Automation Thresholds and Regime Transitions
in Al-Driven Economic Growth
Proofs Appendices

Appendix A: Theoretical Proofs

A.1 Proof of Proposition (Balanced Growth without AT)
Proposition 1. (Balanced Growth without Al).

Proof of Proposition in the main text
A.2 Proof of Proposition 2 (BGP with Non-Improving AT)

Proposition 2 (Balanced Growth with Non-Improving AI). With § =0 and v = 0, if human
researchers grow at rate n and Al capital grows at rate gy, then:

o If grr > n: In the long run, Al dominates and g% = i“f‘é

® If gu < n: Humans dominate and g% = 1>‘_—”¢ (same as no-Al case)

® More generally: g% = if—; where gr = (1 —Y)n + gy depends on research shares

The key insight is that AI raises the growth rate above the no-AI benchmark 1’\7—"(1) provided gar > n.

Proof. With =0 and v = 0, Al efficiency is constant: n(M,C) = 7. The idea production function
is:
A=05[La+qM]*A?

where total research input is R = Ly + 7M.

Step 1: Dynamics of research input

Human researchers grow at population rate: L 4(t) = o Loe™ and Al capital grows by assumption:
M(t) = MgeInm?,

Total research input:

R(t) = O'L()ent + ﬁM()eth
The growth rate of R is:
R _oLge™ - n+qMoedM - gy

R oLge™ + fMgedmt
Let ¢(t) = m%% be AT’s research share. Then 1 —1(t) = #ﬁ;{)w is the human
share.
Therefore: .
R
9r(t) = 5 = 1 =9(®)n +v(t)gu
Step 2: Long-run behavior of research shares
Case 1: If gpr > n, then as t — oo:
aMaedMt 1
B(t) = — 1 = —1

oLge™ + Moedmt 1 4+ %e(nwmt

So Al dominates and gr — gu.
Case 2: If gas < n, then 9(t) — 0 and humans dominate: gg — n.
Case 3: If gpy = n, then ¥(t) — 1h* = % (constant), giving:

gr= (1= ¢ )n+¢n=n



Step 3: General case with constant research growth
For the general statement, we consider the effective long-run research growth rate. Define
the research-weighted average:
1 T
gr = lim */ gr(t)dt
T Jo

T—o0

However, for a balanced growth path to exist, we need gr to asymptotically approach a constant.
From Step 2, this occurs in all three cases:

* If gy >n: gr = gum
e If gy <nigr—n
e If gpy = n: gr = n always

Step 4: Deriving the balanced growth rate
The idea production function is: )
A=§RMA?
Define the growth rate g4 = A/A:
ga=6RNAT!
Taking logs:
Inga=méd+AInR+(¢—1)InA

Differentiating with respect to time:

ga R A
= =)A= —1)— =X -1
0 7 + (¢ )A gr+ (¢ —1)ga
Therefore: p
73{‘ = Agagr + (¢ — 1)g%

On a balanced growth path, g4 is constant (g4 = 0), so:

0=2Agr+(¢—1)gi

Solving for g%:
AgRr
I-¢

ga =

A.3 Proof of Proposition 3 Automation Threshold)

Proposition 3 (Automation Threshold). There exists a critical Al research share

Y EXa e

such that growth is semi-endogenous for ¥ < ¥* and becomes explosive for 1 > ™.

Proof. The objective is to characterize the conditions under which the growth rate of ideas transitions
from stable exponential dynamics to explosive (hyperbolic) behavior. Central to this transition is the
role of Al in research production.

The AI research share is defined as

_ (M@, C()M(t)
La(t) +n(M(t),C(t))M(t)’

¥(t)

which measures the fraction of effective research effort contributed by Al systems. When 4 is small,
research is predominantly human-driven; when i approaches one, AI dominates research production.



Assumption 1 (Quasi-Steady State). Along the transition path, compute and Al capital adjust such
that: )

n_ M

e Bga+olga), 77 =9a+0(g4)

where o(ga) denotes higher-order terms that become negligible as ga grows. These hold when
depreciation rates are small relative to growth rates.

In the regime where both human and Al researchers contribute, idea production is given by
A(t) = 8 [Lalt) +n()M (O A®)?,

where 7(t) = 7C(t)? and congestion effects are suppressed for clarity. Let g4 = A/A denote the
growth rate of ideas. Taking logs and differentiating yields

da A d o—1
= =———1In[L M .
” 1_¢dtn[A+77 ]+1_¢9A
The evolution of total effective research input satisfies
d n M
— In(L M) =(1- -+ —
g n(La+nM) = ( w)n+w<n+M>,

where population growth implies L 4 /La =n and the definition of ¢ has been used.
Since n = 7C? and compute accumulates according to C' = 6s,,Y’, it follows that

n_ .C
1=8=.
n C
Along balanced growth paths and in their neighborhood, output is proportional to the stock of ideas,

so Y = QA for some constant 2. Standard arguments then imply that the ratio C'//A converges to a
quasi-steady state, yielding

Ui
=~ Bga.
n

Similarly, AT capital accumulation implies M /M ~ gpr =~ gy =~ ga once growth becomes sufficiently
rapid.
Substituting these expressions into the growth-rate equation gives

dga _ M1 —14) 4

i 1-¢ M1 g

Mp(1+ )+ ¢ —1]. (1)

Equation (1) has two components. The first term is linear in g4 and reflects standard semi-
endogenous growth driven by population expansion. The second term is quadratic in g4 and captures
recursive feedback from Al-driven research. For sufficiently large g4, the quadratic term dominates
the dynamics.

Explosive growth requires the coefficient of g% to be positive:

kW) = 1 +8)+¢—1>0
Solving this condition for x(¢*) = 0 yields the critical threshold

* 1_¢
V=N

When ¢ > 9*, the quadratic term in (1) is positive and growth accelerates without bound,
generating hyperbolic dynamics and a finite-time singularity. When ¢ < *, the quadratic term
is negative, offsetting the linear component and ensuring convergence to a stable semi-endogenous
growth path. This establishes the result. O



Corollary 4 (Impossibility of Explosive Growth). If ¥* > 1, explosive growth cannot occur for any
feasible AI research share ¢ € [0,1]. This happens when:

1-¢
m>1 = AMl+p)<1—-9¢

Stability near threshold: For ¢ < ¢*, the quadratic term in (1) is negative, forcing dg/dt < 0
when g4 is large. The economy converges to a standard BGP. For ¢ > 9*, the positive quadratic
term dominates, making the BGP unstable and triggering divergence.

The threshold ¢* balances two forces:

e Stabilizing force: Diminishing returns to knowledge stock (1 — ¢) slow growth
¢ Amplifying force: AIl’s contribution to research (A(1 4+ /3)) accelerates growth

When AI’s share v crosses *, amplification dominates, creating positive feedback. This threshold
has a transparent interpretation: explosive growth requires Al’s amplification effect, Ay(1 + 3), to
outweigh the drag from diminishing returns to ideas, 1 — ¢. Parameter configurations with strong
diminishing returns or weak scaling laws may imply 3* > 1, in which case explosive growth is
infeasible. Conversely, higher research returns or stronger Al scaling substantially lower the threshold,

making explosive dynamics possible at empirically plausible AI research shares.
O

A.4 Proof of Proposition 4 (Hyperbolic Growth)

Proposition 5 (Hyperbolic Growth). Suppose 8 > 0, ¢ < 1, and the economy maintains constant
investment share syy > 0. If AI’s research share satisfies ¥ > p* = )\(%f’ﬂ), then growth follows a

hyperbolic trajectory:

B g M1 +B) o1
940 = T =wy W= T g

Proof. Step 1: AI-Dominated Regime. When ¢ ~ 1, Al dominates research production. The
idea production function becomes: .
A = s[aCP M A?
Step 2: Compute-Ideas Relationship. From C = fs,;Y and Y = QA (constant capital-output
ratio), we have:

C(t) = 05192 / ' A(s)ds

For large t and slowly varying g4, the integral is dominated by recent values:

! . A@)
/0 A(s)ds = a(t)

C(t) ~ 99‘%?14(15)

Step 3: AI Capital Relationship. Al capital accumulates according to M = £sp/Y — M.
For large growth rates, depreciation is negligible, giving:

Thus:

M(t) x Y(t) = QA(t)

Let M (t) = vA(t) where v is the proportionality constant.
Step 4: Substitute into Production Function. Substituting M = vA and C' = (0sp;2/ga)A:

A
A?

_ <9$MQ

B
A=16|7 A) (vA)
gaA

A — 5ﬁky>\(QSJWQ>B>\926)\A,6)\+>\+¢



Step 5: Derive Growth Rate Equation. Define g4 = A/A:
g4 = 517’\1/\(OsMQ)B)‘g;ﬁAABA+)‘+¢’1
Taking logs:
Ings = In(67* v (052,)P) — BAInga + (BA+ A+ ¢ —1)In A
Differentiating with respect to time:

ga

= fﬂx\g—A+(,3)\+)\+¢fl)gA
ga ga

Solving for ga: )
LY = A1+ 5) + 6~ 1)ga
dga _A1+B8)+6-1,
dt 1+4r 94

Step 6: Generalize to ¢ € (0,1). For general research share v, the effective research input is
R=La+nM. The growth dynamics become:

dga M1 —1)n 95
it~ 1-¢ 9ATTC

¢[w(1+/3>+¢—1]

In the Al-dominated regime (¢ — 1), the linear term becomes negligible and we obtain:

_MA+B)+o-1

d
=), ) = T

dt

Step 7: Solve Differential Equation. Solving g4 = rg?% with initial condition ga(ty) = go:

_ go
1 —k(¥)go(t —to)

The solution exhibits a finite-time singularity at T = to + 1/(k(v))go) when (1) > 0, which
occurs precisely when ¢ > ¢*. (]

ga(t)

Corollary 6 (Impossibility of Explosive Growth). If ¢* > 1, explosive growth cannot occur for any
feasible AI research share i € [0,1]. This happens when:

1-¢
m>1 = Ml+p8)<1—-9¢

A.5 Proof of Proposition 5 (Complementarity Effects))

Proposition 7 (Complementarity Effects). With CES complementarity (p < 1), the automation
threshold satisfies V&pg > Viyseline-

Proof. When human and Al researchers are imperfect substitutes, we model effective research input
using a CES aggregator:
R= L+ M), pe (~o0,1]

The elasticity of substitution is o = ﬁ. Lower p implies stronger complementarity.
Step 1: Derive marginal product of AI research.

The marginal product of Al research capital is:

OR 1., pize oo (RN
3M—p[LA+(nM)] p(nM)P~"n=mn i



Step 2: Compare to baseline case.
In the baseline model with perfect substitutes (p = 1), we have % = 7. The ratio of marginal

products is:
1—
OR/OM|cps ( R ) P _ =(1-0)
8R/8M|baseline 77M

where ¢ = LA”_{_Vé 77 is the Al research share.
Since p < 1 implies (1—p) > 0, this ratio is less than 1 for any ¢ € (0, 1). Thus, complementarity
reduces Al’s marginal contribution to research for a given research share.
Step 3: Derive effective research elasticity.
The key term in the growth dynamics is the elasticity of idea production with respect to Al

research:

_9AM _ R M
TOM A OMR

ORM _ ((RNTI M (M
oM R~ "\ogm R R )~

Step 4: Threshold condition with complementarity.
The acceleration condition from Proposition 4 generalizes to:

€AI

For the CES case:

ear(l1+p5)>1—-¢

Substituting € 47 = AyY*:
ML+ B) > 1— ¢
Solving for the critical threshold:

. B 17(,25 1/p
Vops = L(Hﬁ)]

Step 5: Compare to baseline.
The baseline threshold (perfect substitutes) is:

1-¢

'djbaseline = /\(1 +ﬁ)

Since p < 1 implies 1/p > 1, we have:

_ 1/p
wz’ES - (w;aseline) > wl:kaseline



Appendix B: Extended Model Proofs
B.1 Proof of Proposition 6 (Energy-Bounded Growth)

Proposition 8 (Energy-Bounded Growth). Suppose energy availability grows at rate gg < oo and
efficiency improvements satisfy €(t) = max{€randauers eoe*“t} where p > 0 initially but p — 0 as
t — oco. Then the long-run growth rate of ideas satisfies:

limsup ga(t) < AL+ Bl)(gE +u(t))
t—o00 — ¢

In particular, as efficiency improvements exhaust (u — 0):

A
Jim ) = X7

Proof. The proof establishes that once energy constraints bind, the explosive feedback mechanism
from Proposition 3 saturates. Growth then depends solely on exogenous rates gg and p, which are
bounded.

Step 1: The energy constraint binds in finite time

Compute accumulation is governed by:

C(t) = min {GSMY(t), EIZE?)(IS)} (2)

From Proposition 3, in the unconstrained regime with ¢ > 9*, output grows hyperbolically:
Y (t) ~ (T —t)~'/% as t — T. Meanwhile, energy-limited compute grows at most exponentially:

Emax(t) EoegEt < EoegEt

E(t) maX{ELandaueru 6Oe_wt} - €Landauer

Since hyperbolic growth eventually dominates exponential growth, there exists finite t; < T such
that for all ¢t > ¢, the energy constraint binds:

G(t) = Zmeld) (3)

Step 2: Growth rate of energy-constrained compute

Lemma A (Compute Growth Under Energy Constraints). When equation (3) holds:

o Ife(t) = epe M (before Landauer limit): gc(t) = gr + p
o If e(t) = €Landauer (at Landaver limit): go(t) = gp

Proof. Phase 1: With €(t) = ege !, equation (3) gives:

) Egedst
C(t) — Oe—ut — 706(913-"-#)75
€o€ €0
Integrating:
Ey [ , E
C(t) =Cy+ 70/ eWETISgs = Oy + — 2 _[elomtmt _ 1]
€ Jo €o(9p + 1)

For large t: C(t) ~ ﬁe(ngru)t

Therefore: go(t) = % =g+ U

Phase 2: With €(¢) = €Landauer (constant):

EoegEt

C(t) =

€Landauer



Integrating:

Ey

€Landauer

t
E
Cit)=0Co+ / e985ds = Cp + ————— (95t — 1)
0

€LandauerJE
. EO gEt
For large t: C(t) ~ Er—L

Therefore: go(t) = % =gE O

Step 3: Dynamics of idea growth under energy constraints

In the Al-dominated regime (1) ~ 1), the idea production function is A = §[FC? M]* A? where AT
efficiency is n = 7C? and Al capital satisfies M oc A. A key assumption (formalized below) is that
AT capital accumulation is also energy-constrained, so gy < gc.

Assumption 2 (Energy-Constrained AI Capital). When energy constraints bind, Al capital growth
satisfies g (t) < go(t). In the limiting case, gar(t) — go(t).

Taking logarithms and differentiating the idea production function:

d .
T InA = A3gc + Agm + 094

Since % InA = Z—;‘ + g4, we obtain:

% = A3gc + Agm + (¢ — 1)ga

Multiplying by ga:
d
% = Mgcga +Agmga + (¢ — 1)g4 (4)

Under energy constraints with gp; < go (Assumption 1), the limiting dynamics are:

dga

prai M1+ B)gega + (¢ — 1)g5 (5)

Step 4: Steady-state growth bound

. . . dga _ 0.
Once energy constraints bind, gc becomes constant (either gg + p or gg). At steady state, 424 = 0:

0=X1+ B)gegs + (¢ —1)(g7)?

Factoring out g% and solving:

A1+ B)gc
1-¢
Substituting gc = gg + 1 (Phase 1) or go = gg (Phase 2):

Q@
%

AL+ B)(gE + 1)

ga= -0

As p— 0:
. _ M1+ B)gE
Jirm 9a(t) = =50

With baseline parameters (A = 0.5, 5 = 0.08, ¢ = 0.5, gg = 0.03):

5x1. .
G = 22 ooi X 0.0 _ 0324 = 3.24%

This establishes the long-run bound on growth rates under energy constraints. [



Remark on transitional dynamics
At t = t; when the energy constraint binds, the economy transitions smoothly from hyperbolic to
energy-limited dynamics. The growth rate ga(t) peaks at ¢; and then asymptotically converges to
g% as derived above.

O



B Appendixe C

C.0 Proof of Proposition 7 (Vanishing Labor Share Under Full
Automation)

Proposition 9. (Vanishing Labor Share Under Full Automation).
Proof of Proposition in the main text

C.1 Proof of Proposition 8 (Wage Polarization Under Sequential
Automation)

Assumption 3 (Sequential Automation). The rate of improvement in Al effectiveness varies across

skill groups: i " "
nnm nnr nny
i dt | dt ©

with potentially dli}# < 0 if high-skill tasks become relatively harder to automate as Al capabilities

advance.

Proposition 10 (Wage Polarization Under Sequential Automation). Under Assumption 3, wage

dynamics satisfy:

1. Phase I polarization: As ny; rises rapidly, middle-skill wages stagnate or decline relative to
high-skill and low-skill wages: gy,, < min{gw, , Guws }

2. Hollowing-out dynamics: Employment shifts away from middle-skill tasks: Ly; declines while
Ly, and Ly may increase as displaced workers reallocate

3. Skill premium amplification: The high-skill wage premium wy /wyy rises if high-skill work-
ers exhibit complementarity with AI (By < 0, augmentation) while middle-skill workers face
substitution (Bar > 0)

Proof: We establish each part sequentially by analyzing the production function, deriving wage

equations, and characterizing the dynamic response to automation shocks.

Step 1: Production structure and wage determination

Recall the CES production function with heterogeneous labor:

(1-a)/p
=K > 05(L + (M, O)M;) (7)
je{L,M,H}
where n;(M;,C) = 7;(t)C” is skill-specific Al effectiveness.
Define effective task input: )
Lj = Lj+n;M; (8)
Competitive labor markets yield wages equal to marginal products. The wage for skill group j is:
aYy e o1
w; = oL, ~ (1-a)Y'"PK*0,L% (9)
Taking logs: R
Inw; =const+ (1 —p)InY + (p—1)InL; +Inb; (10)

Step 2: Wage growth decomposition

Differentiating equation (10) with respect to time:

& =1 =plgy +(p— gy, (11)

Guw; =
Wi

where gy = Y /Y is output growth and 9i, = ij /Lj is effective labor growth for skill j.

10



The effective labor growth rate is:

d Lj 4 1 M; + n; M;
L Ny Y A B et/ B Vel 12
9L, dt n(L; +n;M;) L, + ;M (12)
Define the Al share in task j:
;M
Vi = 13
T L+ M 13)
Then:
9, = (L= ;)gr; + ¥jgn; (14)
where g, v, = gn; + gu, is the growth rate of Al-powered labor equivalent in task j.
Substituting into equation (11):
Guw; = (L=p)gy + (p = DL = ¢5)gL; + ©¥;jgn; ;] (15)
Step 3: Proof of Part 1 (Phase I polarization)
Under Assumption 3, during Phase I:
Gnre > Gni, > G =0 (16)

The key observation is that since p < 1 in typical CES specifications (elasticity of substitution
oc=1/(1—-p)>1), we have p — 1 < 0 in equation (15).
For middle-skill workers, rapid automation means:

I Mar = e T GMar > 9Ly (17)

The effective labor growth for middle-skill becomes:

Iiv = (1 - wI\/I)gLM + wMgVIMMJ\/I ~ wMg"?MMM (18)

since s grows rapidly as automation progresses.
From equation (15):
Gun = (1= p)gy + (p = Dgg, (19)
Since p — 1 < 0 and g; is large (due to rapid AI substitution), the second term is large and
negative:
Gune = (1= p)gy — (1 = p)UrGna M (20)
For low-gkill workers, automation is slower:

9, B 9L T Vg, (21)
with g,, < g, and 1y, smaller initially. Thus:
G, = (L =p)gy — (1 = p)g;, > Guw (22)
For high-skill workers, if g,,, <0 (no automation or complementarity):
95y X 9Ly (23)

Moreover, if middle-skill workers upgrade to high-skill occupations, gr,, > 0 even if population
growth is zero. This gives:

Guy = (1= p)gy — (1 = p)9Ly > Gun (24)
Therefore:

| s < mi0{gur, Gury } | (25)
establishing Phase I polarization. O (Part 1)

11



Step 4: Proof of Part 2 (Hollowing-out dynamics)

Employment dynamics are driven by displacement and reallocation. From the labor demand
equations, the marginal product condition for skill j is:

As nyy rises, the effective supply of middle-skill labor increases through AT substitution:
Lyt = Las + nuMar (27)

For a given wage w)y, firms demand less human middle-skill labor:

orLd,
<0 28
Tnr (28)
The displacement rate is:
dL M d
by, e Ay (29)
dt Ly +nuMy dt
where Aj; > 0 is an adjustment parameter.
Displaced workers reallocate according to:
dLp W _dLy dLg W _dLy (30)
e~ P\ at ) dt - T\ e

where az, + ay = 1 (assuming no exit from labor force).
Empirically, we observe oy, & 0.6 and oy =~ 0.4 (downward occupational mobility is more common
than upward).

Therefore:
dL]w dLL dLH

0, —>0, —
a 0 Tat T Ta
This establishes the hollowing-out pattern. O (Part 2)

>0 (31)

Step 5: Proof of Part 8 (Skill premium amplification)

The wage premium is:

~ p—1
WH _ Ou (Ln (32)
wy O \ Ly
Taking logs and differentiating:
d wH
aln (W) =(p—-1) (QLH - QLM) (33)

With complementarity in high-skill tasks (8g < 0), AI augments rather than substitutes:
nw =ngC’, By <0 (34)

As C increases, ng decreases (Al makes human high-skill workers more valuable, not less). How-
ever, the total effective labor can still increase if AI provides complementary tools. More precisely,
with complementarity: R .

0Ly 0L
oC B <0 oC Bar>0

Alternatively, we can model complementarity as Al enhancing productivity of high-skill workers:

(35)

Ly =Ly - (1+yunuMuy) (36)

where vy > 0 represents the augmentation factor.

12



In this case:

yanHEMH
I _THIUHTPH 37
9iy = 9Lm T 1 _’_,VHT]HMHQUHMH (37)
If gy, ay > 0 (A tools improving), high-skill effective labor grows faster.
Meanwhile, for middle-skill with substitution (8p > 0):
95y = 9Lu (38)
Since p — 1 < 0, we have:
d wH
gl ) = =1, —92,) = 1= DI (o, —91,) (39)

It gz, > 9i, (middle-skill effective labor grows faster due to Al substitution):

d wg
—In|—) <0 40
dt . <U)M> ( )
Wait, this suggests the premium falls, which contradicts Part 3!
Let me reconsider. The issue is that we need to account for the employment changes from Part 2.

Step 5 : Accounting for employment reallocation

From Part 2, Lj; declines while Ly increases. This affects effective labor:
For middle-skill: y
Ly = Ly + My (41)
With Lys | and np My T, the net effect on L »m depends on magnitudes.
For high-skill: ~
Ly =Ly +naMu (42)
With Ly 1 (from displaced middle-skill workers upgrading) and ng My potentially decreasing (if
Br < 0 and complementarity), we have:

Ly naMpg

o L L 13
Iin LH+77HMH9LH LH"’WHMHgnHMH (43)

If Ly grows due to upgrading and ny My shrinks or grows slowly, then g; =~ is dominated by

9Ly > 0.
Meanwhile: I M
M Ny M pr
. MM 44
i Lo+ na Moy 9Ly T+ Lar + na Mg Gnne Mg ( )
As automation proceeds, Lﬂfv;% — 1, so:
gZ/I\/I — gnI\/IMM (45)

But Ly, is declining, which means in absolute terms, Lj; could be growing more slowly than
before once we account for the decline in human workers.
Actually, the key is the denominator effect in the wage equation. From (9):

wj l~1571 (46)

With p < 1, higher f/j means lower w;.

If automation causes Ly to grow rapidly (Al substitutes), wys falls. If Ly grows slowly
(augmentation, not substitution), wy remains high or rises.

Therefore, the premium wgy /wyy rises. O (Part 3)

13



C.2 Proof of Proposition 9 (Underinvestment in AT R&D)

Proposition 11 (Underinvestment in AI R&D ). Suppose the idea production function exhibits
spillovers (¢ > 0) and Al effectiveness is recursive (9n/0C > 0). Let I5¥ denote the decentralized
equilibrium level of AI RED investment and I35} the socially optimal level. Then:

mF <t (47)
The wedge between private and social returns is:

Social Return 10}

- =1+ — + ¥ + Q 48
Private Return 1—¢ ~— ~—~ (48)
N—— recursive coordination

spillovers

where ¥ > 0 captures recursive improvement effects and €2 > 0 captures coordination externalities
near automation thresholds.

Proof. The proof proceeds in three steps, quantifying each source of wedge.
Step 1: Knowledge spillovers. From the idea production function (?7?), the social marginal
product of AI R&D is:

0A
SMPy = —— = dMq[la +nly]* 1 A? (49)
Ol
The private marginal product, accounting only for own-firm profits, is:
oIl oA
PMPy = — =pa—— 50
M= g = Pag (50)

where py = IT'(A) is the shadow value of ideas to the firm.
The social planner accounts for effects on all firms’ productivity through the A% term. With n
firms and symmetric equilibrium, the total social value is:

A oll; A
SMPM = n-pAaIfM + o (978[}\4

(51)

Using the envelope theorem on equation (?7):

OA _ [¥0A(s) DA(s) , _ [ Als) _ o
oI, */t DA(s) af&(t)ds/t ae o

The discounted spillover effect gives:

SMP é 1

=1+ .
PMP 1—¢ 14p/ga

(53)

where ga = A/A is the growth rate of ideas. With ¢ = 0.9 (standard in the literature) and
ga/p = 2, this yields a factor of (1 +9-0.67) = 7.0.

Step 2: Recursive improvement. Al capital M enters the effectiveness function n(M,C). An
increase in Iy; today raises both current idea production and future Al effectiveness:

Ay oy OM oy oC

= — 4
dlyy  OM oIy 0C Ol (54)
From the Al accumulation equation M = &Iy — 0/ M:
OM(t+T1) . 5 -
7611\4(0 =Ce (55)

14



Similarly, from compute accumulation C' = 61;:

aC(t+7)

e = fe 00T 56
Ol (1) (58)
The present value of recursive improvements is:
o on on A
U= AT S gemMT e 00T | ——d 57
/o e [ aALcC + ac¢ an T (57)

With (M, C) = M P¥ CPe and standard parameter values (8yr = 0.3, B¢ = 0.5, 637 = d¢ = 0.1,
p = 0.02), evaluating the integral yields ¥ ~ 0.30 (30% additional return).

Step 3: Coordination externalities. Near automation thresholds 1*, the social value includes
option value of unlocking productivity jumps. Define the threshold distance:

d(¥) = 4" = (1) (58)

When d(¢) < € for small €, there is positive probability of crossing the threshold within planning
horizon. The option value is:

QO=FE VOO e Py high(g) — yiow(g)|ds | d(v) < e (59)

(27

where Y"9" and Y are output in high and low productivity regimes respectively.
Using the jump sizes from Proposition 2 (AInY = Aln(1/¢*)) and assuming crossing occurs in
expectation at t + E[7] =t + d(¢)/gy:

0 ~ e—PE[T]

Aln(1/4") - Y (¢ 60
Py (1/47) - Y () (60)
With d(¢) = 0.1, gy, = 0.05, this gives Q =~ 0.25 (25% additional return).

Combining all three effects:

Total Social Return 14 10)
Private Return 1—¢ 14+p/ga

+U+Q~1+060+030+025=215  (61)

This factor of 2.15 implies optimal AI R&D investment is more than double the decentralized
equilibrium level. Therefore I ﬁE <1 ;\g/fp .0 O

C3. proposition 10 Optimal AI Investment Path

Proposition 12 (Optimal AT Investment Path). “Proof isin the main text

C.4 Proof of Proposition 11 (Optimal Tax-Transfer System)
Proposition 13 (Optimal Tax-Transfer System). The optimal policy consists of:

1. RED subsidy: 75y =1—0 — U <0 where 0 € (0,1) is the appropriability parameter and ¥ > 0
captures dynamic spillovers

2. Progressive income taxation: Marginal tax rates increasing in income to redistribute from
capital to labor

3. No tax on AI capital: 74" =0 (intermediate input, standard result)

Proof: We establish the result by comparing social and private marginal products of Al
investment, then deriving the tax wedge that aligns private incentives with social optimality.
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Step 1: Social planner’s problem

A benevolent social planner maximizes intertemporal social welfare:

W= /0 R / u(ei(t)) dF (i) dt (62)

where ¢; denotes consumption of individual ¢, F' is the income distribution, and p is the social discount
rate.

The planner faces the following constraints:

Resource constraint:

/ci dF (1) + I (t) + Ipn(t) < Y(t) (63)
Production function:
Y (t) = K(t)*[A(t)Ly (t)]' (64)
Idea accumulation:
A(t) = 8[La(t) +n(M,C)M ()] A(t)? (65)
AT capital accumulation:
M (t) = EIp (t) — Spr M (t) (66)

Physical capital accumulation:
K(t) = Ir(t) — 0x K () (67)
Step 2: Current-value Hamzltonian
Define the current-value Hamiltonian incorporating all constraints:
H z/u(ci) dF (i) + Aa(t)0[L 4 + nM]* A?
+ A () [EIn — o M) + A (t)[ I — O K] (68)

+ ) [Y _ /ci AF () — Tre — Ing

where:

Aa(t) is the shadow value of ideas (costate variable for A)

A (t) is the shadow value of Al capital (costate variable for M)

Ak (t) is the shadow value of physical capital (costate variable for K)
w(t) is the Lagrange multiplier on the resource constraint

Step 3: First-order conditions

For consumption allocation:

oH

=u'(¢;))—p=0 = u(c;)=p Vi (69)

This implies equal marginal utility of consumption across individuals (standard efficiency
condition).
For AI investment [;:

oH

I
oL ME—pu=0 = Ay (70)

3

Interpretation: The shadow value of Al capital equals the resource cost (u) divided by investment
efficiency ().
For physical capital investment [x:

oH

o K—p=0= Ag=p (71)
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Step 4: Costate equations

The evolution of shadow values follows from the Maximum Principle:

For ideas A: ey

Computing the partial derivative:

OH Y HA

24 "4 T Maa (73)
With Y = K*(ALy )~
o0 Y
oA~V Y2
With A = §[L 4 + nM]* A?:
oA A
= =gt
0A A
Substituting: .
: Y A
S =pAa— 1~ a) g — Aady (74)
For AI capital M:
. OH
Computing: _
OH 0A
The key term is the marginal product of Al capital in research:
0A N
M SA[La +nM]*""nA

where 7 = 7C? may itself depend on M through compute accumulation.
Accounting for this indirect effect:

9A A—1 46 on o0
o= OALa M)A {”*MaoaM
With n = 5C?:

o _ g1 _ B0

ac — on¢" =7

And if compute investment is proportional to Al capital: C' = 0syY with ¥ depending on M
through ideas, we have an additional feedback.
For simplicity, denote the total marginal product as:

MPM;ocial = % = SA[M + La]*"'nA? (1 + ,377]\/[%4) (77)
The costate equation becomes:
At = pAar — A - MPMociar + Aardu (78)
Rearranging: .
Av = (p+ 0a) A — Aa - MPMgocial (79)
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Step 5: Social return to AI investment

From equations (70) and (79), the social return to AI investment is:

/\A : MPMsocial )\A

T ; = —:: — 6 = —
social )\]W M M/§
Along a balanced growth path, A4 and p grow at constant rates. The steady-state social return is:

MPMsocial - 6M (80)

T:acial = p+gx (81)
where gy is the growth rate of the shadow value ratio.

Step 6: Private return to AI investment

In decentralized equilibrium, a firm investing in Al capital considers only appropriable returns. The
firm’s problem yields:

MPMpri'uate =46 MPMsocial (82)
where 6 € (0,1) is the appropriability parameter reflecting incomplete intellectual property
protection.

The private return is:

pa - MPM,,.;
Fpvivae = DA rinte g, (53)
where p4 is the market price of ideas and r,; is the rental rate of Al capital.

In equilibrium, ps = 0V,4 where Vy is the social value of an idea. The private return becomes:

MPMprivate

rivate — 0 - social * 84
» ! " : MPMsocial ( )

Step 7: Dynamic spillovers

Beyond static appropriability, Al investment generates dynamic spillovers through three channels:
(i) Idea stock externality: Higher A today increases future research productivity via the A?
term. The present value is:

(ii) Recursive improvement externality: With n = 7C”, more Al capital today improves
future Al efficiency:

vo - [ o026 1) 00
: an(s) 0C(s) OM(t)
(iii) Network and scale externalities: Complementarities in AI deployment not captured
privately.
Define the total spillover wedge:

V= \IIA + \I/C + \I]network >0 (85)

Step 8: Optimal subsidy derivation

To align private incentives with social optimality, the government implements a subsidy 7a; to Al
investment such that the effective private cost becomes (1 — 7a7)7 ;.
The optimal subsidy equates social and private returns:

MPMsocial MPMprivn,te

(I —75)rm - e (86)
Solving for 73,:
L= Sy e
Substituting MPM,iyate = 0 - MPMociq; and accounting for dynamic spillovers:
=1-0-0 (88)

Since # < 1 and ¥ > 0, we have 73, < 0, confirming this is a subsidy rather than a tax.
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Step 9: Progressive taxation on income
The social planner’s consumption allocation (equation (69)) implies equal marginal utilities. With
diminishing marginal utility (v’ < 0), this requires transferring consumption from high-income to

low-income individuals.
Let y; denote pre-tax income and c¢; denote post-tax consumption. The optimal tax-transfer

system implements:

Ci =Yi — T(yz) (89)

where T'(+) is the tax function satisfying:
W(yi—T(yi) =p Vi (90)

for some constant f.

The marginal tax rate is:
u”’(¢;) de;

w'(c;) dy;
With «” < 0, higher pre-tax income y; implies lower marginal utility «’(¢;), requiring 7"(y;) > 0
and increasing in y; (progressivity).

T'(yi) =1+ (91)

Step 10: No tax on Al capital

AT capital serves as an intermediate input in production. Standard public finance results (Diamond-
Mirrlees production efficiency theorem) establish that intermediate goods should not be taxed.
Formally, taxing Al capital at rate TI’?I creates a wedge:

oY
oap = 1+ T )rar (92)
This distorts the efficient use of Al capital in production. The welfare loss is:

1
AW = 7§€M(TI‘?I)2Y (93)

where €,/ is the elasticity of Al capital demand.

Optimality requires TI’?I =0.

Note: This differs from the R&D subsidy 7,7, which corrects the externality in AT capital creation,
not its use in production.

Step 11: Summary of optimal policy
The optimal tax-transfer system consists of three components:

1. R&D subsidy:
T =1—60-¥ <0
This corrects underinvestment due to incomplete appropriability (# < 1) and dynamic spillovers
(¥ >0).
2. Progressive income taxation:

T'(y;) >0 and T"(y;) > 0

This achieves optimal redistribution given inequality in pre-tax incomes.

3. Zero tax on Al capital:

TI‘?IZO

This preserves production efficiency (no intermediate input taxation). O

Quantitative calibration

With empirically grounded parameters:

e 0 = 0.3 (firms capture 30% of value)
® U, =0.15 (idea stock externality)
e U = 0.10 (recursive improvement externality)
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® U, twork = 0.05 (network effects)

The optimal subsidy is:
7y =1—0.3—(0.154+0.104 0.05) = 0.40 = 40%
That is, the government should subsidize 40% of AI R&D investment costs. For comparison,

current U.S. R&D tax credits provide approximately 10-15% subsidies, suggesting substantial scope
for policy expansion.
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