
Supplementary information I: Simulation Data Generation for Network Training 

Data generation for network training employed our digital twin system to produce realistic, high-fidelity 

paired dose and acoustic datasets. We first extracted 75 unique pencil-beam dose maps—50 from a 

prostate patient plan and 25 from a liver patient plan—and partitioned them into training (30 prostate, 15 

liver), validation (10 prostate, 5 liver), and test (10 prostate, 5 liver) cohorts to ensure robust model training 

and evaluation. 

To emulate clinical variability and bolster model robustness, each beam underwent systematic spatial 

augmentation along two orthogonal axes. Axial offsets from the virtual transducer were applied in 1 cm 

increments spanning 4 cm to 8 cm—mimicking different depths of origin within the patient anatomy—

while lateral displacements of ±1 cm in the superior, inferior, left, and right directions (plus the unshifted 

central position) simulated realistic setup and positioning errors. The resulting 5 × 5 grid of depth and off-

center shifts generated 25 distinct variants per beam, yielding 1,875 total instances without 

compromising the underlying physical fidelity of the simulations. 

Each dose map was first cropped to a 64 mm × 64 mm × 96 mm volume at 1 mm isotropic resolution and 

then fed into the digital twin simulation system as initial pressure distribution to generate its 

corresponding time-domain sinogram and time-reversal (TR) reconstruction. The resulting pressure field, 

raw sinogram, and TR reconstruction were then grouped into triplets and supplied to the network as 

training samples. 

  



Supplementary information II: FLASH Electron Transfer Learinig 

The FLASH electron experiments were conducted using six different collimators to introduce variability in 

the experimental setup. Each experiment resulted in only six sinograms, which posed a challenge in terms 

of dataset size. To overcome this limitation, we applied a data augmentation strategy by utilizing a digital 

twin model. In this model, the electron pulse was integrated into the simulation pipeline as shown in 

Supplementary Figure 1 b). 

The simulated data generated through the digital twin model included variations in both depth and 

translation locations. Specifically, five different depths (ranging from 3 to 7 cm) were simulated, along 

with five different translation positions (center, up, down, left, and right). This resulted in a total of 150 

distinct datasets, significantly enhancing the diversity of the training data. 

The PINN model, initially trained on proton data, had already learned the fundamental principles of 

limited-view enhancement. Consequently, the trained proton PINN model was transferred to the electron 

dataset. The electron-specific training data were then used to fine-tune the model, leveraging the existing 

knowledge from the proton dataset to enhance the reconstruction quality for the FLASH electron 

experiments. 

For model tuning, four collimators were used to train the deep learning models, while one collimator was 

reserved for validation, and the remaining one was used for testing. This dataset configuration ensured 

that the models were trained on a representative range of experimental conditions while preserving the 

integrity of the validation and testing phases. 

  



Supplementary information III: Network Training Details  

The grouped triplets were input into the network for training. Initially, the time-reversal (TR) 

reconstructions and the corresponding pressure distributions were used to train the model. The trained 

network was then employed to generate predicted pressure maps, which were subsequently input into 

the forward simulation module to produce predicted sinograms. However, the forward simulation process 

takes approximately 3 seconds per volume, meaning that one full iteration for the entire dataset would 

take around 1 hour. To reduce the training time, we implemented a strategy where, during the forward 

operation, only one volume per unique beam was randomly selected to generate a predicted sinogram. 

This approach allowed us to compare the predicted sinogram with the ground truth sinogram and 

compute the loss between them, effectively reducing the number of volumes used for the forward 

simulation to 60 per iteration. 

Additionally, during the early training stages, the difference between sinograms was much smaller than 

the difference between pressure maps, so we opted to run the forward simulation only after every five 

consecutive epochs, thus reducing the total number of forward simulations by a factor of five. The 

network training was performed using Keras2 in Python 3.7, with training conducted on an RTX A6000 GPU. 

The loss functions for both ℒ𝑝 and ℒ𝑠 were using ‘reduce_mean’ functions. The weighting parameters 𝜆1 

and 𝜆2 were arbitrarily set to 0.8 and 0.2, respectively, to balance the two loss components and optimize 

the training process. Moreover, when the value of 𝜆2ℒ𝑆 is larger than 𝜆1ℒ𝑝, the forward simulation was 

performed after each epoch. 

  



Supplementary Information IV: Dose Calibration  

The MEVION system delivers a standard pulse of 8 pC (verified by machine log files), and from our routine 

machine QA we determined a conversion of 14.5 pC per MU, which implies each pulse corresponds to 

0.55 MU. In our water‐tank calibration, we prescribed 100 MU, yielding 311 cGy at the Bragg‐peak 

reference depth (7 cm from the transducer array). These values establish the baseline relationship 

between delivered charge, machine‐reported MU, and absolute dose in a controlled geometry. 

When performing reconstruction, we always use sinograms that contain an integer multiple of 100 pulses. 

From the parameters above, each pulse corresponds to 1.71 cGy, so 100 pulses deliver 171 cGy. This 

“100-pulse” unit simplifies the pressure-to-dose scaling in our PINN reconstructions and ensures 

consistency across datasets. 

In principle, the dose in the human phantom, 𝐷ℎ, can be obtained by scaling the water‐tank calibration 

factor 𝐾 according to the ratio of Grüneisen parameters and densities: 

𝐷ℎ = 𝐾(
𝛤𝑤𝜌𝑤
𝛤ℎ𝜌ℎ

)𝑝ℎ 

where 𝑝ℎ  is the reconstructed pressure map in the human torso phantom, 𝛤𝑤  , 𝜌𝑤  are the Grüneisen 

parameter and density of water, and 𝛤ℎ  , 𝜌ℎ  are those of the phantom. However, because the absolute 

Grüneisen parameter 𝛤ℎ  of our human phantom is unknown, the factor 𝛤𝑤𝜌𝑤
𝛤ℎ𝜌ℎ

 cannot be determined, and 

direct conversion to 𝐷ℎ is therefore inaccessible. 

To work around this limitation, we generated the phantom treatment plan under the same criteria as the 

water‐tank experiment. Specifically, we again prescribed 100 MU and matched the beam setup to place 

the Bragg‐peak at 5.2 cm from the transducer array in the phantom geometry. By replicating the reference 

conditions, the system response at the phantom Bragg‐peak remains consistent with the water‐tank 

calibration, enabling us to extract an effective, comparative calibration factor for dose reconstruction in 

the torso phantom. 

 

  



 

SF 1. Temporal profiles for the radiation source. a) The generated temporal profile for the proton pulse 

from MEVION machine. Originally measured using a scintillator-photodiode. b) The temporal profile for 

the FLASH electron pulse from MOBETRON machine. Originally measured from the beam-current 

transformer (BCT). 

  



 

SF 2. Demonstration of qRAI detection through finite transducer elements. a) The radiation source created 

spherically propagated acoustic waves. The 3mm piezoelectric transducer elements can be discretized 

into 3 virtual elements. Each element receives the signal at different time 𝑡1, 𝑡2, and 𝑡3. All three signals 

are summed together to form the final measured signals. b) The received signals at different time 𝑡1, 𝑡2, 

and 𝑡3 and the summed finite-element signal. 

 

  



  

SF 3. Process of impulse response calibration. a) The simulation sinogram that integrated the proton pulse 

duration and the transducer finite-element effect. b) The water tank experimental sinogram measured 

with exactly same setup as the simulation. c) Comparison of the center (120th) channel’s signal between 

the simulation sinogram and the experimental sinogram. d) The result of the deconvoluted impulse 

response for the planar array transducer. 

  



 

SF4. Simulation Results. This figure presents a comparison of the ground truth (GT, first column), time-

reversal reconstruction (TR Rec, second column), U-Net enhancement (third column), and PINN 

enhancement (fourth column) across four views: axial view (first row), sagittal view (second row), coronal 

view (third row), and 3D view (fourth row). The GT is extracted from a prostate patient’s dose map 

generated from RayStation. The TR Rec is obtained through time-reversal reconstruction alone. Both U-

Net and PINN enhancements are trained with the digital twin simulated dataset with 75 unique pencil 

beams.  

  



SF 5. The setup demonstration for the proton experiments which takes the real treatment scenario into 

consideration. a) The human-torso phantom is positioned on the couch. The planar array is pressed on to 

the patient by a robotic arm and is connected to a data acquisition (DAQ) system controlled by an external 

computer. The proton beam is delivered from below the patient. a) The side view of the qRAI measurement 

during the liver treatment. 

  



 

SF6. Tuning Results. This figure presents a comparison of the ground truth (GT, first column), time-

reversal reconstruction (TR Rec, second column), and tuned-PINN enhancement (third column) across 

four views: axial view (first row), sagittal view (second row), and coronal view (third row). The network 

tends to enhance the beam to uniform water tank data because of overfitting. 

  



SF 7. Dose reconstruction for different pulse numbers. a) Three different reconstruction results from the 

sinogram measured by accumulating 100, 200, and 500 proton pulses individually. b) The line profiles 

comparison at the Bragg Peak, showing the intensity changes of the reconstruction. 

 

 

  



Type of Tissue Sound Velocity 

[m/s] 

Density 

[g/cm3] 

Attenuation coefficient 

[dB/cm/MHz] 

Organs with Speckles (liver, 

kidneys, etc.) 

1400±10 0.99 0.5±0.1 

Organs without Speckles 

(stomach, intestines, etc.) 

1400±10 0.99 0.5±0.1 

Body Tissue 1400±10 1.00 0.6±0.1 

Cortical Bone 3000±30 2.31 3.2±0.2 

Trabecular Bone 2800±50 2.03 10±1 

 

Supplementary table 1. Human phantom parameters. 

 
 

TR UNET PINN 

SSIM 0.396±0.022 0.956±0.009 0.985±0.007 

PSNR 16.24±0.58 36.01±1.16 40.53±1.66 

GI: 3mm/3% 0.104±0.010 0.971±0.018 0.988±0.012 

Supplementary table 2. Quantitative analysis for the simulation results. 

 
 


