, to improve the model's generalizability, some biological processes have been
approximated, which may overlook microscopic differences under specific conditions.

Moreover, the growth parameters in the model are optimized using a genetic algorithm, which,
while improving prediction accuracy, makes the model structure relatively sensitive to parameter
changes. The stability of the model under extreme conditions still needs further validation. Future
research could consider incorporating more measured physiological data to optimize the biological
interpretability of the parameters, while also integrating data assimilation and real-time monitoring
techniques to enhance the model's adaptability in various types of water bodies and during sudden

environmental events.

Text S2 Detailed Marginal Distribution Fitting Results

The goodness-of-fit of each distribution model was evaluated using the test statistics, and the
best-fitting model that most accurately reflects the actual distribution characteristics of each
environmental factor was selected. Fig.7 illustrates the distribution fitting results for the key
environmental factors and chlorophyll a concentration. By comparing the fitting results and test
statistics of different distribution models, the marginal distributions of the environmental factors and
chlorophyll a concentration were clearly identified.

Tab. S4 presents the optimal distribution fitting results for different environmental factors and
chlorophyll a, listing the best-fit distribution type for each variable. As shown in the table, CODCr and

TP are best described by the Generalized Extreme Value (GEV) distribution, while CODMn fits well



with the log-normal distribution. Both T and chlorophyll a exhibit a good fit to the exponential
distribution, whereas R is best characterized by the Weibull distribution. These fitting results establish
the optimal marginal distributions for each environmental factor, providing a robust foundation for

subsequent Copula function modeling and the calculation of warning thresholds.

Text S3 Development of the Copula Model

After determining the optimal marginal distributions for each environmental factor, the study
employed Copula functions to model the joint probability distribution between key environmental
factors and chlorophyll a concentration. To evaluate the applicability of different Copula models,
Gumbel Copula, Clayton Copula, Frank Copula, and t-Copula were compared.

Model parameters were optimized using the Maximum Likelihood Estimation (MLE) method. A
comprehensive evaluation of the models was conducted by combining the Akaike Information
Criterion (AIC) and cross-validation results. Based on these evaluations, the optimal Copula function
for each pair of environmental factors and chlorophyll a concentration was selected (see Tab. S5). The
chosen models provided a precise depiction of the nonlinear dependencies between critical
environmental factors and chlorophyll a, facilitating accurate risk assessments.

Tab. S5 presents the optimal Copula model for each key environmental factor and chlorophyll a
concentration. It reveals that the joint distributions of CODc;, CODmn, TP, T, and Runoff with
chlorophyll a are all best described using the Gaussian Copula model, indicating relatively weak
nonlinearity and strong linear characteristics in the relationships between these factors and chlorophyll

a in this watershed.



Tab. S1 Ranking of key factor contribution values of GBDT and SHAP eigenvalue screening

Ranking Selection Methods
GBDT SHAP
1 CODwmn T
2 T CODwn
3 CODc¢; CODc¢;
4 Runoff Runoff
5 TP TP
6 ORP Sunshine Duration
7 Sunshine_Duration ORP
8 NH4*-N NH4™-N

Tab. S2 CCF analysis results of key environmental factors

Environmental
T CODc¢y CODwn TP Runoff
factor
Delay unit -7 -6 -6 0 -5

Tab. S3 Parameter optimization results of training different data sets

Parameter optimization 50 sets of optimal Optimum parameters for
Data name o
range parameters are trained complete training

Zmax 0.5-5 4.78 4.16

Topi 10-25 19.81 22.83
dimax 0.5-2 0.51 0.96
kp 0.05-0.5 0.48 0.3
kcopcr 20-50 33.74 33.8

kcopmn 2-15 10.47 14.26
kr 0.5-1.5 0.9 0.53
Ro 0.1-0.5 0.42 0.49

Tab. S4 Test results of optimal distribution of key environmental factors and chlorophyll a

Data name CODcr CODwmn T TP Runoff Chl.a
Fit the optimal Gev Lognormal  Exponential Gev Weibull Exponential
distribution distribution  distribution  distribution  distribution  distribution  distribution

Tab. S5 Best Copula functions fitting different key environmental factors

Date name CODc: CODwn TP T Runoff

Optimum Copula model Gaussian Gaussian Gaussian Gaussian  Gaussian




Tab. S6 Risk thresholds of different key environmental factors

Date name

CODCr

CODwmn

TP

T

Runoff

Risk threshold
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Fig. S7 Study Area and Sampling Site Layout (Red arrows show where the watershed flows)

Fig. S8 Feature dependency graphs of chlorophyll a concentration on different environmental factors
(CODcr, CODMi, NH4™-N, TP)
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Fig. S9 Feature dependency graphs of chlorophyll a concentration on different meteorological and
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Fig. S10 Water quality, meteorological, hydrological data and rainfall data of Jiuqu River after

screening of key factors
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Fig. S11 The comparison of model evaluation metrics before and after delay analysis correction is



shown in the figure. (a) represents the range where chlorophyll a concentration is below 50 pg/L; (b)
represents the range where chlorophyll a concentration is between 50 and 100 pg/L; and (c) represents

the range where chlorophyll a concentration exceeds 100 pg/L
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Fig. S12 Distribution fitting of meteorological and hydrological factors (T, Runoft)
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