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DFT calculations. All of the spin-polarized DFT calculations were performed using the VASP program,1-3 which uses a plane-wave basis set and a projector augmented wave method (PAW) for the treatment of core electrons. The Perdew, Burke, and Ernzerhof exchange-correlation functional within a generalized gradient approximation (GGA-PBE)4 was used in our calculations, and the van der Waals (vdW) correction proposed by Grimme (DFT-D3)5 was employed due to its good description of long-range vdW interactions. For the expansion of wavefunctions over the plane-wave basis set, a converged cutoff was set to 450 eV. 
      Graphene/Ni(111) systems were modelled by four layers of Ni(111) and one layer of graphene in (5 × 5) supercell with periodical boundary conditions, as shown in Figure 1a. During structure optimizations, the graphene monolayers and top two layers of the Ni were allowed to move. In order to simulate the Ni-nitrogen-doped carbon catalysts, a (5 × 5) graphene supercell with periodical boundary conditions was used, and then, some carbon atoms were removed to create NiN4, and NiN3V. A vacuum of 12 Å along the z-direction was used. The Brillouin zone was sampled using (3 × 3 × 1) Γ-centred mesh. In geometry optimizations, all the atomic coordinates were fully relaxed up to the residual atomic forces smaller than 0.01 eV/Å, and the total energy was converged to 10−4 eV. The electron distribution and transfer mechanism were determined by using Bader analysis.6
      For CO2RR on Ni-nitrogen-doped carbon catalysts, we considered the reaction mechanism of CO2RR to CO through the adsorbed intermediates COOH* and CO*. The free energy changes at each electrochemical step involving a proton-electron transfer were computed based on the computational hydrogen electrode (CHE) model,7 in which the free energy of  equals to  for standard hydrogen electrode (SHE). The free energy of adsorbates and non-adsorbed gas-phase molecules is calculated as , where  is the electronic energy calculated by DFT;  is the zero point energy (ZPE),  is heat capacity,  is temperature and  is entropy. Here, the correction terms are present in Table S1, which are from previous literature.8 Additionally, a correction of -0.51 eV for non-adsorbed gas-phase CO molecule has to be made due to the use of PBE functional.7 The solvation effects have been included for COOH* and CO* by stabilizing 0.25 and 0.10 eV, respectively.7,8
      The overall hydrogen evolution reaction (HER) mechanism is evaluated with a three-state diagram consisting of an initial H+ state, an intermediate H* state, and 1/2 H2 as the final product. The free energy of H* () is proven to be a key descriptor to characterize the HER activity of the electrocatalyst. An electrocatalyst with a positive value leads to low kinetics of adsorption of hydrogen, while a catalyst with a negative value leads to low kinetics of release of the hydrogen molecule.9 The optimum value of  should be zero; for instance, this value for the well-known highly efficient Pt catalyst is near-zero as .[9] The  is calculated as9 
                                                                                  (1)
where  is the binding energy of adsorbed hydrogen, and  and  are the difference in ZPE and entropy between the adsorbed hydrogen and hydrogen in the gas phase, respectively. As the contribution from the vibrational entropy of hydrogen in the adsorbed state is negligibly small, the entropy of hydrogen adsorption is , where  is the entropy of H2 in the gas phase at the standard conditions. Therefore, Eq. (1) can be rewritten as9
                                                                                             (2)
      To calculate the deformation electronic density of graphene/Ni(111) structure, we defined the deformation electronic density of graphene/Ni(111) structure as , where  represent the charge density of the graphene/Ni(111) system, and  and  represent the charge densities of the bare Ni(111) and the graphene layer at the same coordinates as those in the graphene/Ni(111) system, respectively.
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Supplementary Figure 1 | Optimized NiN4 model with different intermediates. Top and side views of the (a) bare NiN4, (b) NiN4 with COOH*, (c) NiN4 with CO*, and (d) NiN4 with H*. 
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Supplementary Figure 2 | Optimized NiN3V model with different intermediates. Top and side views of the (a) bare NiN4, (b) NiN4 with COOH*, (c) NiN4 with CO*, and (d) NiN4 with H*.
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Supplementary Figure 3 | The calculated overpotential (η) of CO2RR on neutral and negatively charged Ni–N-C structures.
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Supplementary Figure 4 | The calculated free energy diagrams for HER on neutral and negatively charged NiN4 (a) and NiN3V (b). 
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Supplementary Figure 5 | Synthesis and characterization of NiSA/NP. (a) The schematic illustration of the formation mechanism of Ni single atom on nanoparticle catalyst. (b) TEM, (c) SEM, and (d) EDS mapping of NiSA/NP.
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Supplementary Figure 6 | Synthesis and characterization of NiSA. (a-c) TEM and (d) HAADF-STEM images of NiSA. Most of the Ni NPs in NiSA/NP were removed after the NH4Cl treatment and the holes inside of CNTs formed.
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[bookmark: _Hlk72488006]Supplementary Figure 7 | X-ray photoelectron spectroscopy (XPS) analysis. (a) Ni 2p spectra of NiSA, NiSA/NP and NiPc. N 1s spectra of NiSA/NP (b), and NiSA (c). No metallic Ni peak can be observed in XPS, which can be attributed to the fully confined Ni nanoparticles inside of CNTs that exceeds the detection limit of XPS.
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Supplementary Figure 8 | Normalized UPS He II spectra of NiSA/NP and NiSA before and after an Ar sputter cleaning of 30 s at 1 kv.
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Supplementary Figure 9 | GC Calibration curves for (a) CO and (b) H2 quantification.
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Supplementary Figure 10 | CO2RR in H-cells. (a) LSV curves of NiSA/NP in CO2 and Ar atmosphere. (b) FECO of NiSA/NP and NiSA from -0.5 V to -1.1 V vs RHE. 
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Supplementary Figure 11 | Electrochemically active surface area (ECSA) estimated from the double-layer capacitance. (a,b) CV curves at different scan rates from 50 to 300 mV s-1 for NiSA/NP and NiSA, respectively. 
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Supplementary Figure 12 | The schematic illustration of home-customized (a) three-electrode flow cell, and (b) two-electrode MEA device. 
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Supplementary Figure 13 | Electrochemical CO2RR in flow cell with 1 M KOH electrolyte. (a) The LSV curve of NiSA/NP and NiSA at a scan rate of 10 mV s-1. (b) jCO of NiSA/NP and NiSA as a function of potential. 


[image: ]
Supplementary Figure 14 | The LSV curve of NiFe OER catalyst in 1 M KOH. 


Table S1. Contribution to the free energy of adsorbates and non-adsorbed gas-phase molecules from ZPT correction, enthalpic temperature correction, and entropy contribution, respectively. All are given in eV.
	Species
	ZPE
	
	-TS

	COOH*
	0.62
	0.10
	-0.18

	CO*
	0.19
	0.08
	-0.15

	CO2
	0.31
	0.10
	-0.65

	CO
	0.14
	0.09
	-0.67

	H2
	0.27
	0.09
	-0.42

	H2O
	0.58
	0.10
	-0.65







Table S2. EXAFS fitting results of the Ni-N coordination shell. 
	Sample
	Shell
	N
	R (Å)
	σ2 (Å2)
	ΔE0 (eV)

	NiSA
	Ni-N
	2.7
	1.85
	0.00478
	-7.343





Table S3. Comparison of CO2RR in H-cells with the recently reported Ni-N-C, Au, and Ag based catalysts. 
	Catalysis
	FECO
(%, V vs RHE)
	Current density
 (mA cm-2, V vs RHE)
	Ref.

	NiSA/NP
	99% at -0.8 V
	131 mA cm-2 at -1.0 V
	This work

	NiSA
	98% at -0.8 V
	71 mA cm-2at -1.0 V
	This work

	NiSA/PCFM
	96% at -0.7 V
	56.1 mA cm-2 at -1.0 V 
	10

	Ni(i)-NCNT@Ni9Cu
	97% at -0.73 V
	32.9 mA cm-2 at -0.73 V
	11

	NC-CNTs (Ni)
	90% at -0.8 V
	~9 mA cm-2 at -1.0 V 
	12

	A-Ni-NG
	97% at -0.72V
	22 mA cm-2 at -0.72 V
	13

	C-Zn2Ni1ZIF-8
	98% at -0.83 V
	72 mA cm-2 at -1.03 V
	14

	Ni-N4/C-NH2
	96% at -0.7 V
	~65 mA cm-2 at -1.0 V
	15

	Ag
	~100% at -0.81 V
	9 mA cm-2 at -1.0 V
	16

	AgNF
	95% at -1.0 V
	30 mA cm-2 at -1.2 V
	17

	Porous Ag
	96% at -1.03 V
	6 mA cm-2 at -1.0 V
	18

	Au-PA
	62% at -0.8 V
	10 mA cm-2 at -0.8 V
	19

	Nanoporous Au
	98% at -0.5 V
	12 mA cm-2 at -0.5 V
	20

	4H-Au
	90% at -0.7 V
	6 mA cm-2 at -0.7 V
	21

	Au19Cd2
	95% at -0.7 V
	45 mA cm-2 at -0.95 V
	22







Table S4. Comparison of CO2RR in MEA full cells with Ni-N-C, Au, Ag, CoPc catalysts. 
	
Cathode
	Anode
	jCO 
	Energy efficiency 
	FECO
	Anode electrolyte
	Temperature
	Ref.

	NiSA/NP
	NiFe
	310 mA cm-2 at -2.3 V
	57%
	99%
	1 M KOH
	RT
	This work

	Ni-N/PCFM
	Ir/C
	~300 mA cm-2 at -2.9 V
	46%
	99%
	0.5 M KHCO3
	RT
	23

	Ag
	IrOx
	~330 mA cm-2 at -3.0 V
	38%
	~85%
	Water with 1 M CsOH activation
	60 °C
	24

	Au
	IrO2
	~300 mA cm-2 at -2.65 V
	~43%
	＞85%
	Water
	60 °C
	25

	CoPc
	Ni foam
	~175 mA cm-2 at -2.5 V
	51%
	~95%
	1M KOH
	RT
	26
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