Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

A Continuation-Based Solution of the Linearity
Challenge

Luca Padovani

luca, padovani?@unibo. it

University of Bologna

Claudia Raffaelli
University of Camerino

Research Article

Keywords: session types, linear logic, continuations, deadlock freedom, Agda
Posted Date: January 21st, 2026

DOI: https://doi.org/10.21203/rs.3.rs-8499890/v1

License: € ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-8499890/v1
https://doi.org/10.21203/rs.3.rs-8499890/v1
https://doi.org/10.21203/rs.3.rs-8499890/v1
https://creativecommons.org/licenses/by/4.0/

A Continuation-Based Solution
of the Linearity Challenge

Luca Padovani!® and Claudia Raffaelli?

!Department of Computer Science and Engineering, Universita di
Bologna, Mura Anteo Zamboni 7, Bologna, 40126, BO, Italy.
2Computer Science Division, Universita di Camerino, via Madonna
delle Carceri 7, Camerino, 62032, MC, Italy.

*Corresponding author(s). E-mail(s): luca.padovani2@unibo.it;
Contributing authors: claudia.raffaelli@studenti.unicam.it;

Abstract

The formalisation of session calculi is made difficult by the management of session
channels, which are linear resources that cannot be discarded or duplicated and
whose type changes over time, as input/output operations are performed on
them. Context splitting, the channel management technique directly related to
the way session type theories are usually written with pen and paper, is often
considered a hindrance and a notable source of complexity, to the point where
several alternative approaches have been recently proposed. In this paper we
describe the Agda formalisation of a process calculus based on classical linear
logic that supports the modeling of binary sessions through their encoding with
explicit continuation channels. The formalisation turns out to be remarkably
compact despite the adoption of context splitting. We argue that the logical
nature of the calculus and the use of explicit continuations are contributing
factors to the simplicity of its formalisation.

Keywords: session types, linear logic, continuations, deadlock freedom, Agda

1 Introduction

The Concurrent Calculi Formalisation Benchmark [1] is a collection of challenges con-
cerning the mechanisation of core models of concurrent and distributed programming
languages. These models often make use of distinctive features that set them apart

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

from the models of sequential programming languages, such as the adoption of sub-
structural (linear, affine) type systems, the dynamic scope of first-class channels in
systems of communicating processes, the need for coinductive definitions and proof
methods for describing and reasoning on possibly infinite behaviours. The bench-
mark aims at identifying effective formalisation techniques that take these features
into account so as to foster the adoption of machine-checked proofs in research work
concerning concurrent and distributed programming languages.

One of the challenges in the benchmark, henceforth called linearity challenge,
concerns the formalisation of a minimal calculus of sessions. Sessions and session
types [2-5] are established abstractions for the static analysis of distributed programs
based on peer-to-peer communications. Every session type system revolves around
three key ideas: (1) session endpoints are linear resources that cannot be discarded or
duplicated without compromising some safety and liveness properties of a program;
(2) the type of a session endpoint is updated after each use to reflect the state of the
protocol it describes; (3) peer session endpoints are meant to be used in complemen-
tary ways so as to guarantee the absence of communication errors and, to some extent,
progress of the interaction. The linearity challenge is based on the observation that
the proper management of linear resources in a formalisation often requires a large
number of auxiliary definitions and technical results that divert from the main prob-
lem under study [1]. One of the alleged culprits of such complexity is context splitting,
namely the operation that partitions a typing context in such a way that the linear
resources described therein end up in only one of the partitions. This observation has
led to the exploration of various alternative techniques including leftover typing [6],
the use of linearity predicates 7] and tagged contexts [§].

In this paper we approach the linearity challenge from a different angle: instead
of proposing new techniques that make it easy to formalise the calculus in the chal-
lenge, we propose a (relatively) new calculus that is easy to formalise with the existing
techniques. More specifically, we describe the Linear Calculus of Continuations (LCC)
whose type system coincides with the proof system of classical linear logic and that
features linear channels instead of sessions. While a session endpoint can be used mul-
tiple times (sequentially), linear channels must be used ezactly once. LCC retains the
expressiveness of other session calculi thanks to explicit continuations, which enable
the encoding of (binary) sessions is terms of linear channels [9, 10]: each message
exchanged on a linear channel may include one or two fresh channels — the continua-
tions — on which the rest of the conversation takes place. Overall, LCC is nothing but
a low-level version of CP [11] — Wadler’s calculus of sessions based on classical linear
logic — such that sessions can be encoded instead of being featured natively.

The logical foundations of LCC and the use of explicit continuations play an impor-
tant role in taming the complexity of the formalisation. Working with a calculus based
on linear logic prevents by construction the same (sequential) process to own both
endpoints of a session, which is undesirable since it does not correspond to a use-
ful pattern of interaction (every meaningful session requires its endpoints to be used
by parallel processes) and is a potential source of deadlocks. From the standpoint of
the formalisation, where the representation of channels is a primary design choice,
it spares us the need to distinguish the two endpoints of a session, e.g. by means of

polarities [6, 12] or by using different names connected by the same binder [5, 13].
Using a calculus with linear channels and explicit continuations spares us the need to
update the type of channels in typing contexts. Once a channel has been used it is
effectively consumed, therefore its type can be removed from the typing context and
the type of the continuation channel is added back to the typing context. As is turns
out, removing and adding types is easier than updating them. Even more so consider-
ing that the type of continuation channels must be added at the beginning of a typing
context, since such channels are fresh by definition.

The formalisation of LCC that we obtain is both the most complete (in terms of
features supported by the calculus) and the most streamlined (in terms of code size)
among the known formalisations of session/linear calculi [6-8, 14-19]. It is also one
of only two formalisations that prove the deadlock freedom property for a session
calculus [19] and it does so with substantially less code.

The rest of the paper is organised as follows. Section 2 describes the syntax and the
operational semantics of LCC and states the properties of well-typed processes that
we formalise and prove, namely typing preservation, deadlock freedom and runtime
safety. Section 3 illustrates the key aspects of the Agda formalisation with particular
emphasis on the representation of channels and of typing contexts. We assume that
the reader is somewhat familiar about Agda but we recall the lesser known definitions
from Agda’s standard library. Section 4 discusses related work more in detail by
providing a qualitative and quantitative comparison between the known formalisations
of session/linear calculi. Section 5 summarises our contributions and discusses ongoing
and future work.

The formalisation has been checked with Agda 2.8.0 and the code is available on
in a public repository on GitHub [20].

2 A Linear Calculus of Continuations

In this section we give a cursory presentation of LCC starting from its types
(Section 2.1) then moving on to the syntax of processes (Section 2.2), their reduc-
tion semantics (Section 2.3), the typing rules (Section 2.4) and the formulation of the
properties ensured by the type system (Section 2.5).

As we have anticipated in Section 1, LCC is closely related to CP [5, 11] except that
LCC features linear channels instead of sessions. We refer the reader to the literature
on CP [5, 11, 21] and other session calculi based on linear logic [22, 23] for a thorough
introduction to these models.

2.1 Types

The types of LCC, ranged over by A, B, ..., are the linear logic propositions generated
by the grammar

ABu:=X|X"|T|0|L|1|AB|A®B|A%B|A®B|VX.A|3X.A|1A|?4

where X, Y, ...range over an infinite set of type (or proposition) variables.

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Table 1 Syntax of LCC.

PQ =z y link
x> {} fail
z().P wait
z[] close

\

|

| z>(2){P,Q} case
| x<inj;[z].P select
| z(y,z).P join
| =@ly,2](P|Q) fork
| z(X,2).P for all
\
\
\
\
\
\

z[A, z].P exists
lz(y).P server
?xly|.P client
?x(].P weakening
?zly, z].P contraction

(z: A)(P|Q) cut

The interpretation of linear logic propositions as behaviours is quite standard.
Constants and connectives describe linear channels, which must be used for a single
communication, whereas the modalities ! and ? describe shared channels. The mul-
tiplicative constants | and 1 describe channels used for receiving/sending an empty
message (without continuations). The additive constants describe unusable channels.
They can play the role of smallest/largest type in type systems that support a notion
of subtyping [24], but will mostly ignore them in this work. The additive connectives
A & B and A @ B describe channels used for receiving/sending either a continuation
of type A or a continuation of type B. The sender selects one of the two possibili-
ties, while the receiver offers both. The multiplicative connectives A9 B and A ® B
describe channels used for receiving/sending two continuations, one of type A and the
other of type B. The quantifiers VX.A and 3X.A describe channels used for receiv-
ing/sending a type X along with a continuation of type A. They are useful to describe
parametric protocol polymorphism. Finally, the “of course” modality !A and the “why
not” modality ?A describe shared channels on which servers and clients accept and
request connections of type A.

The notions of free type variables, of duality and of type substitution are stan-
dard [11]. In particular, we write A+ for the dual of A and A{B/X} for the type
obtained by replacing the free occurrences of X in A with B.

2.2 Processes

The syntax of processes makes use of an infinite set of channels, ranged over by x, y
and z, and is shown in Table 1. A link x > y denotes the merging of the channels
z and y, so that each message sent on one of the channels is forwarded to the other.
As discussed in the literature [21] and illustrated in Example 2.2, this form is useful
for modeling the exchange of an existing channel on another channel. The processes
z().P and x[] respectively model the input and output of an empty message on the
channel z. The latter process terminates after the message has been sent, while the
former continues as P once the message has been received. The process z > {} can

be used to denote a failure concerning the channel z. The process z > (2){Q1, @2}
offers a choice on channel x and continues as either @J; or Q)2 depending on which
branch is selected with z bound to the received continuation channel. The process
a<inj;[z]. P performs a choice (represented by a label inj; with ¢ = 1, 2) and sends a fresh
continuation channel z on the channel x. The processes z(y, z).R and z[y, z](P | Q)
describe the input/output of two fresh continuations channels y and z on the channel
2. The receiver can use y and z in whatever order. The sender forks into P and @,
each using y and z respectively. The processes (X, z).P and x[A4, z].P describe the
input/output of a type on the channel = along with a fresh continuation z.

Next we have process forms dealing with shared (non-linear) channels. The pro-
cesses lz(y).P and ?z[y]. P respectively denote servers and clients acting on the shared
channel z. Each request (from a client) spawns a copy of the server’s body using
the continuation channel y. The process 7z[].P denotes an explicit weakening, that is
a client that does not use x. The process ?z[y, z]. P denotes an explicit contraction
whereby a client uses x multiple times (once with name y and once with name z).

Finally, cuts of the form (x : A)(P | Q) represent the parallel composition of the
processes P and @ connected by a channel z, which has type A in P and type A+ in
Q. Henceforth we write (z)(P|Q) omitting the type annotation A when it is irrelevant
or clear from the context.

The notions of free and bound channels are fairly standard, bearing in mind
that output prefixes bind continuation channels in (some) continuation processes. For
instance, z <inj;[z].P binds z in P, while z[y, z](P | Q) binds y in P but not in Q and
binds z in @ but not in P. We write fc(P) for the set of channels occurring free in P
and we identify processes up to renaming of bound channels.

Example 2.1. We can represent the protocol of a boolean value being produced as the
type B "1 @1 and that of a boolean value being consumed as its dual B+ = 1 & L.
Following these types, the boolean constants can be modeled by the processes

True(z) def o < inj1[z'].2[] False(z) def o < injo[z'].2[]

and the boolean negation function by the process

Not(z,y) def x> (2"){2' (). False(y),x' (). True(y) }

As an example, the composition (x : B)(True(z) | Not(z,y)) produces false on y.
Note the use of explicit continuations in these processes and the fact that each channel
is used exactly once. The same processes in CP would be written as

True(x) def x<injy.z]] False(x) def x <injg.z]] Not(z,y) def x> {ig;?ﬁf:g))}

where each channel is used multiple times to indicate the sequence of input/output
actions pertaining to the same session. In general, the CP version of an LCC process can
be obtained by reusing the same channel x in place of the continuation z in Table 1. 4

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
932 Table 2 Operational semantics of LCC. Many side conditions for the [s-*] rules are omitted (see text).

233

[s-LINK oy Jyox
234 [s-comm (@)(P1Q) I (=)QP)
235 [s-FAIL () {}|P) 3 y>{}
236 [s-wAIT ()(y()-P|Q) 2 y()-(z)(P| Q)
9237 [s-case @)y (){PQ} | R) I y> (){(=)(P| R),(=)(Q| R)}
[s-sELECT (x)(yQinj;[2].P| Q) T y<inji[z].(2)(P | Q)
238 [s-J01N (@) (y(u, 2).P Q) I y(u,2).(z)(P| Q)
239 [s-FORK-L (@) (ylu, 2](P | Q) | R) 2 ylu,2]((=)(P | R) | Q) z € fc(P)
240 [s-FORK-R (@)(ylu, 2](P | Q) | R) 3 ylu,2](P | (z)(Q | R)) z € fc(Q)
941 [s-FORALL (@) (y(X,2).P Q) J y(X,2).(2)(P| Q)
[s-EXISTS (z)(y[A4,2].P Q) 3T y[A,2].(z)(P|Q)
242 [s-SERVER ()(ly(w).P | lz(v).Q) 3 ly(u).(x)(P |lz(v).Q)
243 [s-CLIENT (2)(Pyl2].P | Q) 2 Tylz].(x)(P | Q)
244 [s-WEAKEN (@)?y[].P|Q) 3 y[.(z)(P|Q)
245 [s-coNTRACT (@) (?ylu,v].P [Q) I Tylu,v].(x)(P| Q)
246 [R-LINK (z)(x <>y | P) ~ P{y/x}
247 [r-cLOSE (z)(z[] | z().P) ~ P
248 [R-SELECT| (2)(z <inji[2].P |z > (2){Q1,Q2}) ~ (2)(P| Qi) i€{1,2}
9249 [R-FORK (@)(zly, 2](P | Q) | 2(y, 2)-R) ~ (y)(P|(2)(Q|R))
[R-EXISTS (x)(@[A, 2].P | 2(X, 2).Q) ~ (2)(P|Q{A/X})
250 [R-CONNECT (2)(lz(y).P | 72[y]-Q) ~ (y)(P|Q)
251 [R-WEAKEN (@) (\2(y)-P | ?72[.Q) ~ 7Z[].Q fe(P) = {y,z}
959 [R-CONTRACT (@)(lz(y).P | tz[’, 2"].Q) ~ ?Z[z/,2"].(z") (12" (y).P" | (=")(lz” (y).P" | Q)) ~
[r-cuT z)(P|R) ~ (#)(Q| R) P~Q
253 [R-CcONG P~ Q POR~Q
254
255 “fe(P) = {y,z}, P’ = P{z'/z}, P"" = P{z" /z}
256
257
258 2.3 Operational Semantics
259

260 The operational semantics of LCC is shown in Table 2 and is given by two relations: a
261 structural pre-congruence relation J, which relates essentially indistinguishable pro-
9Go cesses, and a reduction relation ~», which models communications. Let us describe the
963 tWo relations more in detail.

264 Structural pre-congruence is the least pre-congruence defined by the [s-*] rules.
265 [s-Link| and [s-comM] assert that links and parallel compositions are commutative.
266 The remaining rules, when read from left to right, push a cut on x underneath the
og7 topmost prefix on y of one of its sub-processes when x # y. These rules are key to
268 float input/output actions to the top-level of a process, so that they can interact with
269 corresponding complementary actions in the surrounding context. All these rules have
270 implicit side-conditions (not shown in Table 2) aimed at preserving the meaning of
271 channels when binders are moved around: terms entering or exiting the scope of a
979 binder for x must not have free occurrences of x. This holds also for the type variable
973 X in the rule [s-ForaLL]. We content ourselves with such informal description of these
974 side conditions given that we are going to formalise LCC later on. Note also that
975 there are two versions of [s-FOrk-L| and [s-FORK-R| depending on which of the two
97¢ continuations (either P or Q) contains a free occurrence of the restricted channel z.

Another rule that deserves attention is [s-servER]|. In this case, a cut can be pushed
underneath a server prefix !y(u) only provided that the other process in the cut is also
a server on the channel restricted by the cut.

Reduction is defined by the [r-*] rules, most of them coinciding with principal cut
reductions of linear logic. The rules [R-LINK]|, [R-CLOSE], [R-SELECT]|, [R-FORK]| and [Rr-
EXISTS| erase the topmost cut and replace it with zero, one or two new cuts, depending
on the number of continuation channels that are exchanged. Note that the rule [R-LINK]
eliminates a link x <> y by substituting y for « in the scope of x and [r-cLosE] models
the communication of an empty message (without continuations). The rule [r-EXISTS]
models the instantiation of a polymorphic variable X as the communication of a type
A. We write Q{A/X} for the process obtained by replacing every free occurrence of
the type variable X with A. The rule [rR-connEcT| models the connection between
a client and a server, whereas the rules [R-wWEAKEN] and [R-CONTRACT| respectively
model the disposal of an unused server and the duplication of a server. In these rules
we use some slightly informal notation for denoting sequences of (pairwise distinct)

channels and prefixes. In particular, Z stands for a sequence z1,...,z, of channels,
7Z[].Q stands for a sequence ?z1[]...72,[].QQ of weakening prefixes and ?Z[z’,Z].R
stands for a sequence ?z1[z1, 2{] ... 7zn[2,, z11]. R of contraction prefixes.

The rule [r-cuT] propagates reductions through cuts and the rule [rR-cong]| enables
reduction up to structural pre-congruence.

Example 2.2. In this example we illustrate the role of links for the communication
of free channels by modeling an echo server that consumes boolean values and sends
them back unchanged. The protocol of the server we want to model is described by
the type !(B-’2 (B®1)) where the modality ! indicates that the server is able to accept
an unbounded number of requests and the type B2 (B ® 1) describes the sequence
of actions performed by the server at each connection with a client: the server first
consumes a boolean value (say u, of type B*), then produces another boolean value
(say v, of type B) and finally sends an empty message. We can model the server and
a possible client thus:

Server(z) € 12(3).y(u./) [0.9")v > u o)
Client(x,2) = 2a[y].ylu, y')(True(u) | y'(v,y").y")0 > 2)

Notice the use of continuations for chaining communications together. In the
server, the link v <> u merges v and u so as to send the same channel u received
from the client. In the client, the link v < z “assigns” the message v received
from the server to the free channel z, which represents the result of the interaction.
If we write ~~* for the reflexive, transitive closure of ~- it is easy to verify that
(x)(Client(x) | Server(z)) ~* True(z). J

2.4 Type System

We use typing contexts (i.e. sequents) to keep track of the type of channels in processes.
Typing contexts are finite maps from channels to types written as x1 : Ay,..., 2, : A,
and ranged over by I' and A. We write I', A for the union of I' and A when they have

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

323
324
325
326
327
328
329
330
331
332
333
33
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

>~

Table 3 Typing rules of LCC.

[ax] [T [L] (1]
PrHT
zoybao: Ay: AL z>{}ra:T,T z().Ptax:L,T z[]Fx:1
[&] [©] (%]
Pry: AT QFy:B,T Pry: AT Pry:Az:B,T
> (y){P,Q}Fz: A&B,T z<injifyl.PFa: Ay & As, T z(y,z).P+-xz: A% B,T
[®] El vl
Pry:AT QFz:B,A Pry:B{A/X},T Pry:AT X ¢ fu(I)
z[y,2z](P|Q)Fx: A® B,T,A z[A,y].P 2 :3X.B,T z(X,y).Ptaz:VX.AT v
['] (7] [WEAKEN] [conTRACT]
Prky: AT Pry: AT PET Pry:7A,z:7A,T
lz(y).PFax: 1A, z[y|.PtFx:7AT z|].PFx:7A,T x|y, 2]. P x:7AT
[cuT]

Prz:AT QFz:A+ A
(z:A)(P|Q)FT,A

disjoint domains. We write 7T" for some context I' = xy : 7Aq,..., 2, : 7A, where all
the types in its range are prefixed by the modality 7. We call these types unrestricted
because they are used to denote shared channels that can be (explicitly) discarded
and duplicated.

Typing judgments have the form P - I' meaning that the process P is well typed in
the context I'. Equivalently, the judgment indicates that the sequent F I" is derivable
and P is a proof term corresponding to the derivation for - I'. The typing rules are
shown in Table 3. They are in one-to-one correspondence with — and have exactly the
same structure of — the proof rules of classical linear logic. The reader may refer to
the standard literature on propositions as sessions [5, 11, 21| for the interpretation
of the rules. The only relevant difference with our typing rules is that the premises
mentioning the continuation channel z actually refer to the same channel z on which
the process in the conclusion is acting. The side condition X ¢ fv(T") in the rule [3]
checks that the type variable X does not occur free in the types of I' and therefore
can be generalised.

Example 2.3. Looking at Example 2.3 we notice that the server does not make any
assumption on the type of the values it receives and sends. Therefore, we can define
a polymorphic version of the echo server that works for every message type and not
just for the booleans. The polymorphic version of the echo server is defined below:

dgf

Server(x) = z(y).y(X,).y (u,y").y"[v,y"](u < v [y"]])

The only difference with respect to the server in Example 2.3 is that now the
process receives the type X of the messages to be processed and then continues as
before. We establish that Server(x) is well typed with the following derivation

AX[| ———— |1
UHUFUIXJ‘,U:X[] y/”ﬂky”’:l[[]]
02y

y//[%y///](u oo I y///[]) [XL,yN T X®1

Y (u,y")y" o,y (u v |y Fy s X (X @1)

y(X, 9y (u,y") " [0,y (w0 [y Fy: VXX 9 (X @1)
Server(z) F z: (VX. X+ 2 (X ®1))

%]

V]
(']

where the side condition of the rule [V] is trivially satisfied since the typing context
does not contain bindings other than the one for y. a

2.5 Properties of Well-Typed Processes

The linearity challenge [1] aims at formalising two essential properties of well-typed
processes: (1) typing is preserved by reductions; (2) the peer endpoints of the same
session are always used in complementary ways. This latter property is called well
formedness in the challenge. In this work we also consider deadlock freedom, which is
more general than well formedness and holds for LCC since its type system is based on
linear logic. We now formulate these properties using the notation developed so far.

Concerning the preservation of typing, this corresponds to the usual subject
reduction result, which is expressed thus:

Theorem 2.1 (subject reduction). If P ~~ Q then P+ T implies Q FT.

In order to formulate deadlock freedom, we first need to introduce some terminol-
ogy for referring to processes that are unable to make any progress. A simple example
of deadlock is the process (x)(z[] | []). This process is unable to reduce (because a
process z[] is meant to interact with a process of the form z().P) and, more gener-
ally, it is unable to interact regardless of the context in which it is placed because the
sub-processes it contains are blocked on the channel z that is restricted by the cut. In
general, the property of being a deadlock is not simply the inability to reduce: there
are irreducible processes that are not a deadlock because they would be able to reduce
if put into a suitable context. For example, x().P does not reduce, and yet it is not a
deadlock because it would be able to make progress when composed in parallel with
z[]. Even a process like (2)(y().P|2().Q) where x # y, z cannot be considered a dead-
lock, because the prefixes y() and z() could be exposed using [s-warr] and possibly
[s-comm]. Let us make all this more precise.

We say that P is a thread if it is anything but a cut. In other words, a thread
is either a link or a process that starts with an input/output action of some sort.
Note that a thread may contain cuts, but these cuts must be guarded underneath the
topmost action prefix of the thread. We say that P is observable if P 3 @ for some
thread @. An observable process is a process that exposes an action on a free channel

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

and therefore can interact through that channel, if put into some appropriate context.
We say that P is reducible if P ~ @ for some). A reducible process may perform
a reduction step. We say that a process is alive if it is either observable or reducible
and that it is a deadlock if it is not alive.

Well-typed LCC processes are deadlock free:

Theorem 2.2 (deadlock freedom). If P T then P is alive.

We now shift the attention to well formedness. In the linearity challenge [1] this
property ensures that, whenever two processes composed in parallel begin with actions
concerning the very same session, then such actions complement each other, in the
sense that they describe opposite forms of interaction. To define well formedness in our
setting, we introduce reduction contexts as partial processes with a single unguarded
hole [], thus:

Cu=|[]|(@:A)C|P)|(z:A)P[C)

As usual, we write C[P] for the process obtained by replacing the hole in C with
P, noting that such replacement may capture channels that are bound in C and
occur free in P. Now we observe that if (J; and Q2 both act on the same channel
2 in complementary ways, then their parallel composition (z)(Q1 | Q2) is reducible
according to one of the principal cut reductions described in Table 2. Therefore, an
alternative (and more general) way of formulating well formedness is simply this: we
say that P is well formed if P 3 C[Q] implies that @ is alive. In the particular case
when @ = (2)(Q1 | Q2) and both @1 and Q5 start with an action on x, then @ is not
observable (because actions on cannot be pulled out of the cut that binds x) and
therefore it must be reducible by Theorem 2.2.

Well-typed processes are well formed:

Theorem 2.3 (type safety). If P+ T then P is well formed.

Note that the properties expressed in Theorems 2.2 and 2.3 are invariant under
reductions thanks to Theorem 2.1.

3 Agda Formalisation

In this section we describe the formalisation of LCC in Agda. Each of the following
sub-sections matches one of the modules of the formalisation. We present in detail
only some key parts of the code including the representation of types and processes,
the definition of the operational semantics and the statement of the main results. The
complete source code is available in LCC’s public repository [20].

3.1 Type Representation

The representation of types is standard. We start by defining an indexed data type
PreType n to represents (LCC) types in the scope of n quantifiers and we use elements
of Fin n as de Bruijn indices for the quantified type variables. In this way, we make
sure that pre-types are well scoped.

10

data PreType : N — Set where

ToL1 :V{n} — PreType n

var rav :V{n} — Fin n — PreType n

& @ w @ :Y{n} — PreType n — PreType n — PreType n
V'3 :V{n} — PreType (suc n) — PreType n

17

:V{n} — PreType n — PreType n

Note the constructors var and rav, which respectively represent type variables and
their dual, and the quantifiers 'V and ‘J which increase the number of quantifiers in
the scoped pre-type.

The dual of a pre-type is computed by the following function:

dual : V{n} — PreType n — PreType n

dual T =0

dual 0 =T

dual L =1

dual 1 =1

dual (var z) =ravz

dual (rav z) =varx

dual (A & B) = dual A @ dual B
dual (A @ B) = dual A & dual B
dual (A2 B) = dual A @ dual B
dual (A ® B) = dual A % dual B
dual ('V A) = '3 (dual 4)

dual ('3 4) ="V (dual A4)

dual ("l 4) ="'7 (dual A)

dual (‘7 A) = "I (dual A)

It is straightforward to prove that duality is an involution.
dual-inv : ¥{n} {A : PreType n} — dual (dual 4) = A

This property is important in the rest of the formalisation so we define an implicit
rewriting rule that Agda can autonomously apply whenever possible. This is achieved
by means of the following pragma directive.!

{-# REWRITE dual-inv #-}

Next we define the function subst that simultaneously substitutes the type vari-
ables of a pre-type with other pre-types. In practice we will always substitute one
variable at a time, but it is technically easier to define subst so that it accepts a func-
tion substituting all variables of a pre-type, possibly with themselves. The definition

1The directive is effective provided that the option --rewriting is enabled, either globally when invoking
Agda or within an OPTIONS pragma directive in the module’s source code.

11

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

207
508
509
510
511
512
013
514
515
516
017
018
519
520
521
522
923
524
925
526
927
928
529
530
931
932
933
934
935
536
237
938
939
540
541
542
943
544
945
546
047
948
949
950
951
952

of subst relies on some auxiliary functions for renaming type variables and lifting sub-
stitutions across quantifiers. These functions are straightforward adaptations of those
described by Kokke et al. [25].

subst : V{m n} — (Fin m — PreType n) — PreType m — PreType n

Among all substitutions, we will use the one that substitutes the O-indexed type
variable with a pre-type. It is convenient to introduce this substitution once and for
all, which we do here.

[/]:V{n} — PreType n — Fin (suc n) — PreType n
[A /] zero = A
[A/] (suc k) = var k

Duality and substitutions are meant to commute.

dual-subst : V{m n} {0 : Fin m — PreType n} {A : PreType m} —
subst o (dual A) = dual (subst o A)

It is worth looking at one case in the proof of dual-subst, namely when the type is
a dualised type variable:

dual-subst { } { } {o} {rav z} = refl

Here we are supposed to prove subst o (dual (rav z)) = dual (subst o (rav x)) which
is definitionally equal to o 2 = dual (dual (o x)). We could easily prove this equivalence
by invoking dual-inv, but thanks to the rewriting rule that we have added earlier a use
of refl suffices. In this case the saved effort is negligible, but in later results, where it is
necessary to use dual-inv for rewriting part of the index of some type families, having
an implicit rewriting rule allows us to avoid writing some quite obscure Agda code.

Just like dual-inv, dual-subst too is key in the formalisation that follows. Therefore,
we add it to the set of implicit rewriting rules used by Agda so that we do not have
to think about this property again.

{-# REWRITE dual-subst #-}

We call Type closed pre-types, those having no free type variables. From now on,
we will seldom use pre-types again.

Type : Set
Type = PreType zero

3.2 Context Representation

We are going to adopt a nameless representation of channels. Hence, typing contexts
are represented as lists of types, where the (polymorphic) type List and its constructors

12

[[and :: aredefined in the module Data.List of Agda’s standard library. We will keep
using I', A and © to range over typing contexts, even though in the Agda formalisation
they are lists and not finite maps as in Section 2.4.

Context : Set
Context = List Type

The most important operation concerning typing contexts is splitting. The splitting
of I' into A and ©, which we denote by I' ~ A 4+ O, represents the fact that I contains
all the types contained in A and ©, preserving both their overall multiplicity and also
their relative order within A and ©. A proof of I' ~ A 4+ ® shows how the types in I’
are distributed in A and © from left to right.

data _~ + : Context — Context — Context — Set where
e [=T+1
< VATAO} 5T >2A+0 AT ~A:A+0
> VATAO} 5T ~2A+0 - A:T~A+A:0

When splitting a context I' into A + O, for each type in I' we use one of the prefix
operators < and > to indicate whether the type is meant to be placed in A or in ©.
Once we reach the end of the typing context, we use the constructor e to build the

trivial splitting of the empty context into two empty partitions. For example, below
is a proof of the splitting [A, B,C, D] ~ [B] + [A, C, D).

splitting-example; : (A =B CuD = [))~[B]+ (A= C:D:])
splitting-example; = > < > > o

It is easy to see that splitting is commutative and that the empty context/list is
both a left and right unit of splitting.

+-comm :V{TAO®} = T~2A+0 T~ +A
> VT =T ~[+T
< W > T =T+

Context splitting is also associative. If we write A + @ for some I' such that ' ~
A+ @, then we can prove that F1 + (rg + F3) = (F1 + rg) + F3.

+-assoc-r :V{IFTAOA O} 5T ~2A+0—-0~A+0 —
ATV AT A xT =T + 6

+-assoc-l :V{ITAOAN O} T>2A+0 A=A +0 —
AT ~@ +OxT A +T

When proving a splitting I' ~ [A] + © where the left partition is a singleton [A],

it may be convenient to use > as a shortcut for a sequence of applications of > once
the A type has been reached in T'. For instance, splitting-example; can be written

13

953
954
955
956
957
958
959
560
961
962
963
064
565
566
267
968
569
970
o71
o972
973
074
975
976
o977
978
979
580
081
082
983
084
985
586
o987
088
589
590
991
992
993
994
995
596
997
998

999
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

Notation Definition Meaning

Pred A/ A — Set £ predicate over A

V[P] v{z} - Pz implicit universality
P=Q Am—>Pzr—>Qx implication

PUQ A—>PzdQuzx disjunction

PNQ A—PzxQu conjunction

fEP Az — P (f x) update

U Az — Data.Unit. T universal set
NAX:A]P X — (X:A)— P X z infinitary conjunction

Table 4 Useful definitions in Agda’s Relation.Unary module.

equivalently and in a more compact way as shown below. More usages of > will be
provided in Section 3.9.

splitting-examples : (A =B CuD = []) = [B]+(A=C=D)
splitting-example; = > < >

From now on we will make extensive use of predicates over contexts. For this
reason, it is worth recalling in Table 4 a number of definitions from the module
Relation.Unary of Agda’s standard library. We begin using these definitions for building
a few abstractions inspired to separation logic [26] that allow us to hide context
splittings, at least in some cases. Following Rouvoet et al. [18], we define the separating
conjunction P x @ of two predicates P and () over contexts:

data _*_ (P @ : Pred Context) (" : Context) : Set where
() VHAB} - PA-ST~2A+0—-QO0 = (PxQ)T

If P and QQ are predicates over contexts, the predicate P+ holds for those contexts
I" that can be split into A and © so that P holds for A and @ holds for ©. The
constructor () has three explicit arguments witnessing the splitting ' ~ A + ©
along with proofs of P A and @ ©. The use of metavariables P and @ for denoting
predicates over contexts is appropriate: as we will see shortly, in our formalisation
processes are indeed an example of predicate over typing contexts.

Along with x we define the separating implication (also known as “magic wand”)

_ =k : Pred Context — Pred Context — Context — Set
(P+Q)A=V{OT} =T >A+0 PO - QT

and prove that — can be used to curry x:

curryx :V{P Q R} V[P« Q=R]—>V[P=Q ~« R]
curryx F pz o gz = F (pz (0) qx)

To conclude the implementation of typing contexts, we define a predicate Un that

holds for unrestricted contexts, those solely made of types of the form ?A. We need
this predicate in the definition of a server, which must comply with the typing rule [!].

14

data Un : Context — Set where
un-[] : Un []
un-:: : V{A} = V[Un=("74:)k Un]

The empty context is trivially unrestricted. A non-empty context is unrestricted
if its head has the form 7A for some A and its tail is unrestricted as well. It is easy
to prove that I' is unrestricted if so are A and ® when I' ~ A 4+ ©:

s-un : V[Un % Un = Un]

3.3 Context Permutations

According to our nameless representation of channels, the position of a type in a typing
context I' determines the location of its binder in the structure of a process. When
the binding structure of a process changes, e.g. because a structural pre-congruence
rule is applied, or when a channel substitution occurs, cf. the right-hand side of the
[ax] reduction in Table 2, I' must be suitably rearranged to agree with the updated
binding structure. Such rearrangement is in fact a permutation of the elements of T.
We define typing context permutations inductively, as a binary relation e~

data e~ : Context — Context — Set where
refl V{T} =T «wT
swap : V{A BT} - (A=B:uT)ew (B A:T)
prep :V{AT A} 5T ew A= (AnT) ew (A A)
trans : V{ITAB} 5T evw A5 Aeww® =T e 0O

Each constructor of _«~ represents a particular kind of permutation: refl for
the trivial permutation that does not change anything; swap for the permutation that
swaps the first two elements of a typing context; prep for the permutation applied to
the tail of a typing context; trans for the sequential composition of permutations.

The definition of the data type «~ is nearly the same found in the module
Data.List.Relation.Binary.Permutation.Propositional of Agda’s standard library. We have
preferred defining our own notion of permutation for simplicity and convenience: the
swap constructor does not need a sub-permutation for the tail of the typing context,
which can always be performed, if needed, combining swap with prep and trans. Also,
and more importantly, our data type «~ is monomorphic (it does not need to
relate arbitrary lists) and the arguments A and B of swap and prep are implicit, which
streamlines the usage of these constructors in the rest of the code.

It is easy to see that _«~» is an equivalence relation. In the following we also use
another property of permutations related to context splitting and list concatenation

_++ :if '~ A+ 0, then I is a permutation of the concatenation of A and ©.

«~~sconcat V{F |1 FQ} —T~T;1+T3 — (F1 ++ rg) e [

15

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

3.4 Channel and Process Representation

We adopt an intrinsically-typed representation of processes with nameless channels.
The intrinsically-typed representation makes sure that only well-typed processes can
be constructed. This choice increases the effort in the definition of the datatypes for
representing processes and their operational semantics, but pays off in the rest of the
formalisation for at least three reasons:

® we need not give explicit names to channels, thus we avoid all the technicalities and
pitfalls that a named representation entails;

® we conflate processes and typing rules in the same datatype, thus reducing the
overall number of datatypes defined in the formalisation;

® the typing preservation results are embedded in the very definition of the operational
semantics of processes and do not require separate proofs (Sections 3.5 and 3.6).

Channels are not given any name. Instead, they are represented as terms witness-
ing that their type is present in the typing context. This is known as co-de Bruijn
syntazx [27], whereby the typing context associated with a term (a process, a channel)
only contains the types of the channels that actually occur within the term. For this
reason, typing contexts are split eagerly, according to the structure of processes, to
make sure that channels are appropriately (and above all linearly) distributed among
sub-processes, so that each channel is used exactly once. Concretely, a channel of type
A is a predicate that holds for the singleton context [A |:

data Ch (A : Type) : Context — Set where
ch:ChA[A]

A process that is well typed in a typing context I is a predicate that holds for T.
Here is the datatype Proc for representing processes:

data Proc : Context — Set where
link : V{A} — V[Ch A % Ch (dual A) = Proc |
fail :V[Ch T % U= Proc]
wait : V[Ch L % Proc = Proc |
close :V[Ch 1= Proc]
case :V{A B} —

V[Ch (A& B) * ((A::)F Procn (B :)k Proc) = Proc]
select :V{A B} —

V[Ch (A& B)* ((A::)+ ProcU (B ::)F Proc) = Proc]
join :V{A B} - V[Ch(A® B)* ((A:)F(B:)k Proc) = Proc]
fork :V{A B} —

V[Ch (A ® B) % ((A::) F Proc) * ((B ::) F Proc) = Proc]

all V{A} —
V[Ch (V A) « N[X : Type] ((subst [X /] A ::) F Proc) = Proc]
ex :V{A B} = V[Ch (‘3 A) * ((subst [B /] A ::) F Proc) = Proc]

server :V{A} = V[Ch (" A) x (UnnN ((A ::_) F Proc)) = Proc]
client :V{A} = V[Ch (‘? A) = ((A ::) F Proc) = Proc |

16

weaken :V{A} — V[Ch (‘7 A)
contract : V{A} — V[Ch (‘7 A)
cut V{A} = V[(A=)F

Proc = Proc |
(‘"7A:)E('7 A) F Proc) = Proc]
Proc) * ((dual A ::) F Proc) = Proc]

*
*

The constructor link builds a link x <> y. This process is well typed in a context of
the form z : A,y : AL, namely a context satisfying the predicate Ch A * Ch (dual A)
which we see on the left-hand side of =.

The constructor cut builds a cut (x : A)(P | @). This process is well typed in a
context I'if ' ~ A 4+ © so that P and @Q are well typed in the contexts x : A, A and
x : A+, ©, which are obtained from A and © by adding the bindings z : A and = : A*,
respectively. Since z is the most recently introduced channel, the types A and A+
are added in front of A and ©, which we do by means of the functions (A ::) and
(dual A ::). These are partial applications of the constructor :: for lists to which
we have supplied the left operand.

All the remaining constructors basically follow the same pattern: they possibly
quantify over some types A and B and then (implicitly) over a typing context I
through the function V[] applied to a predicate of the form P = Proc. The predicate
states how to build a process that is well typed in T, provided that T satisfies P. In
general, P is a (separating) conjunction of sub-predicates corresponding to the channel
on which the process is acting and to the premises of its typing rule.

For example, the constructor fail, which builds a process z>{}, requires the context
I" to satisfy the predicate Ch T % U, meaning that I' must contain an entry T (U is the
universal predicate that holds for every context, cf. Table 4). That form of " matches
the typing context in the conclusion of the rule [T].

The constructor wait, which builds a process x().P, requires I' to (separately)
satisfy Ch L, that is the channel z on which the process is operating, as well as Proc,
that is the continuation process P, which must be well typed in the remaining typing
context.

The constructor close, which builds a process z[], requires the typing context to
be the singleton list [1].

Let us move on to the forms that produce continuation channels. As an example,
the constructor case builds a process x > (y){P,Q}, where both P and @ use the
continuation channel y. In this case I' must satisfy the predicate

Ch (A& B)* ((A::)FProcn (B :)F Proc)

which looks intimidating at first but makes perfect sense once we recall the typing
rule [&] and the definitions of N and + in Table 4. Remember that we are trying to
establish whether 2> (y){P, @} is well typed in I'. The predicate Ch (A & B) expresses
the requirement that the type of x must be of the form A & B and should be found in
I'. In other words, I' ~ [A & B] + A for some A. Now P and @ must be well typed in
the context A augmented with the association y : A and y : B, respectively, whence
the use of N to verify a (non-separating) conjunction of the predicates (A ::) F Proc
and (B ::) F Proc. The two new contexts are obtained by adding either A or B
to A, which we perform using . Crucially, the types A and B are prepended to A,
which is consistent with the fact that the continuation y has been freshly introduced

17

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
e
775
776
T
778
779
780
781
782

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

and the channel z has been consumed. Notice how easy it is to prepend either A or
B to A instead of changing the type of x in ' from A & B to either A or B while
preserving the position of the type, as we would have to do in a “true” session type
system without explicit continuation channels.

The interpretation of the remaining constructors is analogous, so we only comment
all, which builds a process (X, y).P. This constructor models the continuation P using
higher-order abstract syntax (HOAS): proving that a context I satisfies the predicate

ﬂ[X : Type] ((subst [X /] A::) F Proc
means providing a function that, for every type X, produces a witness for the predicate
((subst [X /] A::) F Proc

applied to I'. Note that the side condition X ¢ fv(T") of [v] is trivially enforced by
definition: A has type PreType 1, that is a pre-type with at most one free type variable
X, whereas T is a typing context, that is a list of Type = PreType 0 without free type
variables. Therefore, X cannot occur in T'.

We conclude this module proving that permutations preserve process typing. Since
list permutations basically correspond to channel renaming, we can read this property
as the fact that typing is preserved by (bijective) name substitutions.

amsproc : V{T' A} = T «~ A — Proc T' — Proc A

3.5 Structural Pre-Congruence

We formalise structural precongruence as a binary relation between processes that
are well typed in the same typing context. This entails that structural precongruence
preserves typing by definition.

data _J {I'}: ProcT"— Proc I" — Set where

The datatype for J has one constructor for each structural pre-congruence rule
in Table 2. Since many aspects recur repeatedly, we illustrate the implementation of
just a few representative rules starting from [s-comm].

s-comm :
V{AT1To PQ}(p:T~T1 4+T3) —
cut {A} (P (p) Q) Jcut (Q (+-comm p) P)

The constructor s-comm models the commutativity property of parallel compo-
sition. We use 4+-comm to compute the proof of the splitting I' ~ 'y + I} from p.
Notice that s-comm makes key use of the implicit rewriting rule dual-inv described
in Section 3.1. Indeed P and @ have type Proc (A :: Ty) and Proc (dual A :: Ty),
respectively, but the cut on the r.h.s. of J expects P to have type dual (dual A).

18

Thanks to dual-inv, Agda considers these types equivalent without requiring intricate
substitutions in the index of Proc.
The constructor s-wait models the [s-wart] rule:

s-wait :
let ,p', ¢ =+-assoc-l p g in
cut {A} (wait (ch (> ¢) P) (p) Q) 2
wait (ch (¢) cut (P (p") Q))

There are two non-trivial aspects worth commenting. The first one concerns the
proof > ¢ used within wait. To understand the meaning of this proof, we must recall
three key elements:

1. (wait (ch (> ¢) P) is a direct sub-process of the cut, and therefore it is meant to
be well typed in the context A :: Ty.

2. Being a wait process, such context must contain a L type as per the typing rule
[L]. That is A : Ty ~ [L] 4+ A :: A for some A.

3. The [s-wart] rule is applicable only provided that the channel restricted by the
cut (say z, of type A) is different from the channel consumed by the wait process
(say y, of type L). We enforce the side condition x # y of [s-warr] (which we left
implicit in Table 2) imposing that the type A in front of A :: T} goes to the right
partition of the splitting [L] + A :: A through the use of >.

The other aspect that is worth commenting concerns the rearrangement of the
splittings in the process after the application of structural precongruence. Overall, p
and ¢ prove the splittings ([L] + A) + Ty, but the precongruence rule requires this
splitting to be rearranged as [L]+ (A+Ty). That is, we need to apply the left-to-right
associativity property of context splitting which we called +-assoc-| in Section 3.2. The
nested let-in allows us to pattern match on the result of the application +-assoc-l p ¢
and to extract the new proofs p’ and ¢’ for the rearranged splittings.

The constructors s-select-I and s-select-r model [s-seLEcT] when the selected tag is
respectively inj; and injs. For example, for s-select-l we have:

s-select-| :
V{IMMTeAABCPQ}(p:T~T1+T)(¢:T1~[BdC]+A4A)—
let ,p', ¢ =+-assoc-l p g in
cut {A} (select (ch (> ¢) injy P) (p) Q)3
select (ch (¢) inj; (cut («~procswap P (< p') Q)))

Here the process (select (ch (> ¢)) inj; P), that is y <inj;[2].P, is found under
a cut for z : A and is using some channel y : B & C' to select inj;. The continuation
process P uses a fresh continuation channel z : B. Therefore, P is required to be well
typed in the context B :: A :: A, where the type B of z comes before the type A of x
since z is introduced later than x. After structural pre-congruence is applied, however,
the type of the continuation channel z ends up behind that of the restricted channel
x, because now z and z are introduced in the opposite order. Therefore, we need to

19

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

rename the channels in P so that it is well typed in the context A :: B :: A. Such
renaming is achieved applying the function «~proc to the swap permutation and to
the process P.

We also discuss the modeling of the [s-Fork-1]| rule, which is interesting because
of its complex side conditions:

s-fork-| :
V{I'iTe AA Ay AB C P Q R}
(p:T=Ty4+T)(¢g:T1=2[BoC]+A)(r:A~A +A) —
let ,p, ¢ =+-assoc-l p ¢ in
let , p”, 7 = 4-assoc-l p’ rin
let ¢, 7" = 4-assoc-r v (+-comm p'’) in
cut {A} (fork (ch (> ¢) (P (<r) Q) (p)R)3
fork (ch (¢) (cut («wprocswap P (< ¢’) R) (") Q))

Recall from Table 2 that we allow using this rule on a process of the form (x :
A)(ylu,v](P | Q) | R) when x € fc(P). We capture the condition x € fc(P) by means
of the splitting < r, implying that the type A of x ends up in the typing context for
P and not in the one for). The symmetric rule [s-FOrk-R] is modeled by another
constructor s-fork-r, which is similar to s-fork-l except that < r is replaced by > r.

Finally, in Section 2.3 we have colloquially defined J as a “pre-congruence”, imply-
ing that it is a reflexive, transitive relation preserved by some forms of the calculus.
In the formalisation we have to be precise and we introduce specific rules:

srefl :vV{P} - PP

stran :Y{P QR} >P31Q—~QIR—PIR

sscong :V{IMMTe APQP Q}F(p:T~T1 +T2) =
PIQ—-P2Q —wcut{d}(P(p)P)Ict(Q(p))

Note that we define a single congruence rule s-cong that allows us to apply J
within cuts, but not underneath prefixes. This limited form of pre-congruence turns
out to be sufficient for the development that follows.

We concede that the implementation of the pre-congruence rules (including those
not discussed here) can be difficult to decipher. In part, this is due to the fact that
splitting proofs are manifest and no longer hidden by separating conjunctions (as
in Section 3.4) because we need them to enforce the side conditions of the rules in
Table 2. We should also bear in mind that, using an intrinsically-typed representation
of processes, we have already taken care of the proof that structural pre-congruence
preserves typing.

3.6 Reduction

Just like structural pre-congruence, reduction is formalised as a binary relation
between processes that are well typed in the same typing context. Thus, the definition
of reduction embeds subject reduction (Theorem 2.1).

20

data _~» {T}:ProcT — Proc T — Set where

There is a constructor for each of the reduction rules in Table 2. Let us comment
a few representative cases.

The constructor r-link models the reduction (z : A)(z <+ y | P) ~ P{y/z} called
[rR-LINK] in Table 2:

r-link : V{A A P} (p: T ~[dual A] + A) —
cut {A} (link (ch (< > @) ch) { p) P) ~» «~proc («wconcat p) P

The splitting p indicates that y (of type AL) occurs in the left sub-process of
the cut (that is the link z < y) and the splitting < > e to which link is applied is
structured consistently with the syntax of the link being reduced, which is oriented so
that the restricted channel z is on the left. The process P has type Proc (dual A4 :: A)
and turns into P{y/x} after the reduction. The type dual A of z in P is the first in the
typing context, indicating that it is the newest channel that P is aware of; however,
after the reduction, x is replaced by y which is found somewhere within I'. The exact
location of y in T" is encoded in the splitting p, thus we “rename” x into y within P
using the permutation «~sconcat p.

The constructor r-close models [R-CLOSE]:

r-close : V{P} (po qo : T =[] +T) —
cut (close ch (po) wait (ch (< g) P)) ~ P

While the process constructor close implicitly refers to the only free channel occur-
ring in a process of the form x[], the constructor wait uses a splitting proof of the form
< qp to make sure that the referenced channel is also the restricted one, and therefore
matches the one of the close process.

Note that r-close (and several other reduction constructors) quantifies over py and
go which both prove the splitting I' ~ [| + I'. Since the left partition is empty, these
splittings must be equal and made of a sequence of > applications followed by e. In
general, Agda will not be able to “see” that they are definitionally equal, hence it
is easier to quantify them separately so that we do not have to prove their equality
whenever we wish to apply this reduction.

The constructor r-select-l models [r-seLEcT] when the selected tag is inj;:

r-select-l : V{I'y' e A B P Q R}
(p:T =Ty +To)(po:Te =[] +T1)(q:T2>[+T2) =
cut {A @ B} (select (ch (< po) inj1 P) (p)
case (ch (< qo) (@, R))) ~ cut (P (p) Q)

There is not much to note here except again for the multiple quantifications over
the trivial splittings T; ~ [|4T; and the use of < to make sure that the channel referred
to by select and case is indeed the one restricted by the cut.

The remaining constructors that describe the base reductions follow a similar
pattern, except for the implementation of [R-wEakEN]| and [rR-conTRACT] Which require

21

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

auxiliary functions to respectively weaken and contract the typing context of the
resulting process as shown in Table 2. It is worth glancing at the implementation of
[r-EXISTS] since it involves a non-trivial rewriting of types:

r-exists : V{A BTy 'y P F}
(p:F:F1+F2)(p0:FI:[]-i—Fl)(qo:Fg:[+F2)%
cut {"3 A} (ex {A} {B} (ch (< po) P) (p) all (ch(
cut (P (p) F B)

Recalling the definitions of ex and all from Section 3.4, we note that P has type
Proc (subst [B /] A::T1) and F' B is a process of type Proc (subst [B /] (dual A) :: Ty).
In order for these two processes to be composable in a cut, it must be the case that
subst [B /] (dual A) = dual (subst [B /] A), which was proved in Section 3.1 under
the name dual-subst. Thanks to the implicit rewriting rule, we do not have to rewrite
the index in the type of F' B, which is silently accepted as is.

Reduction is closed under cuts and by structural pre-congruence as per [r-cuT] and
[r-cong]. The corresponding constructors that model these features are shown below:

r-cut V{F1F2APQR}(qF:F1+F2)%
P~ @ —cut{A} (P (¢q) R) ~ cut (Q (¢q) R)
r-cong :V{PRQ} > PIR—>R~Q — P~ Q

3.7 Deadlock Freedom

As we have seen in Section 2, the deadlock freedom property and Theorem 2.2 rest on
some notions and predicates about processes which must be formalised in Agda. First
of all we need to define the notion of thread, that is any process other than a cut. It
is convenient to provide a more fine-grained classification of threads, distinguishing
between links and input/output actions and sometimes also on whether such actions
operate on free or bound channels. We define predicates for each of these classes:

data Link :V{T'} — Proc T" — Set
data Input :V{T'} — Proc T" — Set
data Output :V{T'} — Proc T" — Set
data Delayed :V{T'} — Proc T" — Set
data Server :V{T'} — Proc T" — Set

data DelayedServer : V{I'} — Proc I" — Set

The implementation of these predicates is not interesting since it is essentially
isomorphic to the relevant fragments of the Proc datatype. The only aspect that is
worth pointing out here is that in Input, Output and Server the channel being acted
upon by the thread is the first in ', hence it is the most recently introduced channel,
whereas in Delayed and DelayedServer the channel is not the first. This allows us to
distinguish those threads that, in the context of a cut, operate on the channel bound

22

by the cut or on a free channel. To clarify this aspect, let us look at the implementation
of the constructor wait in Input and in Delayed. In the former predicate we have

wait : V{T A P} (p : T~ [| + A) — Input (wait (ch (< p) P))

where the use of the constructor < indicates that the thread operates on the most
recent channel. In the latter predicate we have

wait : V{C T AP} (p:T=[L]+ A)— Delayed (wait (ch (> {C}p) P))

where the use of the constructor > indicates that the thread operates on a channel
other than the most recent one. Note that here we have to specify the type C in front
of ' or else Agda is unable to automatically resolve some metavariables.

The predicate Thread is simply the disjoint union of all the previous ones.

data Thread {T'} (P : Proc T") : Set where
link : Link P — Thread P
delayed : Delayed P — Thread P
output : Qutput P — Thread P
input : Input P — Thread P
server : Server P — Thread P
dserver : DelayedServer P — Thread P

Observability, reducibility and aliveness are defined in the expected way:

Observable : V{I'} — Proc " — Set
Observable P =3[Q] P 3 Q x Thread @

Reducible : V{I'} — Proc T" — Set
Reducible P =3[Q] P ~ @

Alive : V{T'} — Proc " — Set
Alive P = Observable P W Reducible P

In order to prove that every (well-typed) process is alive, it is convenient to define
a “canonical” form for cuts, that is a form that matches at least one of the L.h.s of one
of the rules for structural pre-congruence or reduction in Table 2. This is the notion
where the fine-grained classification of threads introduced earlier comes into play.

data CanonicalCut {T'} : Proc ' — Set where
cc-link VM Te AP QY (p:T =Ty 4+T3) —
Link P — CanonicalCut (cut {A} (P (p) Q))
ccredex V{1 T AP QY (p:T =Ty 4+T9) —
Output P — (Input U Server) Q@ —
CanonicalCut (cut {A} (P (p) Q))
cc-delayed : V{T1 T AP Q} (p:T~T1 +T3) —

23

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1059 Delayed P — CanonicalCut (cut {4} (P (p) Q))

1060 ccservers V{T1 T AP Q} (p:T =Ty +T3) =
1061 DelayedServer P — Server) —

1062 CanonicalCut (cut {4} (P (p) Q))
1063

1064 A canonical cut (z: A)(P| Q) has one of these forms:
1065

® P is a link (cc-link), or

1 .

066 e P performs an output on = and @ performs an input on z (cc-redex), or
1067 .
1068 e P operates on a channel other than x and is not a server (cc-delayed), or

1069 e both P and @ are servers and P operates on a channel other than z (cc-servers).

1070 We have to distinguish servers from the other input operations because the struc-
1071 tural pre-congruence rule [s-sErVER| can only be applied when the two sub-processes
1072 of a cut are both servers.

1073 Every cut (z : A)(P | Q) where both P and @ are threads can be rewritten into a
1074 canonical cut using structural pre-congruence:

1075

1076 canonical-cut : V{AT T To P Q}(p:T =Ty +T3) —

1077 Thread P — Thread Q —

1078 [R] CanonicalCut R x cut {A} (P (p) Q) IR

1079

1080 It is easy to prove that every canonical cut is alive, either reducing it or applying
1081 structural pre-congruence to rewrite it into a thread.

1082

1083 canonical-cut-alive : V{T'} {C : Proc T’} — CanonicalCut C — Alive C

1084

1085 Now deadlock freedom for P can be proved by induction on P.

1086

1087 deadlock-freedom : V{T'} (P : Proc T') — Alive P

1088

1089 When P is a thread, then it is obviously observable and hence alive. When P
1090 is a cut (z : A)(P | @), deadlock-freedom is applied recursively to P and to @Q, in
1091 turn. If either of these applications yields a reduction, then the whole cut is reducible
1092 and therefore alive. If both applications yield a thread, then we conclude that the
1093 cut is alive first rewriting it into a canonical cut with canonical-cut and then using
1094 canonical-cut-alive.

1095

1096 3.8 Type Safety

1097
1098 We have seen that type safety is a simple instance of deadlock freedom, which is

1099 made even simpler to formalise in our development where processes are intrinsically
1100 typed. We start by defining reduction contexts as processes with a single hole. In our
1101 intrinsically-typed formalisation, reduction contexts are parameterised by the typing
1102 context A of the hole, which is invariant, and indexed by the typing context I of the
1103 whole reduction context:

1104

24

data ReductionContext (A : Context) : Context — Set where
hole : ReductionContext A A
cut-l : V{A} — V[((A ::) F ReductionContext A) x ((dual A ::)+ Proc) =
ReductionContext A |
cut-r : V{A} = V[((A ::) F Proc) * ((dual A ::) I ReductionContext A) =
ReductionContext A |

The constructor hole builds a hole, as the name implies. The constructors cut-I and
cut-r build reduction contexts where the hole is found in the left (respectively, right)
sub-term of a cut, as per the grammar of reduction contexts given in Section 2.5.

Substitution inside a reduction context C is a straightforward function [] that
operates recursively on the structure of C:

[1:¥{l A} — ReductionContext A T" — Proc A — Proc I’
hole [P]=P

cat-l (C(p) Q) [P]=cut ((C[P])(p) Q)
cut-r (Q(p)C)[P]l=cut (Q (p)(C[P]))

This notion of process substitution preserves typing by construction thanks to the
fact that both processes and reduction contexts are intrinsically typed.
A process P is well formed if every unguarded sub-process @ in it is alive.

WellFormed : V{I'} — Proc ' — Set
WellFormed {I'} P = V{A} {C : ReductionContext A T'} {Q : Proc A} —
PO(C[Q]) — Alive @

The proof of type safety ends up being a trivial application of deadlock-freedom.
No work is needed to deduce that the process) in the hole of a reduction context is
well typed because structural pre-congruence preserves typing by definition.

type-safety : V{T'} (P : Proc ") — WellFormed P
type-safety P { } { }{Q} = deadlock-freedom @

3.9 Examples

In this section we revisit and expand the processes discussed in Examples 2.1 and 2.3
and show their encoding in our formalisation. The encoding of B is straightforward

B : Type
B=1®1

and the boolean constants are encoded thus:

True : Proc [B]
True = select (ch (< >) inj; (close ch))

25

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151

1152 False : Proc [B]
1153 False = select (ch (< >) injy (close ch))
1154

1155 We take advantage of the host language for programming higher-order processes.
1156 For example, we can define a conditional process thus:

1157

1158 If Else : V[Proc = Proc = (dual B ::) F Proc|]

1159 If P Else @ = curryx case ch (< >>) ((wait (ch (<>) P)
1160 , wait (ch { <>) Q))
1161

1162 A term If P Else @ is a process that waits for a boolean value (cf. the dual B type at
1163 the front of its typing context) and continues as either P or () depending on whether
1164 it receives true or false. We use curryx (defined in Section 3.2) to curry the constructor
1165 case so that we can supply its arguments one by one saving a few parentheses and
1166 reducing clutter (more on this in Remark 3.1 at the end of this section).

1167 Next we define a process Drop P that consumes a boolean and continues as P
1168 regardless of its value.

1169

1170 Drop : V[Proc = (dual B ::) - Proc]

1171 Drop P = If P Else P

1172

1173 Using these higher-order forms, it is easy to define the usual boolean connectives.
1174

1175 I Proc[B] — Proc [B]

1176 Il B = curry* cut B > (If False Else True)

1177

1178 && || :Proc[B]— Proc[B] — Proc|[B]

1179 A && B = curryx cut A > $

1180 curryx cut B> $

1181 If curryx link ch (< >) ch Else (Drop False)

1182 AllB =1(11A&&!"B)

1183

1184 The function $ (defined in Agda’s standard library) is just a low-precedence, vis-
1185 ible function application operator. We use it as a separator to flatten deeply nested
1186 expressions and save a bunch of parentheses. For the sake of illustration, we have
1187 chosen to define the disjunction || from the conjunction && and negation !! using De
1188 Morgan’s laws.

1189 To test our definitions, we implement a simple evaluator using the deadlock free-
1190 dom property. We have not proved a termination result, but since linear logic enjoys
1191 cut elimination we can safely annotate the evaluator as terminating.

1192

1193 {-# TERMINATING #-}

1194 eval : V[Proc = Proc |

1195 eval P with deadlock-freedom P
1196

26

e inp (@,) =@
w2 (@,) =eval Q

Now if we ask Agda to normalise the goal eval (False || False) we obtain
select (ch (< e) injy (close ch)), that is the definition of False, as expected.

For the encoding of the polymorphic echo server (Example 2.3), we start by
encoding its type !(VX. X1 2 (X ® 1)):

ServerT : Type
ServerT = "1 ('V (rav (# 0) 2 (var (# 0) ® 1)))

The notation # n (defined in Agda’s standard library) creates an element of Fin
from the natural number n. Here it is used to create the de Bruijn index of the type
variable X. We now encode the server

Server : Proc [ServerT]
Server = curry (curryx server ch (< >)) un-[] $
curryx all ch (< >») A X —
curryx join ch (< >) $
curryx (curryx fork ch (< >>)) (curryx link ch (< >) ch) (< >) $
close ch

and the client that sends true to it

Client : Proc (dual ServerT :: B :: [])
Client = curryx client ch (< >) $
curryx (ex {_} {B}) ch (< >)$
curryx (curryx fork ch (< >>)) True > $
curryx join ch (< >>) $
curryx wait ch (< >) $
curryx link ch (< > o) ch

To test our definitions, we compose client and server in parallel

Main : Proc [B]
Main = curryx cut Client (< o) Server

and then ask Agda to normalize Main, which yields True as expected.

Remark 3.1. Writing processes in Agda would be more pleasant if the constructors of
the data type Proc were naturally curried, instead of currying them on demand with
curryx as we do here. Below is the naturally curried constructor fork of a hypothetical
data type Proc’, obtained by expanding the definition of separating conjunction:

fork : V{ABTA®®; 0} - Ch(A®B)A—-T~A+0 —
Proc' (A :: ©) - O ~0; + ©; — Proc’ (B :: ®3) — Proc’ (A ® B == T)

27

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

1243 This version of fork is fully curried, but also less readable than the one we gave
1244 in Section 3.4 because of the (now visible) context splittings. We can recover some
1245 clarity and still obtain a curried version of fork using (literally) the magic wand:
1246

1247 fork : V{A B} —

1248 V[Ch (A® B) = (A::)k Proc” = (B ::) F Proc” — Proc"]

1249

1250 However, the first arrow must be a plain implication = and not a magic wand to

1251 account for the appropriate amount of context splittings. We found this formulation
1252 of the constructors harder to explain and motivate in Section 3.4. Since none of the
1253 alternative definitions of Proc was fully satisfactory, we preferred the most elegant
1254 version of the data type at the expense of additional clutter in this section. a
1255

1256 4 Related Work

1257

1258 We have compared our formalisation with others of typed calculi that support binary
1259 sessions either natively or through their encoding using continuations [9, 28].

1260 Goto et al. [14] describe the formalisation of a session-based variant of the -
1261 calculus which supports channel polymorphism. This is the oldest formalisation of a
1262 session-based calculus for which we were able to retrieve the source code (the work of
1263 Gay [29] predates this one, but its source code is not publicly available any more).
1264 Thiemann [15] formalises a subset of GV [30], a functional language extended with
1265 session communication primitives, along with an interpreter. Ciccone and Padovani
1266 [17] have taken inspiration from his work to formalise a variant of the linear m-
1267 calculus [28] that supports dependent types, so as to enable the description of
1268 communication protocols whose structure may depend on the content of messages.
1269 Castro-Perez et al. [16] describe EMTST, a library for the formalisation of session
1270 type systems that includes as case studies the session calculus of Honda et al. [3]
1271 (called “original system”) and a revised version of it that is more amenable to be
1272 formalised using a locally nameless representation of channels.

1273 Rouvoet et al. [18] present a library of abstractions inspired to separation logic
1274 aiding the formalisation of interpreters for languages with linear resources. One of the
1275 presented case studies is the formalisation of a fragment of GV [11, 30]. Unlike the
1276 other formalisations we are discussing, Rouvoet et al. [18] do not define a small-step
1277 semantics for GV but their formalisation is intrinsically typed, hence the interpreter
1278 preserves proves a form of subject reduction property. The separating conjunction
1279 defined in Section 3.2 and the typing of the constructors for the representation of
1280 processes in Section 3.4 have been adapted from this work of Rouvoet et al. [18].
1281 Jacobs et al. [19] formalise a library of connectivity graphs for reasoning on and
1282 enforcing deadlock freedom in a variant of GV [11, 30]. This is the first formalisation
1283 of deadlock freedom for a calculus of sessions.

1284 All the formalisations mentioned so far make use of context splitting. In contrast,
1285 Zalakain and Dardha [6] formalise a generalisation of the linear m-calculus which is
1286 parametric in a usage algebra (to account for channel sharing/linearity) and that is
1287 based on leftover typing [31]. Typing judgments have the form I' = P > A so that a
1288 process P is typed with respect to an input context I', which describes all the available

28

channels, and a context of leftovers A, which describes the residual channels not
consumed by the process. In this way, it is possible to “concatenate” typing judgments
by matching the leftovers in one judgment with the input context of the subsequent
one, with no need for splitting. As Zalakain and Dardha [6] nicely summarise, context
splittings are not necessary because they “contain usage information that is already
present in processes.” This is true provided that channels are named (Zalakain and
Dardha [6] use de Bruijn indices to this aim). In fact, the co-de Bruijn representation
of processes [27], whereby channels are nameless and context splitting is performed
eagerly, can be seen as the “dual approach” of leftover typing: channel names provide
information that is already present in their (singleton) typing context, hence they can
be omitted from contexts and processes.

Motivated by the technical difficulties arising from context splittings, Sano et al.
[7] define a structural version of CP using an approach based on linearity predicates.
The key idea is to treat typing contexts structurally and to enforce the linear usage
of channels by checking their syntactical occurrence in processes. Interestingly, this
approach relies on the explicit naming of continuations so as to precisely account for
the number of times a channel is actually used. Sano et al. [7] do not connect their
technique with the continuation-passing encoding of binary sessions [9, 10], but the
analogies are evident even though the role of continuations differs.

Zackon et al. [8] describe a typing context management technique where channels
are associated not just with a type but also with a tag, that is an element of a given
resource algebra that summarises the number of allowed usages of a particular channel,
including the possibility that the channel is not available. This approach streamlines
context splitting since contexts can be treated in an essentially structural way, except
for tags which are conveninently combined using operations from the resource algebra.

Table 5 shows an overview of the aforementioned formalisations (sorted by pub-
lication date) including our own. The first five columns identify the calculus being
formalised. We provide its reference paper, the prover in which it is formalised and an
acronym that gives an idea of the flavour of the calculus. We also specify whether the
calculus features cuts (that is, the combination of restriction and parallel composition
corresponding to the cut of linear logic) and continuations. CP [5, 11] and GV [11, 30]
are well-known acronyms in the literature on session types. Sw refers to (variants of)
the session-based 7-calculus presented by Honda et al. [3] while L7 refers to (variants
of) the linear w-calculus [28]. Finally, SCP is the structural version of CP introduced
by Sano et al. [7] and LCC is our calculus. We emphasize that the actual calculus
being formalised usually differs from (typically, is a strict subset of) the one identified
by the acronym and that the same acronym may sometimes refer to different versions
of the same calculus. In particular, GV in a logical setting is described by Wadler [11]
but its first (non-logical) version is due to Gay and Vasconcelos [30].

Concerning the use of continuations, the approaches based directly on the linear
m-calculus (into which sessions can be encoded) are marked with + and those based
on a calculus with native sessions are marked with —. The calculus SCP is marked
with + because, while not directly inspired to the linear m-calculus, it makes use
of explicit continuations for defining the predicates that check the linear usage of
channels. Finally, all the approaches based on GV are also marked with 4. Officially,

29

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

1335 Table 5 Overview of different formalisations of binary session calculi (sizes in kb).

1336 9 5 g
g 1<
1337 sl 2 3
E - < Q
1338 8 ESEE- T, 0
1339 5 5 A 5
= g 5 828 » Z
1340 = E il iz o
S 8= ‘g o 85 & X 2
1341 =5 9 .) = 5 2 o =2 o
Reference paper Prover © O O | Linearity Channels = n A A A =
1342 Goto et al. [14] Coq Sm — — splits loc. nameless — | 543 — — — 543¢
1343 Thiemann [15] Agda GV — + splits co-de Bruijn + | 177 — — — 177°
1344 Rouvoet et al. [18] Agda GV — =+ splits co-de Bruijn + | 27 55 — — 82°¢
1345 Castro-Perez et al. [16] Coq Sm — — splits loc. nameless — | 204 — — — 204¢
Ciccone and Padovani [17] Agda Lx — + splits co-de Bruijn + | 77 — — — 77°¢
1346 Zzalakain and Dardha [6] Agda Lm — + | leftovers de Bruijn —| 82 8 — — 907
1347 Jacobs et al. [19] Coq GV + =+ splits named — | 68 — 25 171 2649
1348 Sano et al. [7] Beluga SCP + =+ | predicates HOAS -/ 3% - - — 35
1349 Zackon et al. [8] Beluga CP + — tags HOAS —| 56 73 — — 129"
this Agda LCC + + splits co-de Bruijn + | 21 — 15 — 36°
1350
1351

1352 “Includes shared and polymorphic channels. Excluded safety results.
®Includes shared channels, recursive types, subtyping and the interpreter.
1353 “Includes type-preserving evaluator and library for proof-relevant separation algebra.
1354 9Includes shared channels. Excluded original syntax.
“Includes shared channels, recursive and dependent session types.
1355 fIncludes shared channels and the library for the algebra of types.
1356 ilncludes deadlock freedom and the library for connectivity graphs.
Excluded correspondence between CP and SCP.
1357 ‘Includes shared, polymorphic channels and deadlock freedom. Excluded safety results.

1358

1359

1360 none of these calculi makes use of continuations, but GV is designed in such a way
1361 that each operation acting on a channel s is a function that returns the result of
1362 the operation (if present) along with the same channel s. In this way, the type of s
1363 can be conveniently “updated” to take into account the effect of the operation. As
1364 observed by Padovani [32], this semantics of the communication primitives is virtually
1365 indistinguishable from one making use of explicit continuation channels.

1366 The three middle columns of Table 5 report the relevant qualitative aspects of
1367 the formalisations, namely the management of typing contexts, the representation of
1368 channels and whether processes are intrinsically or extrinsically typed.

1369 The rightmost columns report the size (in kilobytes) of the formalisations as rough
1370 (and possibly questionable) estimates of their complexity. Papers describing formal-
1371 isations typically report the “lines of code” as a measure of development effort, but
1372 the number of lines may be affected by code indentation styles and syntactical con-
1373 straints of the proof assistant being used. For this reason, we have preferred to count
1374 the total number of characters after comments have been removed and spaces have
1375 been squeezed.? The reported sizes account for the source code of the formalisations
1376 excluding examples and any safety result, if present. We have excluded safety results
1377 because their meaning varies widely across the formalisations and, except for our
1378

1379 2Sequences of two or more consecutive space-like characters are collapsed into a single space. The
1380 squeezing is obtained by running the command tr -s [:space:] file on Unix-like systems.

30

own, they all differ from the one stated in the linearity challenge [1]. Some formalisa-
tions [6, 8, 18, 19] define libraries which can be reused in different contexts. In these
cases, the size of the library is reported separately next to the size of the part of the
development that uses it.

In general, it is difficult to draw firm conclusions on the effectiveness of the vari-
ous approaches in addressing the linearity challenge because the formalisations differ
widely for a variety of entangled factors. Looking at the available data, we can make
the following observations. The adoption of context splitting, which is very well rep-
resented, does not seem to be a good indicator of the complexity of the formalisation.
Indeed, the formalisations based on context splitting span the whole range of sizes,
from the largest by Goto et al. [14] (543kb) to our own (21kb, without the proof of
deadlock freedom) which is also the only one supporting all the features of CP.

The two largest formalisations [14, 16] are also the ones that adopt a locally name-
less representation of channels. In these formalisations channels are represented in
two different ways, depending on whether they are free or bound. This entails some
duplication of effort as well as some transformation machinery between the two repre-
sentations. Other channel representations are not strong complexity indicators. Note
that the adoption of co-de Bruijn syntax implies the use of context splitting, hence
the two aspects are not completely independent.

There is no strong evidence that the intrinsically typed representation of processes
reduces the size of the formalisation. As observed in Section 3.4, this choice helps
reducing the overall number of datatypes to be defined and makes some results trivial
(e.g. Theorem 2.3 formalised by type-safety), but the definitions are also more involved
because they incorporate invariants and bits of the proofs of typing preservation.
We speculate that the effort for representing processes, types and typing rules is
not substantially impacted overall, but the data types for representing syntax and
semantics of untyped processes in extrinsically-typed representations are certainly
more readable.

Using the cut in the style of linear logic instead of separate restriction and par-
allel composition simplifies the representation of channels (or session endpoints). All
the formalisations of calculi that adopt the cut tend to be small (if we exclude the
libraries), but this is not a general rule.

Finally, it appears that the use of (explicit) continuations is related to the complex-
ity of the formalisation more than anything else. Indeed, the six smallest formalisations
(excluding the deadlock freedom results) — with an average size of around 62kb — are
all based on continuations, no matter if they are explicit (Lw, SCP, LCC) or “virtual”
(GV), while the remaining ones are 263kb on average. At the very least, the use of
continuations enables a cleaner management of typing contexts since linear channels
are true “use-once” resources and there is no need to update their type.

5 Concluding Remarks

We have presented a formalisation of LCC, a linear calculus of continuations closely
related to the linear w-calculus [28] and supported by the same type system of CP [11].

31

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

1427 Binary sessions can be modeled in LCC using the continuation-passing encoding
1428 described by Kobayashi [9, extended version] and Dardha et al. [10].

1429 The linear calculus of continuations and the calculus described in the linearity
1430 challenge [1] are incomparable in terms of expressiveness. On the one hand, the chal-
1431 lenge only considers a minimal calculus of first-order, monomorphic sessions while
1432 LCC supports linear, shared, higher-order, polymorphic channels; on the other hand,
1433 the calculus of the challenge allows the modeling of sequential processes owning both
1434 endpoints of a session and in general of cyclic network topologies, none of which can
1435 be modeled in LCC because of its tight correspondence with linear logic. We think
1436 that LCC deserves its own space in the context of the linearity challenge alongside
1437 with (but not in substitution of) more traditional session calculi.

1438 Considering the richness of LCC in terms of features and proved properties, the
1439 simple formalisation of LCC casts some doubts on the actual role of context splitting
1440 as a source of complexity. We perceive more tangible benefits from the adoption of
1441 a calculus with explicit continuations where channels are linear in a literal sense. In
1442 this respect, we find it intriguing that, among the alternative approaches that have
1443 been proposed to overcome the difficulties of context splitting, the one by Sano et al.
1444 [7] makes key use of explicit continuations.

1445 The compact formalisation of LCC is a good starting point for further develop-
1446 ments. We have already extended LCC with support for coinductive (i.e. possibly
1447 infinite) types and recursive processes (this extension is in LCC’s public reposi-
1448 tory [20]). In the future, it would be interesting to formalise the strong normalisation
1449 property of LCC as a consequence of cut elimination of classical linear logic.

1450 In this work we have focused on models of binary sessions (those connecting exactly
1451 two processes), but there are also formalisations of multiparty sessions, notably those
1452 by Jacobs et al. [33] and Tirore et al. [34], which can be significantly more complex
1453 than those of binary sessions. The formalisation by Jacobs et al. [33] amounts to 173kb
1454 and the one by Tirore et al. [34] to more than 1Mb of Coq code. Also in these cases,
1455 the formalisation based on (virtual) continuations [33] happens to be substantially
1456 smaller. Whether this is a coincidence or further evidence of the effectiveness of the
1457 continuation-based approaches is left for future investigations.

1458

1459 Declarations
1460

1461 Funding
1462

1463 No funding was received for conducting this study.
1464

1465 Author Contributions

ﬁgg C.R. developed the initial Agda formalisation and reviewed the existing related work.
L.P. refined and extended the formalisation and wrote the main manuscript text. All

1468 authors reviewed the manuscript.
1469

1470
1471
1472

32

References

(1]

4]

18]

Carbone, M., Castro-Perez, D., Ferreira, F., Gheri, L., Jacobsen, F.K.,
Momigliano, A., Padovani, L., Scalas, A., Tirore, D.L., Vassor, M., Yoshida,
N., Zackon, D.: The concurrent calculi formalisation benchmark. In: Castel-
lani, I., Tiezzi, F. (eds.) Coordination Models and Languages - 26th IFIP WG
6.1 International Conference, COORDINATION 2024, Held as Part of the 19th
International Federated Conference on Distributed Computing Techniques, Dis-
CoTec 2024, Groningen, The Netherlands, June 17-21, 2024, Proceedings. Lecture
Notes in Computer Science, vol. 14676, pp. 149-158. Springer, Germany (2024).
https://doi.org/10.1007,/978-3-031-62697-5 9

Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR ’93, 4th
International Conference on Concurrency Theory, Hildesheim, Germany, August
23-26, 1993, Proceedings. Lecture Notes in Computer Science, vol. 715, pp. 509—
523. Springer, Germany (1993). https://doi.org/10.1007/3-540-57208-2 35

Honda, K., Vasconcelos, V.T.; Kubo, M.: Language primitives and type disci-
pline for structured communication-based programming. In: Hankin, C. (ed.)
Programming Languages and Systems - ESOP’98, 7th European Symposium on
Programming, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1381, pp. 122-138. Springer,
Germany (1998). https://doi.org/10.1007/BFB0053567

Hiittel, H., Lanese, 1., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3-1336 (2016) https://doi.org/10.1145/2873052

Gay, S.J., Vasconcelos, V.T.: Session Types. Cambridge University Press, Cam-
bridge, UK (2025). https://doi.org/10.1017/9781009000062

Zalakain, U., Dardha, O.: w with leftovers: A mechanisation in agda. In: Peters,
K., Willemse, T.A.C. (eds.) Formal Techniques for Distributed Objects, Com-
ponents, and Systems - 41st IFIP WG 6.1 International Conference, FORTE
2021, Held as Part of the 16th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12719, pp. 157-174. Springer,
Germany (2021). https://doi.org/10.1007/978-3-030-78089-0 9

Sano, C., Kavanagh, R., Pientka, B.: Mechanizing session-types using a struc-
tural view: Enforcing linearity without linearity. Proc. ACM Program. Lang.
7(OOPSLAZ2), 374-399 (2023) https://doi.org/10.1145/3622810

Zackon, D., Sano, C., Momigliano, A., Pientka, B.: Split decisions: Explicit con-
texts for substructural languages. In: Stark, K., Timany, A., Blazy, S., Tabareau,

33

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/2873052
https://doi.org/10.1017/9781009000062
https://doi.org/10.1007/978-3-030-78089-0_9
https://doi.org/10.1145/3622810

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532

19]

[10]

[11]

N. (eds.) Proceedings of the 14th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2025, Denver, CO, USA, January 20-21,
2025, pp. 257-271. ACM, USA (2025). https://doi.org,/10.1145/3703595.3705888

Kobayashi, N.: Type systems for concurrent programs. In: 10th Anniversary Col-
loquium of UNU/IIST. LNCS 2757, pp. 439-453. Springer, Germany (2002).
Extended version available at http://www.kb.ecei.tohoku.ac.jp/ koba/papers/
tutorial-type-extended.pdf

Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput.
256, 253-286 (2017) https://doi.org/10.1016/j.ic.2017.06.002

Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2-3), 384-418 (2014)
https://doi.org/10.1017/S095679681400001X

1533 [12] Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Infor-

1534
1535

matica 42(2-3), 191-225 (2005) https://doi.org/10.1007/S00236-005-0177-Z

1536 [13] Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52-70 (2012)

1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

[14]

[15]

[16]

[17]

[18]

https: //doi.org/10.1016/J.1C.2012.05.002

Goto, M.A., Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: An extensible
approach to session polymorphism. Math. Struct. Comput. Sci. 26(3), 465-509
(2016) https://doi.org/10.1017,/S0960129514000231

Thiemann, P.: Intrinsically-typed mechanized semantics for session types. In:
Komendantskaya, E. (ed.) Proceedings of the 21st International Symposium on
Principles and Practice of Programming Languages, PPDP 2019, Porto, Portugal,
October 7-9, 2019, pp. 19-11915. ACM, USA (2019). https://doi.org/10.1145/
3354166.3354184

Castro-Perez, D., Ferreira, F., Yoshida, N.: EMTST: engineering the meta-theory
of session types. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12079, pp. 278-285. Springer, Germany
(2020). https://doi.org/10.1007,/978-3-030-45237-7 17

Ciccone, L., Padovani, L.: A dependently typed linear w-calculus in agda. In:
PPDP ’20: 22nd International Symposium on Principles and Practice of Declara-
tive Programming, Bologna, Italy, 9-10 September, 2020, pp. 8-1814. ACM, USA
(2020). https://doi.org/10.1145/3414080.3414109

Rouvoet, A., Poulsen, C.B., Krebbers, R., Visser, E.: Intrinsically-typed defini-
tional interpreters for linear, session-typed languages. In: Blanchette, J., Hritcu,
C. (eds.) Proceedings of the 9th ACM SIGPLAN International Conference on

34

https://doi.org/10.1145/3703595.3705888
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1016/J.IC.2012.05.002
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1145/3414080.3414109

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, pp. 284-298. ACM, USA (2020). https://doi.org/10.1145/3372885.
3373818

Jacobs, J., Balzer, S., Krebbers, R.: Connectivity graphs: a method for prov-
ing deadlock freedom based on separation logic. Proc. ACM Program. Lang.
6(POPL), 1-33 (2022) https://doi.org/10.1145/3498662

Padovani, L., Raffaelli, C.: Agda Formalisation of the Linear Calculus of
Continuations. Last access 2025-12-29 (2025). https://github.com/boystrange/
LinearityChallenge

Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek,
J. (ed.) Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9032, pp. 560-584.
Springer, Germany (2015). https://doi.org/10.1007/978-3-662-46669-8 23

Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR, 2010 - Concurrency Theory, 21th
International Conference, CONCUR 2010, Paris, France, August 31-September
3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6269, pp. 222-236.
Springer, Germany (2010). https://doi.org/10.1007/978-3-642-15375-4 16

Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367-423 (2016) https://doi.org/10.1017/
S0960129514000218

Horne, R., Padovani, L.: A logical account of subtyping for session types. J.
Log. Algebraic Methods Program. 141, 100986 (2024) https://doi.org/10.1016/
J.JLAMP.2024.100986

Kokke, W., Siek, J.G., Wadler, P.: Programming language foundations in agda.
Sci. Comput. Program. 194, 102440 (2020) https://doi.org/10.1016/J.SCICO.
2020.102440

O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Log.
5(2), 215-244 (1999) https://doi.org/10.2307/421090

McBride, C.: Everybody’s got to be somewhere. In: Atkey, R., Lindley, S. (eds.)
Proceedings of the 7Tth Workshop on Mathematically Structured Functional Pro-
gramming, MSFP@QFSCD 2018, Oxford, UK, 8th July 2018. EPTCS, vol. 275,
pp. 53-69 (2018). https://doi.org/10.4204 /EPTCS.275.6

Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems 21(5), 914-947 (1999)

35

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3498662
https://github.com/boystrange/LinearityChallenge
https://github.com/boystrange/LinearityChallenge
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1016/J.JLAMP.2024.100986
https://doi.org/10.1016/J.JLAMP.2024.100986
https://doi.org/10.1016/J.SCICO.2020.102440
https://doi.org/10.1016/J.SCICO.2020.102440
https://doi.org/10.2307/421090
https://doi.org/10.4204/EPTCS.275.6

1611 [29] Gay, S.J.: A framework for the formalisation of pi calculus type systems in

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

(30]

31]

32]

[33]

[34]

isabelle/hol. In: Boulton, R.J., Jackson, P.B. (eds.) Theorem Proving in Higher
Order Logics, 14th International Conference, TPHOLs 2001, Edinburgh, Scot-
land, UK, September 3-6, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2152, pp. 217-232. Springer, Germany (2001). https://doi.org/10.1007/
3-540-44755-5 16

Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous ses-
sion types. J. Funct. Program. 20(1), 19-50 (2010) https://doi.org/10.1017/
S0956796809990268

Allais, G.: Typing with leftovers - A mechanization of intuitionistic multiplicative-
additive linear logic. In: Abel, A., Forsberg, F.N., Kaposi, A. (eds.) 23rd
International Conference on Types for Proofs and Programs, TYPES 2017,
Budapest, Hungary, May 29 - June 1, 2017. LIPIcs, vol. 104, pp. 1-1122. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany (2017). https://doi.org/10.
4230/LIPICS.TYPES.2017.1

Padovani, L.: A simple library implementation of binary sessions. J. Funct.
Program. 27, 4 (2017) https://doi.org/10.1017/S0956796816000289

Jacobs, J., Balzer, S., Krebbers, R.: Multiparty GV: functional multiparty session
types with certified deadlock freedom. Proc. ACM Program. Lang. 6(ICFP),
466-495 (2022) https://doi.org/10.1145/3547638

Tirore, D.L., Bengtson, J., Carbone, M.: Multiparty asynchronous session types:
A mechanised proof of subject reduction. In: Aldrich, J., Silva, A. (eds.) 39th
FEuropean Conference on Object-Oriented Programming, ECOOP 2025, Bergen,
Norway, June 30 - July 2, 2025. LIPIcs, vol. 333, pp. 31-13130. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, Germany (2025). https://doi.org/10.4230/
LIPICS.ECOOP.2025.31

36

https://doi.org/10.1007/3-540-44755-5_16
https://doi.org/10.1007/3-540-44755-5_16
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.4230/LIPICS.TYPES.2017.1
https://doi.org/10.4230/LIPICS.TYPES.2017.1
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1145/3547638
https://doi.org/10.4230/LIPICS.ECOOP.2025.31
https://doi.org/10.4230/LIPICS.ECOOP.2025.31

	Introduction
	A Linear Calculus of Continuations
	Types
	Processes
	Operational Semantics
	Type System
	Properties of Well-Typed Processes

	Agda Formalisation
	Type Representation
	Context Representation
	Context Permutations
	Channel and Process Representation
	Structural Pre-Congruence
	Reduction
	Deadlock Freedom
	Type Safety
	Examples

	Related Work
	Concluding Remarks

