
Automation Thresholds and Regime Transitions

in AI-Driven Economic Growth

Proofs Appendices

Appendix A: Theoretical Proofs

A.1 Proof of Proposition (Balanced Growth without AI)

Proposition 1. (Balanced Growth without AI).
Proof of Proposition in the main text

A.2 Proof of Proposition 2 (BGP with Non-Improving AI)

Proposition 2 (Balanced Growth with Non-Improving AI). With β = 0 and γ = 0, if human
researchers grow at rate n and AI capital grows at rate gM , then:

� If gM > n: In the long run, AI dominates and g∗A = λgM
1−ϕ

� If gM < n: Humans dominate and g∗A = λn
1−ϕ (same as no-AI case)

� More generally: g∗A = λgR
1−ϕ where gR = (1− ψ)n+ ψgM depends on research shares

The key insight is that AI raises the growth rate above the no-AI benchmark λn
1−ϕ provided gM > n.

Proof. With β = 0 and γ = 0, AI efficiency is constant: η(M,C) = η̄. The idea production function
is:

Ȧ = δ[LA + η̄M ]λAϕ

where total research input is R = LA + η̄M .
Step 1: Dynamics of research input
Human researchers grow at population rate: LA(t) = σL0e

nt and AI capital grows by assumption:
M(t) =M0e

gM t.
Total research input:

R(t) = σL0e
nt + η̄M0e

gM t

The growth rate of R is:
Ṙ

R
=
σL0e

nt · n+ η̄M0e
gM t · gM

σL0ent + η̄M0egM t

Let ψ(t) = η̄M0e
gMt

σL0ent+η̄M0egMt be AI’s research share. Then 1−ψ(t) = σL0e
nt

σL0ent+η̄M0egMt is the human
share.

Therefore:

gR(t) =
Ṙ

R
= (1− ψ(t))n+ ψ(t)gM

Step 2: Long-run behavior of research shares
Case 1: If gM > n, then as t→ ∞:

ψ(t) =
η̄M0e

gM t

σL0ent + η̄M0egM t
=

1

1 + σL0

η̄M0
e(n−gM )t

→ 1

So AI dominates and gR → gM .
Case 2: If gM < n, then ψ(t) → 0 and humans dominate: gR → n.
Case 3: If gM = n, then ψ(t) → ψ∗ = η̄M0

σL0+η̄M0
(constant), giving:

gR = (1− ψ∗)n+ ψ∗n = n
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Step 3: General case with constant research growth
For the general statement, we consider the effective long-run research growth rate. Define

the research-weighted average:

ḡR = lim
T→∞

1

T

∫ T

0

gR(t) dt

However, for a balanced growth path to exist, we need gR to asymptotically approach a constant.
From Step 2, this occurs in all three cases:

� If gM > n: gR → gM
� If gM < n: gR → n
� If gM = n: gR = n always

Step 4: Deriving the balanced growth rate
The idea production function is:

Ȧ = δRλAϕ

Define the growth rate gA = Ȧ/A:
gA = δRλAϕ−1

Taking logs:
ln gA = ln δ + λ lnR+ (ϕ− 1) lnA

Differentiating with respect to time:

ġA
gA

= λ
Ṙ

R
+ (ϕ− 1)

Ȧ

A
= λgR + (ϕ− 1)gA

Therefore:
dgA
dt

= λgAgR + (ϕ− 1)g2A

On a balanced growth path, gA is constant (ġA = 0), so:

0 = λgR + (ϕ− 1)g∗A

Solving for g∗A:

g∗A =
λgR
1− ϕ

A.3 Proof of Proposition 3 Automation Threshold)

Proposition 3 (Automation Threshold). There exists a critical AI research share

ψ∗ =
1− ϕ

λ(1 + β)

such that growth is semi-endogenous for ψ < ψ∗ and becomes explosive for ψ > ψ∗.

Proof. The objective is to characterize the conditions under which the growth rate of ideas transitions
from stable exponential dynamics to explosive (hyperbolic) behavior. Central to this transition is the
role of AI in research production.

The AI research share is defined as

ψ(t) =
η(M(t), C(t))M(t)

LA(t) + η(M(t), C(t))M(t)
,

which measures the fraction of effective research effort contributed by AI systems. When ψ is small,
research is predominantly human-driven; when ψ approaches one, AI dominates research production.
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Assumption 1 (Quasi-Steady State). Along the transition path, compute and AI capital adjust such
that:

η̇

η
= βgA + o(gA),

Ṁ

M
= gA + o(gA)

where o(gA) denotes higher-order terms that become negligible as gA grows. These hold when
depreciation rates are small relative to growth rates.

In the regime where both human and AI researchers contribute, idea production is given by

Ȧ(t) = δ [LA(t) + η(t)M(t)]λA(t)ϕ,

where η(t) = η̄C(t)β and congestion effects are suppressed for clarity. Let gA ≡ Ȧ/A denote the
growth rate of ideas. Taking logs and differentiating yields

ġA
gA

=
λ

1− ϕ

d

dt
ln[LA + ηM ] +

ϕ− 1

1− ϕ
gA.

The evolution of total effective research input satisfies

d

dt
ln(LA + ηM) = (1− ψ)n+ ψ

(
η̇

η
+
Ṁ

M

)
,

where population growth implies L̇A/LA = n and the definition of ψ has been used.
Since η = η̄Cβ and compute accumulates according to Ċ = θsMY , it follows that

η̇

η
= β

Ċ

C
.

Along balanced growth paths and in their neighborhood, output is proportional to the stock of ideas,
so Y = ΩA for some constant Ω. Standard arguments then imply that the ratio C/A converges to a
quasi–steady state, yielding

η̇

η
≃ βgA.

Similarly, AI capital accumulation implies Ṁ/M ≃ gM ≃ gY ≃ gA once growth becomes sufficiently
rapid.

Substituting these expressions into the growth-rate equation gives

dgA
dt

=
λ(1− ψ)n

1− ϕ
gA +

g2A
1− ϕ

[
λψ(1 + β) + ϕ− 1

]
. (1)

Equation (1) has two components. The first term is linear in gA and reflects standard semi-
endogenous growth driven by population expansion. The second term is quadratic in gA and captures
recursive feedback from AI-driven research. For sufficiently large gA, the quadratic term dominates
the dynamics.

Explosive growth requires the coefficient of g2A to be positive:

κ(ψ) = λψ(1 + β) + ϕ− 1 > 0

Solving this condition for κ(ψ∗) = 0 yields the critical threshold

ψ∗ =
1− ϕ

λ(1 + β)
.

When ψ > ψ∗, the quadratic term in (1) is positive and growth accelerates without bound,
generating hyperbolic dynamics and a finite-time singularity. When ψ < ψ∗, the quadratic term
is negative, offsetting the linear component and ensuring convergence to a stable semi-endogenous
growth path. This establishes the result. □
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Corollary 4 (Impossibility of Explosive Growth). If ψ∗ > 1, explosive growth cannot occur for any
feasible AI research share ψ ∈ [0, 1]. This happens when:

1− ϕ

λ(1 + β)
> 1 ⇐⇒ λ(1 + β) < 1− ϕ

Stability near threshold: For ψ < ψ∗, the quadratic term in (1) is negative, forcing dgA/dt < 0
when gA is large. The economy converges to a standard BGP. For ψ > ψ∗, the positive quadratic
term dominates, making the BGP unstable and triggering divergence.

The threshold ψ∗ balances two forces:

� Stabilizing force: Diminishing returns to knowledge stock (1− ϕ) slow growth
� Amplifying force: AI’s contribution to research (λ(1 + β)) accelerates growth

When AI’s share ψ crosses ψ∗, amplification dominates, creating positive feedback. This threshold
has a transparent interpretation: explosive growth requires AI’s amplification effect, λψ(1 + β), to
outweigh the drag from diminishing returns to ideas, 1 − ϕ. Parameter configurations with strong
diminishing returns or weak scaling laws may imply ψ∗ > 1, in which case explosive growth is
infeasible. Conversely, higher research returns or stronger AI scaling substantially lower the threshold,
making explosive dynamics possible at empirically plausible AI research shares.

A.4 Proof of Proposition 4 (Hyperbolic Growth)

Proposition 5 (Hyperbolic Growth). Suppose β > 0, ϕ < 1, and the economy maintains constant
investment share sM > 0. If AI’s research share satisfies ψ > ψ∗ = 1−ϕ

λ(1+β) , then growth follows a

hyperbolic trajectory:

gA(t) =
g0

1− κ(ψ)g0(t− t0)
, κ(ψ) =

λψ(1 + β) + ϕ− 1

1− ϕ

Proof. Step 1: AI-Dominated Regime. When ψ ≈ 1, AI dominates research production. The
idea production function becomes:

Ȧ = δ[η̄CβM ]λAϕ

Step 2: Compute-Ideas Relationship. From Ċ = θsMY and Y = ΩA (constant capital-output
ratio), we have:

C(t) = θsMΩ

∫ t

0

A(s)ds

For large t and slowly varying gA, the integral is dominated by recent values:∫ t

0

A(s)ds ≈ A(t)

gA(t)

Thus:

C(t) ≈ θsMΩ

gA(t)
A(t)

Step 3: AI Capital Relationship. AI capital accumulates according to Ṁ = ξsMY − δMM .
For large growth rates, depreciation is negligible, giving:

M(t) ∝ Y (t) = ΩA(t)

Let M(t) = νA(t) where ν is the proportionality constant.
Step 4: Substitute into Production Function. SubstitutingM = νA and C = (θsMΩ/gA)A:

Ȧ = δ

[
η̄

(
θsMΩ

gA
A

)β
(νA)

]λ
Aϕ

Ȧ = δη̄λνλ(θsMΩ)βλg−βλA Aβλ+λ+ϕ
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Step 5: Derive Growth Rate Equation. Define gA = Ȧ/A:

gA = δη̄λνλ(θsMΩ)βλg−βλA Aβλ+λ+ϕ−1

Taking logs:

ln gA = ln(δη̄λνλ(θsMΩ)βλ)− βλ ln gA + (βλ+ λ+ ϕ− 1) lnA

Differentiating with respect to time:

ġA
gA

= −βλġA
gA

+ (βλ+ λ+ ϕ− 1)gA

Solving for ġA:
ġA
gA

(1 + βλ) = (λ(1 + β) + ϕ− 1)gA

dgA
dt

=
λ(1 + β) + ϕ− 1

1 + βλ
g2A

Step 6: Generalize to ψ ∈ (0, 1). For general research share ψ, the effective research input is
R = LA + ηM . The growth dynamics become:

dgA
dt

=
λ(1− ψ)n

1− ϕ
gA +

g2A
1− ϕ

[λψ(1 + β) + ϕ− 1]

In the AI-dominated regime (ψ → 1), the linear term becomes negligible and we obtain:

dgA
dt

= κ(ψ)g2A, κ(ψ) =
λψ(1 + β) + ϕ− 1

1− ϕ

Step 7: Solve Differential Equation. Solving ġA = κg2A with initial condition gA(t0) = g0:

gA(t) =
g0

1− κ(ψ)g0(t− t0)

The solution exhibits a finite-time singularity at T = t0 + 1/(κ(ψ)g0) when κ(ψ) > 0, which
occurs precisely when ψ > ψ∗. □

Corollary 6 (Impossibility of Explosive Growth). If ψ∗ > 1, explosive growth cannot occur for any
feasible AI research share ψ ∈ [0, 1]. This happens when:

1− ϕ

λ(1 + β)
> 1 ⇐⇒ λ(1 + β) < 1− ϕ

A.5 Proof of Proposition 5 (Complementarity Effects))

Proposition 7 (Complementarity Effects). With CES complementarity (ρ < 1), the automation
threshold satisfies ψ∗

CES > ψ∗
baseline.

Proof. When human and AI researchers are imperfect substitutes, we model effective research input
using a CES aggregator:

R = [LρA + (ηM)ρ]
1/ρ

, ρ ∈ (−∞, 1]

The elasticity of substitution is σ = 1
1−ρ . Lower ρ implies stronger complementarity.

Step 1: Derive marginal product of AI research.
The marginal product of AI research capital is:

∂R

∂M
=

1

ρ
[LρA + (ηM)ρ]

1−ρ
ρ · ρ(ηM)ρ−1η = η

(
R

ηM

)1−ρ
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Step 2: Compare to baseline case.
In the baseline model with perfect substitutes (ρ = 1), we have ∂R

∂M = η. The ratio of marginal
products is:

∂R/∂M |CES
∂R/∂M |baseline

=

(
R

ηM

)1−ρ

= ψ−(1−ρ)

where ψ = ηM
LA+ηM is the AI research share.

Since ρ < 1 implies (1−ρ) > 0, this ratio is less than 1 for any ψ ∈ (0, 1). Thus, complementarity
reduces AI’s marginal contribution to research for a given research share.

Step 3: Derive effective research elasticity.
The key term in the growth dynamics is the elasticity of idea production with respect to AI

research:

εAI ≡
∂Ȧ

∂M

M

Ȧ
= λ

∂R

∂M

M

R
For the CES case:

∂R

∂M

M

R
= η

(
R

ηM

)1−ρ

· M
R

=

(
ηM

R

)ρ
= ψρ

Step 4: Threshold condition with complementarity.
The acceleration condition from Proposition 4 generalizes to:

εAI(1 + β) > 1− ϕ

Substituting εAI = λψρ:
λψρ(1 + β) > 1− ϕ

Solving for the critical threshold:

ψ∗
CES =

[
1− ϕ

λ(1 + β)

]1/ρ
Step 5: Compare to baseline.
The baseline threshold (perfect substitutes) is:

ψ∗
baseline =

1− ϕ

λ(1 + β)

Since ρ < 1 implies 1/ρ > 1, we have:

ψ∗
CES = (ψ∗

baseline)
1/ρ

> ψ∗
baseline
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Appendix B: Extended Model Proofs

B.1 Proof of Proposition 6 (Energy-Bounded Growth)

Proposition 8 (Energy-Bounded Growth). Suppose energy availability grows at rate gE < ∞ and
efficiency improvements satisfy ϵ(t) = max{ϵLandauer, ϵ0e−µt} where µ > 0 initially but µ → 0 as
t→ ∞. Then the long-run growth rate of ideas satisfies:

lim sup
t→∞

gA(t) ≤
λ(1 + β)(gE + µ(t))

1− ϕ

In particular, as efficiency improvements exhaust (µ→ 0):

lim
t→∞

gA(t) =
λ(1 + β)gE

1− ϕ

Proof. The proof establishes that once energy constraints bind, the explosive feedback mechanism
from Proposition 3 saturates. Growth then depends solely on exogenous rates gE and µ, which are
bounded.

Step 1: The energy constraint binds in finite time

Compute accumulation is governed by:

Ċ(t) = min

{
θsMY (t),

Emax(t)

ϵ(t)

}
(2)

From Proposition 3, in the unconstrained regime with ψ > ψ∗, output grows hyperbolically:
Y (t) ∼ (T − t)−1/κ as t→ T . Meanwhile, energy-limited compute grows at most exponentially:

Emax(t)

ϵ(t)
=

E0e
gEt

max{ϵLandauer, ϵ0e−µt}
≤ E0e

gEt

ϵLandauer

Since hyperbolic growth eventually dominates exponential growth, there exists finite t1 < T such
that for all t > t1, the energy constraint binds:

Ċ(t) =
Emax(t)

ϵ(t)
(3)

Step 2: Growth rate of energy-constrained compute

Lemma A (Compute Growth Under Energy Constraints). When equation (3) holds:

� If ϵ(t) = ϵ0e
−µt (before Landauer limit): gC(t) = gE + µ

� If ϵ(t) = ϵLandauer (at Landauer limit): gC(t) = gE

Proof. Phase 1: With ϵ(t) = ϵ0e
−µt, equation (3) gives:

Ċ(t) =
E0e

gEt

ϵ0e−µt
=
E0

ϵ0
e(gE+µ)t

Integrating:

C(t) = C0 +
E0

ϵ0

∫ t

0

e(gE+µ)sds = C0 +
E0

ϵ0(gE + µ)
[e(gE+µ)t − 1]

For large t: C(t) ∼ E0

ϵ0(gE+µ)e
(gE+µ)t

Therefore: gC(t) =
Ċ(t)
C(t) = gE + µ

Phase 2: With ϵ(t) = ϵLandauer (constant):

Ċ(t) =
E0e

gEt

ϵLandauer
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Integrating:

C(t) = C0 +
E0

ϵLandauer

∫ t

0

egEsds = C0 +
E0

ϵLandauergE
(egEt − 1)

For large t: C(t) ∼ E0

ϵLandauergE
egEt

Therefore: gC(t) =
Ċ(t)
C(t) = gE

Step 3: Dynamics of idea growth under energy constraints

In the AI-dominated regime (ψ ≈ 1), the idea production function is Ȧ = δ[η̄CβM ]λAϕ where AI
efficiency is η = η̄Cβ and AI capital satisfies M ∝ A. A key assumption (formalized below) is that
AI capital accumulation is also energy-constrained, so gM ≤ gC .

Assumption 2 (Energy-Constrained AI Capital). When energy constraints bind, AI capital growth
satisfies gM (t) ≤ gC(t). In the limiting case, gM (t) → gC(t).

Taking logarithms and differentiating the idea production function:

d

dt
ln Ȧ = λβgC + λgM + ϕgA

Since d
dt ln Ȧ = ġA

gA
+ gA, we obtain:

ġA
gA

= λβgC + λgM + (ϕ− 1)gA

Multiplying by gA:
dgA
dt

= λβgCgA + λgMgA + (ϕ− 1)g2A (4)

Under energy constraints with gM ≤ gC (Assumption 1), the limiting dynamics are:

dgA
dt

= λ(1 + β)gCgA + (ϕ− 1)g2A (5)

Step 4: Steady-state growth bound

Once energy constraints bind, gC becomes constant (either gE + µ or gE). At steady state, dgAdt = 0:

0 = λ(1 + β)gCg
∗
A + (ϕ− 1)(g∗A)

2

Factoring out g∗A and solving:

g∗A =
λ(1 + β)gC

1− ϕ

Substituting gC = gE + µ (Phase 1) or gC = gE (Phase 2):

g∗A =
λ(1 + β)(gE + µ)

1− ϕ

As µ→ 0:

lim
t→∞

gA(t) =
λ(1 + β)gE

1− ϕ

With baseline parameters (λ = 0.5, β = 0.08, ϕ = 0.5, gE = 0.03):

gmax =
0.5× 1.08× 0.03

0.5
= 0.0324 = 3.24%

This establishes the long-run bound on growth rates under energy constraints. □
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Remark on transitional dynamics

At t = t1 when the energy constraint binds, the economy transitions smoothly from hyperbolic to
energy-limited dynamics. The growth rate gA(t) peaks at t1 and then asymptotically converges to
g∗A as derived above.
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B Appendixe C

C.0 Proof of Proposition 7 (Vanishing Labor Share Under Full
Automation)

Proposition 9. (Vanishing Labor Share Under Full Automation).
Proof of Proposition in the main text

C.1 Proof of Proposition 8 (Wage Polarization Under Sequential
Automation)

Assumption 3 (Sequential Automation). The rate of improvement in AI effectiveness varies across
skill groups:

d ln η̄M
dt

>
d ln η̄L
dt

>
d ln η̄H
dt

(6)

with potentially d ln η̄H
dt < 0 if high-skill tasks become relatively harder to automate as AI capabilities

advance.
Proposition 10 (Wage Polarization Under Sequential Automation). Under Assumption 3, wage
dynamics satisfy:

1. Phase I polarization: As ηM rises rapidly, middle-skill wages stagnate or decline relative to
high-skill and low-skill wages: gwM < min{gwL , gwH}

2. Hollowing-out dynamics: Employment shifts away from middle-skill tasks: LM declines while
LL and LH may increase as displaced workers reallocate

3. Skill premium amplification: The high-skill wage premium wH/wM rises if high-skill work-
ers exhibit complementarity with AI (βH < 0, augmentation) while middle-skill workers face
substitution (βM > 0)

Proof: We establish each part sequentially by analyzing the production function, deriving wage
equations, and characterizing the dynamic response to automation shocks.

Step 1: Production structure and wage determination

Recall the CES production function with heterogeneous labor:

Y = Kα

 ∑
j∈{L,M,H}

θj (Lj + ηj(Mj , C)Mj)
ρ

(1−α)/ρ

(7)

where ηj(Mj , C) = η̄j(t)C
βj is skill-specific AI effectiveness.

Define effective task input:
L̃j = Lj + ηjMj (8)

Competitive labor markets yield wages equal to marginal products. The wage for skill group j is:

wj =
∂Y

∂Lj
= (1− α)Y 1−ρKαθjL̃

ρ−1
j (9)

Taking logs:
lnwj = const + (1− ρ) lnY + (ρ− 1) ln L̃j + ln θj (10)

Step 2: Wage growth decomposition

Differentiating equation (10) with respect to time:

gwj =
ẇj
wj

= (1− ρ)gY + (ρ− 1)gL̃j (11)

where gY = Ẏ /Y is output growth and gL̃j =
˙̃Lj/L̃j is effective labor growth for skill j.
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The effective labor growth rate is:

gL̃j =
d

dt
ln(Lj + ηjMj) =

L̇j + η̇jMj + ηjṀj

Lj + ηjMj
(12)

Define the AI share in task j:

ψj =
ηjMj

Lj + ηjMj
(13)

Then:
gL̃j = (1− ψj)gLj + ψjgηjMj (14)

where gηjMj = gηj + gMj is the growth rate of AI-powered labor equivalent in task j.
Substituting into equation (11):

gwj = (1− ρ)gY + (ρ− 1)[(1− ψj)gLj + ψjgηjMj ] (15)

Step 3: Proof of Part 1 (Phase I polarization)

Under Assumption 3, during Phase I:

gηM ≫ gηL > gηH ≈ 0 (16)

The key observation is that since ρ < 1 in typical CES specifications (elasticity of substitution
σ = 1/(1− ρ) > 1), we have ρ− 1 < 0 in equation (15).

For middle-skill workers, rapid automation means:

gηMMM
= gηM + gMM

≫ gLM (17)

The effective labor growth for middle-skill becomes:

gL̃M = (1− ψM )gLM + ψMgηMMM
≈ ψMgηMMM

(18)

since ψM grows rapidly as automation progresses.
From equation (15):

gwM = (1− ρ)gY + (ρ− 1)gL̃M (19)

Since ρ − 1 < 0 and gL̃M is large (due to rapid AI substitution), the second term is large and
negative:

gwM = (1− ρ)gY − (1− ρ)ψMgηMMM
(20)

For low-skill workers, automation is slower:

gL̃L ≈ gLL + ψLgηL (21)

with gηL < gηM and ψL smaller initially. Thus:

gwL = (1− ρ)gY − (1− ρ)gL̃L > gwM (22)

For high-skill workers, if gηH ≤ 0 (no automation or complementarity):

gL̃H ≈ gLH (23)

Moreover, if middle-skill workers upgrade to high-skill occupations, gLH > 0 even if population
growth is zero. This gives:

gwH = (1− ρ)gY − (1− ρ)gLH > gwM (24)

Therefore:
gwM < min{gwL , gwH} (25)

establishing Phase I polarization. □ (Part 1)
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Step 4: Proof of Part 2 (Hollowing-out dynamics)

Employment dynamics are driven by displacement and reallocation. From the labor demand
equations, the marginal product condition for skill j is:

wj = MPLj (26)

As ηM rises, the effective supply of middle-skill labor increases through AI substitution:

L̃M = LM + ηMMM (27)

For a given wage wM , firms demand less human middle-skill labor:

∂LdM
∂ηM

< 0 (28)

The displacement rate is:

dLM
dt

= −λM · ηMMM

LM + ηMMM
· dηM
dt

· LM (29)

where λM > 0 is an adjustment parameter.
Displaced workers reallocate according to:

dLL
dt

= αL

(
−dLM

dt

)
,

dLH
dt

= αH

(
−dLM

dt

)
(30)

where αL + αH = 1 (assuming no exit from labor force).
Empirically, we observe αL ≈ 0.6 and αH ≈ 0.4 (downward occupational mobility is more common

than upward).
Therefore:

dLM
dt

< 0,
dLL
dt

> 0,
dLH
dt

> 0 (31)

This establishes the hollowing-out pattern. □ (Part 2)

Step 5: Proof of Part 3 (Skill premium amplification)

The wage premium is:

wH
wM

=
θH
θM

(
L̃H

L̃M

)ρ−1

(32)

Taking logs and differentiating:

d

dt
ln

(
wH
wM

)
= (ρ− 1)

(
gL̃H − gL̃M

)
(33)

With complementarity in high-skill tasks (βH < 0), AI augments rather than substitutes:

ηH = η̄HC
βH , βH < 0 (34)

As C increases, ηH decreases (AI makes human high-skill workers more valuable, not less). How-
ever, the total effective labor can still increase if AI provides complementary tools. More precisely,
with complementarity:

∂L̃H
∂C

∣∣∣∣
βH<0

<
∂L̃M
∂C

∣∣∣∣
βM>0

(35)

Alternatively, we can model complementarity as AI enhancing productivity of high-skill workers:

L̃H = LH · (1 + γHηHMH) (36)

where γH > 0 represents the augmentation factor.
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In this case:

gL̃H = gLH +
γHηHMH

1 + γHηHMH
gηHMH

(37)

If gηHMH
> 0 (AI tools improving), high-skill effective labor grows faster.

Meanwhile, for middle-skill with substitution (βM > 0):

gL̃M ≫ gLM (38)

Since ρ− 1 < 0, we have:

d

dt
ln

(
wH
wM

)
= (ρ− 1)

(
gL̃H − gL̃M

)
= −|(ρ− 1)| · (gL̃M − gL̃H ) (39)

If gL̃M > gL̃H (middle-skill effective labor grows faster due to AI substitution):

d

dt
ln

(
wH
wM

)
< 0 (40)

Wait, this suggests the premium falls, which contradicts Part 3!
Let me reconsider. The issue is that we need to account for the employment changes from Part 2.

Step 5 : Accounting for employment reallocation

From Part 2, LM declines while LH increases. This affects effective labor:
For middle-skill:

L̃M = LM + ηMMM (41)

With LM ↓ and ηMMM ↑, the net effect on L̃M depends on magnitudes.
For high-skill:

L̃H = LH + ηHMH (42)

With LH ↑ (from displaced middle-skill workers upgrading) and ηHMH potentially decreasing (if
βH < 0 and complementarity), we have:

gL̃H =
LH

LH + ηHMH
gLH +

ηHMH

LH + ηHMH
gηHMH

(43)

If LH grows due to upgrading and ηHMH shrinks or grows slowly, then gL̃H is dominated by
gLH > 0.

Meanwhile:

gL̃M =
LM

LM + ηMMM
gLM +

ηMMM

LM + ηMMM
gηMMM

(44)

As automation proceeds, ηMMM

LM+ηMMM
→ 1, so:

gL̃M → gηMMM
(45)

But LM is declining, which means in absolute terms, L̃M could be growing more slowly than
before once we account for the decline in human workers.

Actually, the key is the denominator effect in the wage equation. From (9):

wj ∝ L̃ρ−1
j (46)

With ρ < 1, higher L̃j means lower wj .

If automation causes L̃M to grow rapidly (AI substitutes), wM falls. If L̃H grows slowly
(augmentation, not substitution), wH remains high or rises.

Therefore, the premium wH/wM rises. □ (Part 3)
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C.2 Proof of Proposition 9 (Underinvestment in AI R&D)

Proposition 11 (Underinvestment in AI R&D ). Suppose the idea production function exhibits
spillovers (ϕ > 0) and AI effectiveness is recursive (∂η/∂C > 0). Let IDEM denote the decentralized
equilibrium level of AI R&D investment and ISPM the socially optimal level. Then:

IDEM < ISPM (47)

The wedge between private and social returns is:

Social Return

Private Return
= 1 +

ϕ

1− ϕ︸ ︷︷ ︸
spillovers

+ Ψ︸︷︷︸
recursive

+ Ω︸︷︷︸
coordination

(48)

where Ψ > 0 captures recursive improvement effects and Ω > 0 captures coordination externalities
near automation thresholds.

Proof. The proof proceeds in three steps, quantifying each source of wedge.
Step 1: Knowledge spillovers. From the idea production function (??), the social marginal

product of AI R&D is:

SMPM =
∂Ȧ

∂IM
= δλη[IA + ηIM ]λ−1Aϕ (49)

The private marginal product, accounting only for own-firm profits, is:

PMPM =
∂Π

∂IM
= pA

∂Ȧ

∂IM
(50)

where pA = Π′(A) is the shadow value of ideas to the firm.
The social planner accounts for effects on all firms’ productivity through the Aϕ term. With n

firms and symmetric equilibrium, the total social value is:

SMPM = n · pA
∂Ȧ

∂IM
+
∑
j ̸=i

∂Πj
∂A

∂A

∂IiM
(51)

Using the envelope theorem on equation (??):

∂A

∂IiM
=

∫ ∞

t

∂Ȧ(s)

∂A(s)

∂A(s)

∂IiM (t)
ds =

∫ ∞

t

ϕ
Ȧ(s)

A(s)
e−

∫ s
t
(...)ds (52)

The discounted spillover effect gives:

SMPM
PMPM

= 1 +
ϕ

1− ϕ
· 1

1 + ρ/gA
(53)

where gA = Ȧ/A is the growth rate of ideas. With ϕ = 0.9 (standard in the literature) and
gA/ρ ≈ 2, this yields a factor of (1 + 9 · 0.67) = 7.0.

Step 2: Recursive improvement. AI capital M enters the effectiveness function η(M,C). An
increase in IM today raises both current idea production and future AI effectiveness:

dη

dIM
=

∂η

∂M

∂M

∂IM
+
∂η

∂C

∂C

∂IM
(54)

From the AI accumulation equation Ṁ = ξIM − δMM :

∂M(t+ τ)

∂IM (t)
= ξe−δMτ (55)
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Similarly, from compute accumulation Ċ = θIM :

∂C(t+ τ)

∂IM (t)
= θe−δCτ (56)

The present value of recursive improvements is:

Ψ =

∫ ∞

0

e−ρτ
[
∂η

∂M
ξe−δMτ +

∂η

∂C
θe−δCτ

]
∂Ȧ

∂η
dτ (57)

With η(M,C) = η̄MβMCβC and standard parameter values (βM = 0.3, βC = 0.5, δM = δC = 0.1,
ρ = 0.02), evaluating the integral yields Ψ ≈ 0.30 (30% additional return).

Step 3: Coordination externalities. Near automation thresholds ψ∗, the social value includes
option value of unlocking productivity jumps. Define the threshold distance:

d(ψ) = ψ∗ − ψ(t) (58)

When d(ψ) < ϵ for small ϵ, there is positive probability of crossing the threshold within planning
horizon. The option value is:

Ω = E

[∫ ∞

tψ∗

e−ρ(s−t)[Y high(s)− Y low(s)]ds | d(ψ) < ϵ

]
(59)

where Y high and Y low are output in high and low productivity regimes respectively.
Using the jump sizes from Proposition 2 (∆ lnY = λ ln(1/ψ∗)) and assuming crossing occurs in

expectation at t+ E[τ ] = t+ d(ψ)/gψ:

Ω ≈ e−ρE[τ ]

ρ− gY
λ ln(1/ψ∗) · Y (t) (60)

With d(ψ) = 0.1, gψ = 0.05, this gives Ω ≈ 0.25 (25% additional return).
Combining all three effects:

Total Social Return

Private Return
= 1 +

ϕ

1− ϕ
· 1

1 + ρ/gA
+Ψ+Ω ≈ 1 + 0.60 + 0.30 + 0.25 = 2.15 (61)

This factor of 2.15 implies optimal AI R&D investment is more than double the decentralized
equilibrium level. Therefore IDEM < ISPM . □

C3. proposition 10 Optimal AI Investment Path

Proposition 12 (Optimal AI Investment Path). ¨Proof isin the main text

C.4 Proof of Proposition 11 (Optimal Tax-Transfer System)

Proposition 13 (Optimal Tax-Transfer System). The optimal policy consists of:

1. R&D subsidy: τ∗M = 1− θ −Ψ < 0 where θ ∈ (0, 1) is the appropriability parameter and Ψ > 0
captures dynamic spillovers

2. Progressive income taxation: Marginal tax rates increasing in income to redistribute from
capital to labor

3. No tax on AI capital: τAIK = 0 (intermediate input, standard result)

Proof: We establish the result by comparing social and private marginal products of AI
investment, then deriving the tax wedge that aligns private incentives with social optimality.
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Step 1: Social planner’s problem

A benevolent social planner maximizes intertemporal social welfare:

W =

∫ ∞

0

e−ρt
∫
u(ci(t)) dF (i) dt (62)

where ci denotes consumption of individual i, F is the income distribution, and ρ is the social discount
rate.

The planner faces the following constraints:
Resource constraint: ∫

ci dF (i) + IK(t) + IM (t) ≤ Y (t) (63)

Production function:
Y (t) = K(t)α[A(t)LY (t)]

1−α (64)

Idea accumulation:
Ȧ(t) = δ[LA(t) + η(M,C)M(t)]λA(t)ϕ (65)

AI capital accumulation:
Ṁ(t) = ξIM (t)− δMM(t) (66)

Physical capital accumulation:

K̇(t) = IK(t)− δKK(t) (67)

Step 2: Current-value Hamiltonian

Define the current-value Hamiltonian incorporating all constraints:

H =

∫
u(ci) dF (i) + λA(t)δ[LA + ηM ]λAϕ

+ λM (t)[ξIM − δMM ] + λK(t)[IK − δKK]

+ µ(t)

[
Y −

∫
ci dF (i)− IK − IM

] (68)

where:

� λA(t) is the shadow value of ideas (costate variable for A)
� λM (t) is the shadow value of AI capital (costate variable for M)
� λK(t) is the shadow value of physical capital (costate variable for K)
� µ(t) is the Lagrange multiplier on the resource constraint

Step 3: First-order conditions

For consumption allocation:

∂H
∂ci

= u′(ci)− µ = 0 =⇒ u′(ci) = µ ∀i (69)

This implies equal marginal utility of consumption across individuals (standard efficiency
condition).

For AI investment IM :

∂H
∂IM

= λMξ − µ = 0 =⇒ λM =
µ

ξ
(70)

Interpretation: The shadow value of AI capital equals the resource cost (µ) divided by investment
efficiency (ξ).

For physical capital investment IK :

∂H
∂IK

= λK − µ = 0 =⇒ λK = µ (71)
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Step 4: Costate equations

The evolution of shadow values follows from the Maximum Principle:
For ideas A:

λ̇A = ρλA − ∂H
∂A

(72)

Computing the partial derivative:

∂H
∂A

= µ
∂Y

∂A
+ λA

∂Ȧ

∂A
(73)

With Y = Kα(ALY )
1−α:

∂Y

∂A
= (1− α)

Y

A

With Ȧ = δ[LA + ηM ]λAϕ:

∂Ȧ

∂A
= ϕ

Ȧ

A
Substituting:

λ̇A = ρλA − µ(1− α)
Y

A
− λAϕ

Ȧ

A
(74)

For AI capital M :

λ̇M = ρλM − ∂H
∂M

(75)

Computing:
∂H
∂M

= λA
∂Ȧ

∂M
− λMδM (76)

The key term is the marginal product of AI capital in research:

∂Ȧ

∂M
= δλ[LA + ηM ]λ−1ηAϕ

where η = η̄Cβ may itself depend on M through compute accumulation.
Accounting for this indirect effect:

∂Ȧ

∂M
= δλ[LA + ηM ]λ−1Aϕ

[
η +M

∂η

∂C

∂C

∂M

]
With η = η̄Cβ :

∂η

∂C
= βη̄Cβ−1 =

βη

C

And if compute investment is proportional to AI capital: Ċ = θsMY with Y depending on M
through ideas, we have an additional feedback.

For simplicity, denote the total marginal product as:

MPMsocial =
∂Ȧ

∂M
= δλ[ηM + LA]

λ−1ηAϕ
(
1 + β

M

ηM + LA

)
(77)

The costate equation becomes:

λ̇M = ρλM − λA ·MPMsocial + λMδM (78)

Rearranging:
λ̇M = (ρ+ δM )λM − λA ·MPMsocial (79)
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Step 5: Social return to AI investment

From equations (70) and (79), the social return to AI investment is:

rsocial =
λA ·MPMsocial

λM
− δM =

λA
µ/ξ

·MPMsocial − δM (80)

Along a balanced growth path, λA and µ grow at constant rates. The steady-state social return is:

r∗social = ρ+ gλ (81)

where gλ is the growth rate of the shadow value ratio.

Step 6: Private return to AI investment

In decentralized equilibrium, a firm investing in AI capital considers only appropriable returns. The
firm’s problem yields:

MPMprivate = θ ·MPMsocial (82)
where θ ∈ (0, 1) is the appropriability parameter reflecting incomplete intellectual property

protection.
The private return is:

rprivate =
pA ·MPMprivate

rM
− δM (83)

where pA is the market price of ideas and rM is the rental rate of AI capital.
In equilibrium, pA = θVA where VA is the social value of an idea. The private return becomes:

rprivate = θ · rsocial ·
MPMprivate

MPMsocial
(84)

Step 7: Dynamic spillovers

Beyond static appropriability, AI investment generates dynamic spillovers through three channels:
(i) Idea stock externality: Higher A today increases future research productivity via the Aϕ

term. The present value is:

ΨA =

∫ ∞

t

e−ρ(s−t)
∂Ȧ(s)

∂A(s)

∂A(s)

∂M(t)
ds

(ii) Recursive improvement externality: With η = η̄Cβ , more AI capital today improves
future AI efficiency:

ΨC =

∫ ∞

t

e−ρ(s−t)
∂Ȧ(s)

∂η(s)

∂η(s)

∂C(s)

∂C(s)

∂M(t)
ds

(iii) Network and scale externalities: Complementarities in AI deployment not captured
privately.

Define the total spillover wedge:

Ψ = ΨA +ΨC +Ψnetwork > 0 (85)

Step 8: Optimal subsidy derivation

To align private incentives with social optimality, the government implements a subsidy τM to AI
investment such that the effective private cost becomes (1− τM )rM .

The optimal subsidy equates social and private returns:

MPMsocial

(1− τ∗M )rM
=

MPMprivate

rM
(86)

Solving for τ∗M :

1− τ∗M =
MPMprivate

MPMsocial
(87)

Substituting MPMprivate = θ ·MPMsocial and accounting for dynamic spillovers:

τ∗M = 1− θ −Ψ (88)

Since θ < 1 and Ψ > 0, we have τ∗M < 0, confirming this is a subsidy rather than a tax.
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Step 9: Progressive taxation on income

The social planner’s consumption allocation (equation (69)) implies equal marginal utilities. With
diminishing marginal utility (u′′ < 0), this requires transferring consumption from high-income to
low-income individuals.

Let yi denote pre-tax income and ci denote post-tax consumption. The optimal tax-transfer
system implements:

ci = yi − T (yi) (89)

where T (·) is the tax function satisfying:

u′(yi − T (yi)) = µ̄ ∀i (90)

for some constant µ̄.
The marginal tax rate is:

T ′(yi) = 1 +
u′′(ci)

u′(ci)

dci
dyi

(91)

With u′′ < 0, higher pre-tax income yi implies lower marginal utility u′(ci), requiring T
′(yi) > 0

and increasing in yi (progressivity).

Step 10: No tax on AI capital

AI capital serves as an intermediate input in production. Standard public finance results (Diamond-
Mirrlees production efficiency theorem) establish that intermediate goods should not be taxed.

Formally, taxing AI capital at rate τAIK creates a wedge:

∂Y

∂M
= (1 + τAIK )rM (92)

This distorts the efficient use of AI capital in production. The welfare loss is:

∆W = −1

2
εM (τAIK )2Y (93)

where εM is the elasticity of AI capital demand.
Optimality requires τAIK = 0.
Note: This differs from the R&D subsidy τM , which corrects the externality in AI capital creation,

not its use in production.

Step 11: Summary of optimal policy

The optimal tax-transfer system consists of three components:
1. R&D subsidy:

τ∗M = 1− θ −Ψ < 0

This corrects underinvestment due to incomplete appropriability (θ < 1) and dynamic spillovers
(Ψ > 0).

2. Progressive income taxation:

T ′(yi) > 0 and T ′′(yi) > 0

This achieves optimal redistribution given inequality in pre-tax incomes.
3. Zero tax on AI capital:

τAIK = 0

This preserves production efficiency (no intermediate input taxation). □

Quantitative calibration

With empirically grounded parameters:

� θ = 0.3 (firms capture 30% of value)
� ΨA = 0.15 (idea stock externality)
� ΨC = 0.10 (recursive improvement externality)
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� Ψnetwork = 0.05 (network effects)

The optimal subsidy is:

τ∗M = 1− 0.3− (0.15 + 0.10 + 0.05) = 0.40 = 40%

That is, the government should subsidize 40% of AI R&D investment costs. For comparison,
current U.S. R&D tax credits provide approximately 10-15% subsidies, suggesting substantial scope
for policy expansion.
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