

A Continuation-Based Solution of the Linearity Challenge

Luca Padovani

luca.padovani2@unibo.it

University of Bologna

Claudia Raffaelli

University of Camerino

Research Article

Keywords: session types, linear logic, continuations, deadlock freedom, Agda

Posted Date: January 21st, 2026

DOI: <https://doi.org/10.21203/rs.3.rs-8499890/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: No competing interests reported.

A Continuation-Based Solution of the Linearity Challenge

Luca Padovani^{1*} and Claudia Raffaelli²

¹Department of Computer Science and Engineering, Università di Bologna, Mura Anteo Zamboni 7, Bologna, 40126, BO, Italy.

²Computer Science Division, Università di Camerino, via Madonna delle Carceri 7, Camerino, 62032, MC, Italy.

*Corresponding author(s). E-mail(s): luca.padovani2@unibo.it;
Contributing authors: claudia.raffaelli@studenti.unicam.it;

Abstract

The formalisation of session calculi is made difficult by the management of session channels, which are linear resources that cannot be discarded or duplicated and whose type changes over time, as input/output operations are performed on them. Context splitting, the channel management technique directly related to the way session type theories are usually written with pen and paper, is often considered a hindrance and a notable source of complexity, to the point where several alternative approaches have been recently proposed. In this paper we describe the Agda formalisation of a process calculus based on classical linear logic that supports the modeling of binary sessions through their encoding with explicit continuation channels. The formalisation turns out to be remarkably compact despite the adoption of context splitting. We argue that the logical nature of the calculus and the use of explicit continuations are contributing factors to the simplicity of its formalisation.

Keywords: session types, linear logic, continuations, deadlock freedom, Agda

1 Introduction

The Concurrent Calculi Formalisation Benchmark [1] is a collection of challenges concerning the mechanisation of core models of concurrent and distributed programming languages. These models often make use of distinctive features that set them apart

047 from the models of sequential programming languages, such as the adoption of sub-
048 structural (linear, affine) type systems, the dynamic scope of first-class channels in
049 systems of communicating processes, the need for coinductive definitions and proof
050 methods for describing and reasoning on possibly infinite behaviours. The bench-
051 mark aims at identifying effective formalisation techniques that take these features
052 into account so as to foster the adoption of machine-checked proofs in research work
053 concerning concurrent and distributed programming languages.

054 One of the challenges in the benchmark, henceforth called *linearity challenge*,
055 concerns the formalisation of a *minimal calculus of sessions*. Sessions and session
056 types [2–5] are established abstractions for the static analysis of distributed programs
057 based on peer-to-peer communications. Every session type system revolves around
058 three key ideas: (1) session endpoints are *linear resources* that cannot be discarded or
059 duplicated without compromising some safety and liveness properties of a program;
060 (2) the type of a session endpoint is *updated* after each use to reflect the state of the
061 protocol it describes; (3) peer session endpoints are meant to be used in complemen-
062 tary ways so as to guarantee the absence of communication errors and, to some extent,
063 progress of the interaction. The linearity challenge is based on the observation that
064 the proper management of linear resources in a formalisation often requires a large
065 number of auxiliary definitions and technical results that divert from the main prob-
066 lem under study [1]. One of the alleged culprits of such complexity is *context splitting*,
067 namely the operation that partitions a typing context in such a way that the linear
068 resources described therein end up in only one of the partitions. This observation has
069 led to the exploration of various alternative techniques including leftover typing [6],
070 the use of linearity predicates [7] and tagged contexts [8].

071 In this paper we approach the linearity challenge from a different angle: *instead*
072 *of proposing new techniques that make it easy to formalise the calculus in the chal-*
073 *lenge, we propose a (relatively) new calculus that is easy to formalise with the existing*
074 *techniques*. More specifically, we describe the Linear Calculus of Continuations (LCC)
075 whose type system coincides with the proof system of classical linear logic and that
076 features *linear channels* instead of sessions. While a session endpoint can be used *mul-*
077 *tiple times* (sequentially), linear channels must be used *exactly once*. LCC retains the
078 expressiveness of other session calculi thanks to *explicit continuations*, which enable
079 the encoding of (binary) sessions in terms of linear channels [9, 10]: each message
080 exchanged on a linear channel may include one or two fresh channels – the *continua-*
081 *tions* – on which the rest of the conversation takes place. Overall, LCC is nothing but
082 a low-level version of CP [11] – Wadler’s calculus of sessions based on classical linear
083 logic – such that sessions can be encoded instead of being featured natively.

084 The logical foundations of LCC and the use of explicit continuations play an impor-
085 tant role in taming the complexity of the formalisation. Working with a calculus based
086 on linear logic prevents *by construction* the same (sequential) process to own both
087 endpoints of a session, which is undesirable since it does not correspond to a use-
088 ful pattern of interaction (every meaningful session requires its endpoints to be used
089 by parallel processes) and is a potential source of deadlocks. From the standpoint of
090 the formalisation, where the representation of channels is a primary design choice,
091 it spares us the need to distinguish the two endpoints of a session, e.g. by means of
092

polarities [6, 12] or by using different names connected by the same binder [5, 13]. Using a calculus with linear channels and explicit continuations spares us the need to *update* the type of channels in typing contexts. Once a channel has been used it is effectively consumed, therefore its type can be *removed* from the typing context and the type of the continuation channel is *added* back to the typing context. As it turns out, removing and adding types is easier than updating them. Even more so considering that the type of continuation channels must be added *at the beginning* of a typing context, since such channels are fresh by definition.

The formalisation of LCC that we obtain is both the most complete (in terms of features supported by the calculus) and the most streamlined (in terms of code size) among the known formalisations of session/linear calculi [6–8, 14–19]. It is also one of only two formalisations that prove the deadlock freedom property for a session calculus [19] and it does so with substantially less code.

The rest of the paper is organised as follows. Section 2 describes the syntax and the operational semantics of LCC and states the properties of well-typed processes that we formalise and prove, namely typing preservation, deadlock freedom and runtime safety. Section 3 illustrates the key aspects of the Agda formalisation with particular emphasis on the representation of channels and of typing contexts. We assume that the reader is somewhat familiar about Agda but we recall the lesser known definitions from Agda’s standard library. Section 4 discusses related work more in detail by providing a qualitative and quantitative comparison between the known formalisations of session/linear calculi. Section 5 summarises our contributions and discusses ongoing and future work.

The formalisation has been checked with Agda 2.8.0 and the code is available on in a public repository on GitHub [20].

2 A Linear Calculus of Continuations

In this section we give a cursory presentation of LCC starting from its types (Section 2.1) then moving on to the syntax of processes (Section 2.2), their reduction semantics (Section 2.3), the typing rules (Section 2.4) and the formulation of the properties ensured by the type system (Section 2.5).

As we have anticipated in Section 1, LCC is closely related to CP [5, 11] except that LCC features linear channels instead of sessions. We refer the reader to the literature on CP [5, 11, 21] and other session calculi based on linear logic [22, 23] for a thorough introduction to these models.

2.1 Types

The types of LCC, ranged over by A, B, \dots , are the linear logic propositions generated by the grammar

$$A, B ::= X \mid X^\perp \mid \top \mid \mathbf{0} \mid \perp \mid \mathbf{1} \mid A \& B \mid A \oplus B \mid A \wp B \mid A \otimes B \mid \forall X. A \mid \exists X. A \mid !A \mid ?A$$

where X, Y, \dots range over an infinite set of *type (or proposition) variables*.

139 **Table 1** Syntax of LCC.

140	$P, Q ::= x \leftrightarrow y$	link
141	$x \triangleright \{\}$	fail
142	$x().P$	wait
143	$x[]$	close
144	$x \triangleright (z)\{P, Q\}$	case
145	$x \triangleleft \text{inj}_i[z].P$	select
146	$x(y, z).P$	join
147	$x[y, z](P \mid Q)$	fork
148	$x(X, z).P$	for all
149	$x[A, z].P$	exists
150	$!x(y).P$	server
151	$?x[g].P$	client
152	$?x[].P$	weakening
153	$?x[y, z].P$	contraction
154	$(x : A)(P \mid Q)$	cut

155 The interpretation of linear logic propositions as behaviours is quite standard.
156 Constants and connectives describe *linear channels*, which must be used for a single
157 communication, whereas the modalities $!$ and $?$ describe *shared channels*. The mul-
158 tiplicative constants \perp and $\mathbf{1}$ describe channels used for receiving/sending an empty
159 message (without continuations). The additive constants describe unusable channels.
160 They can play the role of smallest/largest type in type systems that support a notion
161 of subtyping [24], but will mostly ignore them in this work. The additive connectives
162 $A \& B$ and $A \oplus B$ describe channels used for receiving/sending either a continuation
163 of type A or a continuation of type B . The sender selects one of the two possibili-
164 ties, while the receiver offers both. The multiplicative connectives $A \wp B$ and $A \otimes B$
165 describe channels used for receiving/sending two continuations, one of type A and the
166 other of type B . The quantifiers $\forall X.A$ and $\exists X.A$ describe channels used for receiv-
167 ing/sending a type X along with a continuation of type A . They are useful to describe
168 parametric protocol polymorphism. Finally, the “of course” modality $!A$ and the “why
169 not” modality $?A$ describe shared channels on which servers and clients accept and
170 request connections of type A .

171 The notions of *free type variables*, of *duality* and of *type substitution* are stan-
172 dard [11]. In particular, we write A^\perp for the dual of A and $A\{B/X\}$ for the type
173 obtained by replacing the free occurrences of X in A with B .

174 **2.2 Processes**

175 The syntax of processes makes use of an infinite set of *channels*, ranged over by x , y
176 and z , and is shown in Table 1. A link $x \leftrightarrow y$ denotes the merging of the channels
177 x and y , so that each message sent on one of the channels is forwarded to the other.
178 As discussed in the literature [21] and illustrated in Example 2.2, this form is useful
179 for modeling the exchange of an existing channel on another channel. The processes
180 $x().P$ and $x[]$ respectively model the input and output of an empty message on the
181 channel x . The latter process terminates after the message has been sent, while the
182 former continues as P once the message has been received. The process $x \triangleright \{\}$ can
183

be used to denote a failure concerning the channel x . The process $x \triangleright (z)\{Q_1, Q_2\}$ offers a choice on channel x and continues as either Q_1 or Q_2 depending on which branch is selected with z bound to the received continuation channel. The process $x \triangleleft \text{inj}_i[z].P$ performs a choice (represented by a label inj_i with $i = 1, 2$) and sends a fresh continuation channel z on the channel x . The processes $x(y, z).R$ and $x[y, z](P \mid Q)$ describe the input/output of two fresh continuations channels y and z on the channel x . The receiver can use y and z in whatever order. The sender forks into P and Q , each using y and z respectively. The processes $x(X, z).P$ and $x[A, z].P$ describe the input/output of a type on the channel x along with a fresh continuation z .

Next we have process forms dealing with shared (non-linear) channels. The processes $!x(y).P$ and $?x[y].P$ respectively denote *servers* and *clients* acting on the shared channel x . Each request (from a client) spawns a copy of the server's body using the continuation channel y . The process $?x[]P$ denotes an explicit *weakening*, that is a client that *does not* use x . The process $?x[y, z].P$ denotes an explicit *contraction* whereby a client uses x multiple times (once with name y and once with name z).

Finally, cuts of the form $(x : A)(P \mid Q)$ represent the parallel composition of the processes P and Q connected by a channel x , which has type A in P and type A^\perp in Q . Henceforth we write $(x)(P \mid Q)$ omitting the type annotation A when it is irrelevant or clear from the context.

The notions of free and bound channels are fairly standard, bearing in mind that output prefixes bind continuation channels in (some) continuation processes. For instance, $x \triangleleft \text{inj}_i[z].P$ binds z in P , while $x[y, z](P \mid Q)$ binds y in P but not in Q and binds z in Q but not in P . We write $\text{fc}(P)$ for the set of channels occurring free in P and we identify processes up to renaming of bound channels.

Example 2.1. We can represent the protocol of a boolean value being produced as the type $\mathbb{B} \stackrel{\text{def}}{=} \mathbf{1} \oplus \mathbf{1}$ and that of a boolean value being consumed as its dual $\mathbb{B}^\perp = \perp \& \perp$. Following these types, the boolean constants can be modeled by the processes

$$\text{True}(x) \stackrel{\text{def}}{=} x \triangleleft \text{inj}_1[x'].x'[] \quad \text{False}(x) \stackrel{\text{def}}{=} x \triangleleft \text{inj}_2[x'].x'[]$$

and the boolean negation function by the process

$$\text{Not}(x, y) \stackrel{\text{def}}{=} x \triangleright (x')\{x'().\text{False}(y), x'().\text{True}(y)\}$$

As an example, the composition $(x : \mathbb{B})(\text{True}(x) \mid \text{Not}(x, y))$ produces false on y . Note the use of explicit continuations in these processes and the fact that each channel is used exactly once. The same processes in CP would be written as

$$\text{True}(x) \stackrel{\text{def}}{=} x \triangleleft \text{inj}_1.x[] \quad \text{False}(x) \stackrel{\text{def}}{=} x \triangleleft \text{inj}_2.x[] \quad \text{Not}(x, y) \stackrel{\text{def}}{=} x \triangleright \left\{ \begin{array}{l} x'().\text{False}(y) \\ x'().\text{True}(y) \end{array} \right\}$$

where each channel is used multiple times to indicate the sequence of input/output actions pertaining to the same session. In general, the CP version of an LCC process can be obtained by reusing the same channel x in place of the continuation z in Table 1. \lrcorner

231	Table 2 Operational semantics of LCC. Many side conditions for the [S-*] rules are omitted (see text).	
233	$[S\text{-LINK}]$	$x \leftrightarrow y \sqsupseteq y \leftrightarrow x$
234	$[S\text{-COMM}]$	$(x)(P \mid Q) \sqsupseteq (x)(Q \mid P)$
235	$[S\text{-FAIL}]$	$(x)(y \triangleright \{\} \mid P) \sqsupseteq y \triangleright \{\}$
236	$[S\text{-WAIT}]$	$(x)(y \triangleright \{\} \mid P \mid Q) \sqsupseteq y \triangleright \{\} \cdot (x)(P \mid Q)$
237	$[S\text{-CASE}]$	$(x)(y \triangleright (z)\{P, Q\} \mid R) \sqsupseteq y \triangleright (z)\{(x)(P \mid R), (x)(Q \mid R)\}$
238	$[S\text{-SELECT}]$	$(x)(y \triangleleft \text{inj}_i[z].P \mid Q) \sqsupseteq y \triangleleft \text{inj}_i[z].(x)(P \mid Q)$
239	$[S\text{-JOIN}]$	$(x)(y(u, z).P \mid Q) \sqsupseteq y(u, z).(x)(P \mid Q)$
240	$[S\text{-FORK-L}]$	$(x)(y[u, z](P \mid Q) \mid R) \sqsupseteq y[u, z]((x)(P \mid R) \mid Q) \quad x \in \text{fc}(P)$
241	$[S\text{-FORK-R}]$	$(x)(y[u, z](P \mid Q) \mid R) \sqsupseteq y[u, z](P \mid (x)(Q \mid R)) \quad x \in \text{fc}(Q)$
242	$[S\text{-FORALL}]$	$(x)(y(X, z).P \mid Q) \sqsupseteq y(X, z).(x)(P \mid Q)$
243	$[S\text{-EXISTS}]$	$(x)(y[A, z].P \mid Q) \sqsupseteq y[A, z].(x)(P \mid Q)$
244	$[S\text{-SERVER}]$	$(x)(!y(u).P \mid !x(v).Q) \sqsupseteq !y(u).(x)(P \mid !x(v).Q)$
245	$[S\text{-CLIENT}]$	$(x)(?y[z].P \mid Q) \sqsupseteq ?y[z].(x)(P \mid Q)$
246	$[S\text{-WEAKEN}]$	$(x)(?y[\cdot].P \mid Q) \sqsupseteq ?y[\cdot].(x)(P \mid Q)$
247	$[S\text{-CONTRACT}]$	$(x)(?y[u, v].P \mid Q) \sqsupseteq ?y[u, v].(x)(P \mid Q)$
248	$[R\text{-LINK}]$	$(x)(x \leftrightarrow y \mid P) \rightsquigarrow P\{y/x\}$
249	$[R\text{-CLOSE}]$	$(x)(x[] \mid x().P) \rightsquigarrow P$
250	$[R\text{-SELECT}]$	$(x)(x \triangleleft \text{inj}_i[z].P \mid x \triangleright (z)\{Q_1, Q_2\}) \rightsquigarrow (z)(P \mid Q_i) \quad i \in \{1, 2\}$
251	$[R\text{-FORK}]$	$(x)(x[y, z](P \mid Q) \mid x(y, z).R) \rightsquigarrow (y)(P \mid (z)(Q \mid R))$
252	$[R\text{-EXISTS}]$	$(x)(x[A, z].P \mid x(X, z).Q) \rightsquigarrow (z)(P \mid Q\{A/X\})$
253	$[R\text{-CONNECT}]$	$(x)(!x(y).P \mid ?x[y].Q) \rightsquigarrow (y)(P \mid Q)$
254	$[R\text{-WEAKEN}]$	$(x)(!x(y).P \mid ?x[\cdot, \cdot'].Q) \rightsquigarrow ?\bar{z}[\cdot, \cdot'].Q \quad \text{fc}(P) = \{y, \bar{z}\}$
255	$[R\text{-CONTRACT}]$	$(x)(!x(y).P \mid ?x[x', x''].Q) \rightsquigarrow ?\bar{z}[\bar{z}', \bar{z}''].Q \cdot (x'(!x'(y).P' \mid (x'')(!x''(y).P'') \mid Q)) \quad *$
256	$[R\text{-CUT}]$	$(x)(P \mid R) \rightsquigarrow (x)(Q \mid R) \quad P \rightsquigarrow Q$
257	$[R\text{-CONG}]$	$P \sqsupseteq R \rightsquigarrow Q \quad P \sqsupseteq R \rightsquigarrow Q$

$$*\text{fc}(P) = \{y, \bar{z}\}, P' = P\{\bar{z}'/\bar{z}\}, P'' = P\{\bar{z}''/\bar{z}\}$$

2.3 Operational Semantics

The operational semantics of LCC is shown in Table 2 and is given by two relations: a *structural pre-congruence* relation \sqsupseteq , which relates essentially indistinguishable processes, and a *reduction* relation \rightsquigarrow , which models communications. Let us describe the two relations more in detail.

Structural pre-congruence is the least pre-congruence defined by the [s-*] rules. [S-LINK] and [S-COMM] assert that links and parallel compositions are commutative. The remaining rules, when read from left to right, push a cut on x underneath the topmost prefix on y of one of its sub-processes when $x \neq y$. These rules are key to float input/output actions to the top-level of a process, so that they can interact with corresponding complementary actions in the surrounding context. All these rules have implicit side-conditions (not shown in Table 2) aimed at preserving the meaning of channels when binders are moved around: terms entering or exiting the scope of a binder for x must not have free occurrences of x . This holds also for the type variable X in the rule [S-FORALL]. We content ourselves with such informal description of these side conditions given that we are going to formalise LCC later on. Note also that there are two versions of [S-FORK-L] and [S-FORK-R] depending on which of the two continuations (either P or Q) contains a free occurrence of the restricted channel x .

Another rule that deserves attention is [s-SERVER]. In this case, a cut can be pushed underneath a server prefix $!y(u)$ only provided that the other process in the cut is also a server on the channel restricted by the cut. 277
278
279

Reduction is defined by the [R-*] rules, most of them coinciding with principal cut reductions of linear logic. The rules [R-LINK], [R-CLOSE], [R-SELECT], [R-FORK] and [R-EXISTS] erase the topmost cut and replace it with zero, one or two new cuts, depending on the number of continuation channels that are exchanged. Note that the rule [R-LINK] eliminates a link $x \leftrightarrow y$ by substituting y for x in the scope of x and [R-CLOSE] models the communication of an empty message (without continuations). The rule [R-EXISTS] models the instantiation of a polymorphic variable X as the communication of a type A . We write $Q\{A/X\}$ for the process obtained by replacing every free occurrence of the type variable X with A . The rule [R-CONNECT] models the connection between a client and a server, whereas the rules [R-WEAKEN] and [R-CONTRACT] respectively model the disposal of an unused server and the duplication of a server. In these rules we use some slightly informal notation for denoting sequences of (pairwise distinct) channels and prefixes. In particular, \bar{z} stands for a sequence z_1, \dots, z_n of channels, $?z[]Q$ stands for a sequence $?z_1[] \dots ?z_n[]Q$ of weakening prefixes and $?z[\bar{z}', \bar{z}'']R$ stands for a sequence $?z_1[z'_1, z''_1] \dots ?z_n[z'_n, z''_n]R$ of contraction prefixes. 280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

The rule [R-CUT] propagates reductions through cuts and the rule [R-CONG] enables reduction up to structural pre-congruence. 295
296
297

Example 2.2. In this example we illustrate the role of links for the communication of free channels by modeling an echo server that consumes boolean values and sends them back unchanged. The protocol of the server we want to model is described by the type $!(\mathbb{B}^\perp \wp(\mathbb{B} \otimes \mathbf{1}))$ where the modality $!$ indicates that the server is able to accept an unbounded number of requests and the type $\mathbb{B}^\perp \wp(\mathbb{B} \otimes \mathbf{1})$ describes the sequence of actions performed by the server at each connection with a client: the server first consumes a boolean value (say u , of type \mathbb{B}^\perp), then produces another boolean value (say v , of type \mathbb{B}) and finally sends an empty message. We can model the server and a possible client thus: 298
299
300
301
302
303
304
305
306
307

$$\begin{aligned} \text{Server}(x) &\stackrel{\text{def}}{=} !x(y).y(u, y').y'[v, y''](v \leftrightarrow u \mid y''[]) \\ \text{Client}(x, z) &\stackrel{\text{def}}{=} ?x[y].y[u, y'](True(u) \mid y'(v, y'').y''().v \leftrightarrow z) \end{aligned} \quad 308 \\ 309 \\ 310 \quad 311 \\ 312 \\ 313 \\ 314 \\ 315 \\ 316 \\ 317 \quad 318 \\ 319 \quad 320 \\ 321 \quad 322$$

Notice the use of continuations for chaining communications together. In the server, the link $v \leftrightarrow u$ merges v and u so as to send the same channel u received from the client. In the client, the link $v \leftrightarrow z$ “assigns” the message v received from the server to the free channel z , which represents the result of the interaction. If we write \rightsquigarrow^* for the reflexive, transitive closure of \rightsquigarrow it is easy to verify that $(x)(\text{Client}(x) \mid \text{Server}(x)) \rightsquigarrow^* True(z)$. \dashv 311
312
313
314
315
316
317

2.4 Type System

We use typing contexts (i.e. sequents) to keep track of the type of channels in processes. Typing contexts are finite maps from channels to types written as $x_1 : A_1, \dots, x_n : A_n$ and ranged over by Γ and Δ . We write Γ, Δ for the union of Γ and Δ when they have 320
321
322

323
324 **Table 3** Typing rules of LCC.

325	[AX]	$\text{[}\top\text{]}$	$\text{[}\perp\text{]}$	[1]
326		$\frac{}{x \triangleright \{\} \vdash x : \top, \Gamma}$	$\frac{P \vdash \Gamma}{x().P \vdash x : \perp, \Gamma}$	$\frac{}{x[] \vdash x : \mathbf{1}}$
327	$x \leftrightarrow y \vdash x : A, y : A^\perp$			
328				
329	$\text{[}\&\text{]}$	$\text{[}\oplus\text{]}$	$\text{[}\wp\text{]}$	
330	$\frac{P \vdash y : A, \Gamma \quad Q \vdash y : B, \Gamma}{x \triangleright (y)\{P, Q\} \vdash x : A \& B, \Gamma}$	$\frac{P \vdash y : A_i, \Gamma}{x \triangleleft \text{inj}_i[y].P \vdash x : A_1 \oplus A_2, \Gamma}$	$\frac{P \vdash y : A, z : B, \Gamma}{x(y, z).P \vdash x : A \wp B, \Gamma}$	
331				
332	$\text{[}\otimes\text{]}$	$\text{[}\exists\text{]}$	$\text{[}\forall\text{]}$	
333	$\frac{P \vdash y : A, \Gamma \quad Q \vdash z : B, \Delta}{x[y, z](P \mid Q) \vdash x : A \otimes B, \Gamma, \Delta}$	$\frac{P \vdash y : B\{A/X\}, \Gamma}{x[A, y].P \vdash x : \exists X.B, \Gamma}$	$\frac{P \vdash y : A, \Gamma}{x(X, y).P \vdash x : \forall X.A, \Gamma} \quad X \notin \text{fv}(\Gamma)$	
334				
335				
336	[!]	[?]	[WEAKEN]	[CONTRACT]
337	$\frac{P \vdash y : A, ?\Gamma}{!x(y).P \vdash x : !A, ?\Gamma}$	$\frac{P \vdash y : A, \Gamma}{?x[y].P \vdash x : ?A, \Gamma}$	$\frac{P \vdash \Gamma}{?x[] . P \vdash x : ?A, \Gamma}$	$\frac{P \vdash y : ?A, z : ?A, \Gamma}{?x[y, z].P \vdash x : ?A, \Gamma}$
338				
339		[CUT]		
340		$\frac{P \vdash x : A, \Gamma \quad Q \vdash x : A^\perp, \Delta}{(x : A)(P \mid Q) \vdash \Gamma, \Delta}$		
341				
342				

343
344 disjoint domains. We write $? \Gamma$ for some context $\Gamma = x_1 : ?A_1, \dots, x_n : ?A_n$ where all
345 the types in its range are prefixed by the modality $?$. We call these types *unrestricted*
346 because they are used to denote shared channels that can be (explicitly) discarded
347 and duplicated.

348 Typing judgments have the form $P \vdash \Gamma$ meaning that the process P is well typed in
349 the context Γ . Equivalently, the judgment indicates that the sequent $\vdash \Gamma$ is derivable
350 and P is a proof term corresponding to the derivation for $\vdash \Gamma$. The typing rules are
351 shown in Table 3. They are in one-to-one correspondence with – and have exactly the
352 same structure of – the proof rules of classical linear logic. The reader may refer to
353 the standard literature on propositions as sessions [5, 11, 21] for the interpretation
354 of the rules. The only relevant difference with our typing rules is that the premises
355 mentioning the continuation channel z actually refer to the same channel x on which
356 the process in the conclusion is acting. The side condition $X \notin \text{fv}(\Gamma)$ in the rule $[\exists]$
357 checks that the type variable X does not occur free in the types of Γ and therefore
358 can be generalised.

360
361 **Example 2.3.** Looking at Example 2.3 we notice that the server does not make any
362 assumption on the type of the values it receives and sends. Therefore, we can define
363 a polymorphic version of the echo server that works for every message type and not
364 just for the booleans. The polymorphic version of the echo server is defined below:

365 $Server(x) \stackrel{\text{def}}{=} !x(y).y(X, y').y'(u, y'').y''[v, y'''](u \leftrightarrow v \mid y''[])$

366
367
368

The only difference with respect to the server in Example 2.3 is that now the process receives the type X of the messages to be processed and then continues as before. We establish that $Server(x)$ is well typed with the following derivation

$$\frac{\frac{\frac{u \leftrightarrow v \vdash u : X^\perp, v : X}{y''[v, y''] \vdash u : X^\perp, y'' : X \otimes \mathbf{1}} [\text{AX}] \quad \frac{y'''[] \vdash y''' : \mathbf{1}}{y'''[] \vdash y''' : \mathbf{1}} [\mathbf{1}]}{y''[v, y''] \vdash u : X^\perp, y'' : X \otimes \mathbf{1}} [\otimes] \\
 \frac{y'(u, y'').y''[v, y''] \vdash y' : X^\perp \wp (X \otimes \mathbf{1})}{y(X, y').y'(u, y'').y''[v, y''] \vdash y : \forall X. X^\perp \wp (X \otimes \mathbf{1})} [\wp] \\
 \frac{y(X, y').y'(u, y'').y''[v, y''] \vdash y : \forall X. X^\perp \wp (X \otimes \mathbf{1})}{Server(x) \vdash x : !(\forall X. X^\perp \wp (X \otimes \mathbf{1}))} [!]$$

where the side condition of the rule $[\forall]$ is trivially satisfied since the typing context does not contain bindings other than the one for y . \dashv

2.5 Properties of Well-Typed Processes

The linearity challenge [1] aims at formalising two essential properties of well-typed processes: (1) typing is preserved by reductions; (2) the peer endpoints of the same session are always used in complementary ways. This latter property is called *well formedness* in the challenge. In this work we also consider *deadlock freedom*, which is more general than well formedness and holds for LCC since its type system is based on linear logic. We now formulate these properties using the notation developed so far.

Concerning the preservation of typing, this corresponds to the usual subject reduction result, which is expressed thus:

Theorem 2.1 (subject reduction). *If $P \rightsquigarrow Q$ then $P \vdash \Gamma$ implies $Q \vdash \Gamma$.*

In order to formulate deadlock freedom, we first need to introduce some terminology for referring to processes that are unable to make any progress. A simple example of deadlock is the process $(x)(x[] \mid x[])$. This process is unable to reduce (because a process $x[]$ is meant to interact with a process of the form $x().P$) and, more generally, it is unable to interact regardless of the context in which it is placed because the sub-processes it contains are blocked on the channel x that is restricted by the cut. In general, the property of being a deadlock is not simply the inability to reduce: there are irreducible processes that are not a deadlock because they would be able to reduce if put into a suitable context. For example, $x().P$ does not reduce, and yet it is not a deadlock because it would be able to make progress when composed in parallel with $x[]$. Even a process like $(x)(y().P \mid z().Q)$ where $x \neq y, z$ cannot be considered a deadlock, because the prefixes $y()$ and $z()$ could be exposed using [s-WAIT] and possibly [s-COMM]. Let us make all this more precise.

We say that P is a *thread* if it is anything but a cut. In other words, a thread is either a link or a process that starts with an input/output action of some sort. Note that a thread may contain cuts, but these cuts must be guarded underneath the topmost action prefix of the thread. We say that P is *observable* if $P \sqsupseteq Q$ for some thread Q . An observable process is a process that exposes an action on a free channel

415 and therefore can interact through that channel, if put into some appropriate context.
416 We say that P is *reducible* if $P \rightsquigarrow Q$ for some Q . A reducible process may perform
417 a reduction step. We say that a process is *alive* if it is either observable or reducible
418 and that it is a *deadlock* if it is not alive.

419 Well-typed LCC processes are deadlock free:

420

421 **Theorem 2.2** (deadlock freedom). *If $P \vdash \Gamma$ then P is alive.*

422

423 We now shift the attention to *well formedness*. In the linearity challenge [1] this
424 property ensures that, whenever two processes composed in parallel begin with actions
425 concerning the very same session, then such actions complement each other, in the
426 sense that they describe opposite forms of interaction. To define well formedness in our
427 setting, we introduce *reduction contexts* as partial processes with a single unguarded
428 hole $[]$, thus:

429 $\mathcal{C} ::= [] \mid (x : A)(\mathcal{C} \mid P) \mid (x : A)(P \mid \mathcal{C})$

430 As usual, we write $\mathcal{C}[P]$ for the process obtained by replacing the hole in \mathcal{C} with
431 P , noting that such replacement may capture channels that are bound in \mathcal{C} and
432 occur free in P . Now we observe that if Q_1 and Q_2 both act on the same channel
433 x in complementary ways, then their parallel composition $(x)(Q_1 \mid Q_2)$ is reducible
434 according to one of the principal cut reductions described in Table 2. Therefore, an
435 alternative (and more general) way of formulating well formedness is simply this: we
436 say that P is *well formed* if $P \sqsupseteq \mathcal{C}[Q]$ implies that Q is alive. In the particular case
437 when $Q = (x)(Q_1 \mid Q_2)$ and both Q_1 and Q_2 start with an action on x , then Q is not
438 observable (because actions on x cannot be pulled out of the cut that binds x) and
439 therefore it must be reducible by Theorem 2.2.

440 Well-typed processes are well formed:

441

442 **Theorem 2.3** (type safety). *If $P \vdash \Gamma$ then P is well formed.*

443

444 Note that the properties expressed in Theorems 2.2 and 2.3 are invariant under
445 reductions thanks to Theorem 2.1.

446

447 3 Agda Formalisation

448

449 In this section we describe the formalisation of LCC in Agda. Each of the following
450 sub-sections matches one of the modules of the formalisation. We present in detail
451 only some key parts of the code including the representation of types and processes,
452 the definition of the operational semantics and the statement of the main results. The
453 complete source code is available in LCC's public repository [20].

454

455 3.1 Type Representation

456

457 The representation of types is standard. We start by defining an indexed data type
458 **PreType** n to represents (LCC) types in the scope of n quantifiers and we use elements
459 of **Fin** n as de Bruijn indices for the quantified type variables. In this way, we make
460 sure that pre-types are well scoped.

data PreType : $\mathbb{N} \rightarrow \text{Set}$ where	461
\top 0 \perp 1	462
var rav	463
$\&$ \oplus \wp \otimes	464
\forall \exists	465
$!$ $?$	466
	467

Note the constructors **var** and **rav**, which respectively represent type variables and their dual, and the quantifiers \forall and \exists which increase the number of quantifiers in the scoped pre-type.

The dual of a pre-type is computed by the following function:

dual : $\forall\{n\} \rightarrow \text{PreType } n \rightarrow \text{PreType } n$	473
dual \top = 0	474
dual 0 = T	475
dual \perp = 1	476
dual 1 = \perp	477
dual (var x) = rav x	478
dual (rav x) = var x	479
dual ($A \& B$) = dual $A \oplus \text{dual } B$	480
dual ($A \oplus B$) = dual $A \& \text{dual } B$	481
dual ($A \wp B$) = dual $A \otimes \text{dual } B$	482
dual ($A \otimes B$) = dual $A \wp \text{dual } B$	483
dual ($\forall A$) = $\exists (\text{dual } A)$	484
dual ($\exists A$) = $\forall (\text{dual } A)$	485
dual ($! A$) = $? (\text{dual } A)$	486
dual ($? A$) = $! (\text{dual } A)$	487
	488

It is straightforward to prove that duality is an involution.

dual-inv : $\forall\{n\} \{A : \text{PreType } n\} \rightarrow \text{dual} (\text{dual } A) \equiv A$	491
	492

This property is important in the rest of the formalisation so we define an implicit rewriting rule that Agda can autonomously apply whenever possible. This is achieved by means of the following pragma directive.¹

<code>{-# REWRITE dual-inv #-}</code>	497
	498

Next we define the function **subst** that simultaneously substitutes the type variables of a pre-type with other pre-types. In practice we will always substitute one variable at a time, but it is technically easier to define **subst** so that it accepts a function substituting *all* variables of a pre-type, possibly with themselves. The definition

¹The directive is effective provided that the option `--rewriting` is enabled, either globally when invoking Agda or within an `OPTIONS` pragma directive in the module's source code.

499
500
501
502
503
504
505
506

507 of `subst` relies on some auxiliary functions for *renaming* type variables and *lifting* substitutions across quantifiers. These functions are straightforward adaptations of those
 508 described by Kokke et al. [25].
 509

510 `subst` : $\forall\{m\ n\} \rightarrow (\text{Fin } m \rightarrow \text{PreType } n) \rightarrow \text{PreType } m \rightarrow \text{PreType } n$
 512

513 Among all substitutions, we will use the one that substitutes the 0-indexed type
 514 variable with a pre-type. It is convenient to introduce this substitution once and for
 515 all, which we do here.

516 $[\underline{_}/] : \forall\{n\} \rightarrow \text{PreType } n \rightarrow \text{Fin } (\text{suc } n) \rightarrow \text{PreType } n$
 517 $[A/\] \text{zero} = A$
 518 $[A/\] (\text{suc } k) = \text{var } k$
 519

520 Duality and substitutions are meant to commute.
 521

522 `dual-subst` : $\forall\{m\ n\} \{\sigma : \text{Fin } m \rightarrow \text{PreType } n\} \{A : \text{PreType } m\} \rightarrow$
 523 $\text{subst } \sigma (\text{dual } A) \equiv \text{dual } (\text{subst } \sigma A)$
 524

525 It is worth looking at one case in the proof of `dual-subst`, namely when the type is
 526 a dualised type variable:
 527

528 `dual-subst` $\{\underline{_}\} \{\underline{_}\} \{\sigma\} \{\text{rav } x\} = \text{refl}$
 529

530 Here we are supposed to prove $\text{subst } \sigma (\text{dual } (\text{rav } x)) \equiv \text{dual } (\text{subst } \sigma (\text{rav } x))$ which
 531 is definitionally equal to $\sigma x \equiv \text{dual } (\text{dual } (\sigma x))$. We could easily prove this equivalence
 532 by invoking `dual-inv`, but thanks to the rewriting rule that we have added earlier a use
 533 of `refl` suffices. In this case the saved effort is negligible, but in later results, where it is
 534 necessary to use `dual-inv` for rewriting part of the *index* of some type families, having
 535 an implicit rewriting rule allows us to avoid writing some quite obscure Agda code.
 536

537 Just like `dual-inv`, `dual-subst` too is key in the formalisation that follows. Therefore,
 538 we add it to the set of implicit rewriting rules used by Agda so that we do not have
 539 to think about this property again.

540 $\{-\# \text{REWRITE } \text{dual-subst } \#\}$
 541

542 We call `Type` closed pre-types, those having no free type variables. From now on,
 543 we will seldom use pre-types again.
 544

545 `Type` : `Set`
 546 `Type` = `PreType zero`
 547

548

549 3.2 Context Representation

550

551 We are going to adopt a nameless representation of channels. Hence, typing contexts
 552 are represented as lists of types, where the (polymorphic) type `List` and its constructors

`[]` and `_ :: _` are defined in the module `Data.List` of Agda's standard library. We will keep using Γ , Δ and Θ to range over typing contexts, even though in the Agda formalisation they are lists and not finite maps as in Section 2.4.

`Context : Set` 553
`Context = List Type` 554

The most important operation concerning typing contexts is *splitting*. The splitting of Γ into Δ and Θ , which we denote by $\Gamma \simeq \Delta + \Theta$, represents the fact that Γ contains all the types contained in Δ and Θ , preserving both their overall multiplicity and also their relative order within Δ and Θ . A *proof* of $\Gamma \simeq \Delta + \Theta$ shows how the types in Γ are distributed in Δ and Θ from left to right.

```
data _≈_+_ : Context → Context → Context → Set where
  • : [] ≈ [] + []
  <_ : ∀{A Γ Δ Θ} → Γ ≈ Δ + Θ → A :: Γ ≈ A :: Δ + Θ
  >_ : ∀{A Γ Δ Θ} → Γ ≈ Δ + Θ → A :: Γ ≈ Δ + A :: Θ
```

When splitting a context Γ into $\Delta + \Theta$, for each type in Γ we use one of the prefix operators `<` and `>` to indicate whether the type is meant to be placed in Δ or in Θ . Once we reach the end of the typing context, we use the constructor `•` to build the trivial splitting of the empty context into two empty partitions. For example, below is a proof of the splitting $[A, B, C, D] \simeq [B] + [A, C, D]$.

```
splitting-example1 : (A :: B :: C :: D :: []) ≈ [B] + (A :: C :: D :: [])
splitting-example1 = > < > > •
```

It is easy to see that splitting is commutative and that the empty context/list is both a left and right unit of splitting.

```
+-comm : ∀{Γ Δ Θ} → Γ ≈ Δ + Θ → Γ ≈ Θ + Δ
>> : ∀{Γ} → Γ ≈ [] + Γ
<< : ∀{Γ} → Γ ≈ Γ + []
```

Context splitting is also associative. If we write $\Delta + \Theta$ for some Γ such that $\Gamma \simeq \Delta + \Theta$, then we can prove that $\Gamma_1 + (\Gamma_2 + \Gamma_3) = (\Gamma_1 + \Gamma_2) + \Gamma_3$.

```
+ assoc-r : ∀{Γ Δ Θ Δ' Θ'} → Γ ≈ Δ + Θ → Θ ≈ Δ' + Θ' →
  ∃[Γ'] Γ' ≈ Δ + Δ' × Γ ≈ Γ' + Θ'
+ assoc-l : ∀{Γ Δ Θ Δ' Θ'} → Γ ≈ Δ + Θ → Δ ≈ Δ' + Θ' →
  ∃[Γ'] Γ' ≈ Θ' + Θ × Γ ≈ Δ' + Γ'
```

When proving a splitting $\Gamma \simeq [A] + \Theta$ where the left partition is a singleton $[A]$, it may be convenient to use `>>` as a shortcut for a sequence of applications of `>` once the A type has been reached in Γ . For instance, `splitting-example1` can be written

Notation	Definition	Meaning
<code>Pred A ℓ</code>	$A \rightarrow \text{Set } \ell$	predicate over A
<code>∀[P]</code>	$\forall\{x\} \rightarrow P x$	implicit universality
<code>P \Rightarrow Q</code>	$\lambda x \rightarrow P x \rightarrow Q x$	implication
<code>P \sqcup Q</code>	$\lambda x \rightarrow P x \sqcup Q x$	disjunction
<code>P \sqcap Q</code>	$\lambda x \rightarrow P x \times Q x$	conjunction
<code>f \vdash P</code>	$\lambda x \rightarrow P (f x)$	update
<code>U</code>	$\lambda x \rightarrow \text{Data.Unit.T}$	universal set
<code>⊓[X : A] P</code>	$\lambda x \rightarrow (X : A) \rightarrow P X x$	infinitary conjunction

Table 4 Useful definitions in Agda’s `Relation.Unary` module.

equivalently and in a more compact way as shown below. More usages of \gg will be provided in Section 3.9.

`splitting-example2 : (A :: B :: C :: D :: []) \simeq [B] + (A :: C :: D :: [])`

`splitting-example2 = > < \gg`

615

From now on we will make extensive use of predicates over contexts. For this reason, it is worth recalling in Table 4 a number of definitions from the module `Relation.Unary` of Agda’s standard library. We begin using these definitions for building a few abstractions inspired to separation logic [26] that allow us to hide context splittings, at least in some cases. Following Rouvoet et al. [18], we define the *separating conjunction* $P * Q$ of two predicates P and Q over contexts:

622
623 `data _*_ (P Q : Pred Context _) (Γ : Context) : Set where`
624 `_⟨_⟩_ : ∀{Δ Θ} → P Δ → Γ \simeq Δ + Θ → Q Θ → (P * Q) Γ`
625

626 If P and Q are predicates over contexts, the predicate $P * Q$ holds for those contexts
627 $Γ$ that can be split into $Δ$ and $Θ$ so that P holds for $Δ$ and Q holds for $Θ$. The
628 constructor `_⟨_⟩_` has three explicit arguments witnessing the splitting $Γ \simeq Δ + Θ$
629 along with proofs of $P Δ$ and $Q Θ$. The use of metavariables P and Q for denoting
630 predicates over contexts is appropriate: as we will see shortly, in our formalisation
631 processes are indeed an example of predicate over typing contexts.

632 Along with `*` we define the *separating implication* (also known as “magic wand”)

633

634 `_*_ : Pred Context_ → Pred Context_ → Context → Set`
635 `(P *_ Q) Δ = ∀{Θ Γ} → Γ \simeq Δ + Θ → P Θ → Q Γ`
636

637 and prove that `*` can be used to curry `*`:

638

639 `curry* : ∀{P Q R} → ∀[P * Q \Rightarrow R] → ∀[P \Rightarrow Q -* R]`
640 `curry* F px σ qx = F (px ⟨ σ ⟩ qx)`

641

642 To conclude the implementation of typing contexts, we define a predicate `Un` that
643 holds for *unrestricted* contexts, those solely made of types of the form $?A$. We need
644 this predicate in the definition of a server, which must comply with the typing rule `[!]`.

data Un : Context \rightarrow Set where	645
un-[] : Un []	646
un-:: : $\forall\{A\} \rightarrow \forall[\text{Un} \Rightarrow (\text{? } A :: _) \vdash \text{Un}]$	647
	648

The empty context is trivially unrestricted. A non-empty context is unrestricted if its head has the form $\text{? } A$ for some A and its tail is unrestricted as well. It is easy to prove that Γ is unrestricted if so are Δ and Θ when $\Gamma \simeq \Delta + \Theta$:

*-un : $\forall[\text{Un} * \text{Un} \Rightarrow \text{Un}]$	653
	654
	655

3.3 Context Permutations

According to our nameless representation of channels, the *position* of a type in a typing context Γ determines the location of its binder in the structure of a process. When the binding structure of a process changes, e.g. because a structural pre-congruence rule is applied, or when a channel substitution occurs, cf. the right-hand side of the $[\text{ax}]$ reduction in Table 2, Γ must be suitably rearranged to agree with the updated binding structure. Such rearrangement is in fact a *permutation* of the elements of Γ .

We define typing context permutations inductively, as a binary relation $_ \rightsquigarrow _$:

data _rightsquigarrow_ : Context \rightarrow Context \rightarrow Set where	665
refl : $\forall\{\Gamma\} \rightarrow \Gamma \rightsquigarrow \Gamma$	666
swap : $\forall\{A B \Gamma\} \rightarrow (A :: B :: \Gamma) \rightsquigarrow (B :: A :: \Gamma)$	667
prep : $\forall\{A \Gamma \Delta\} \rightarrow \Gamma \rightsquigarrow \Delta \rightarrow (A :: \Gamma) \rightsquigarrow (A :: \Delta)$	668
trans : $\forall\{\Gamma \Delta \Theta\} \rightarrow \Gamma \rightsquigarrow \Delta \rightarrow \Delta \rightsquigarrow \Theta \rightarrow \Gamma \rightsquigarrow \Theta$	669
	670

Each constructor of $_ \rightsquigarrow _$ represents a particular kind of permutation: **refl** for the trivial permutation that does not change anything; **swap** for the permutation that swaps the first two elements of a typing context; **prep** for the permutation applied to the tail of a typing context; **trans** for the sequential composition of permutations.

The definition of the data type $_ \rightsquigarrow _$ is nearly the same found in the module [Data.List.Relation.Binary.Permutation.Propositional](#) of Agda's standard library. We have preferred defining our own notion of permutation for simplicity and convenience: the **swap** constructor does not need a sub-permutation for the tail of the typing context, which can always be performed, if needed, combining **swap** with **prep** and **trans**. Also, and more importantly, our data type $_ \rightsquigarrow _$ is monomorphic (it does not need to relate arbitrary lists) and the arguments A and B of **swap** and **prep** are implicit, which streamlines the usage of these constructors in the rest of the code.

It is easy to see that $_ \rightsquigarrow _$ is an equivalence relation. In the following we also use another property of permutations related to context splitting and list concatenation $_ ++ _$: if $\Gamma \simeq \Delta + \Theta$, then Γ is a permutation of the concatenation of Δ and Θ .

rightsquigarrowconcat : $\forall\{\Gamma \Gamma_1 \Gamma_2\} \rightarrow \Gamma \simeq \Gamma_1 + \Gamma_2 \rightarrow (\Gamma_1 ++ \Gamma_2) \rightsquigarrow \Gamma$	687
	688
	689
	690

691 **3.4 Channel and Process Representation**

692 We adopt an *intrinsically-typed* representation of processes with *nameless* channels.
 693 The intrinsically-typed representation makes sure that only well-typed processes can
 694 be constructed. This choice increases the effort in the definition of the datatypes for
 695 representing processes and their operational semantics, but pays off in the rest of the
 696 formalisation for at least three reasons:
 697

698 • we need not give explicit names to channels, thus we avoid all the technicalities and
 699 pitfalls that a named representation entails;
 700 • we conflate processes and typing rules in the same datatype, thus reducing the
 701 overall number of datatypes defined in the formalisation;
 702 • the typing preservation results are embedded in the very definition of the operational
 703 semantics of processes and do not require separate proofs (Sections 3.5 and 3.6).

704 Channels are not given any name. Instead, they are represented as terms witnessing
 705 that their type is present in the typing context. This is known as *co-de Bruijn*
 706 *syntax* [27], whereby the typing context associated with a term (a process, a channel)
 707 only contains the types of the channels that actually occur within the term. For this
 708 reason, typing contexts are split eagerly, according to the structure of processes, to
 709 make sure that channels are appropriately (and above all linearly) distributed among
 710 sub-processes, so that each channel is used exactly once. Concretely, a channel of type
 711 A is a predicate that holds for the singleton context $[A]$:

712

```
713     data Ch (A : Type) : Context → Set where
 714         ch : Ch A [ A ]
```

715 A process that is well typed in a typing context Γ is a predicate that holds for Γ .
 716 Here is the datatype **Proc** for representing processes:

717

```
718     data Proc : Context → Set where
 719         link   : ∀{A} → ∀[ Ch A * Ch (dual A) ⇒ Proc ]
 720         fail   : ∀[ Ch T * U ⇒ Proc ]
 721         wait   : ∀[ Ch ⊥ * Proc ⇒ Proc ]
 722         close  : ∀[ Ch 1 ⇒ Proc ]
 723         case   : ∀{A B} →
 724             ∀[ Ch (A & B) * ((A ::_) ⊢ Proc ∩ (B ::_) ⊢ Proc) ⇒ Proc ]
 725         select : ∀{A B} →
 726             ∀[ Ch (A ⊕ B) * ((A ::_) ⊢ Proc ∪ (B ::_) ⊢ Proc) ⇒ Proc ]
 727         join   : ∀{A B} → ∀[ Ch (A ⋘ B) * ((A ::_) ⊢ (B ::_) ⊢ Proc) ⇒ Proc ]
 728         fork   : ∀{A B} →
 729             ∀[ Ch (A ⊗ B) * ((A ::_) ⊢ Proc) * ((B ::_) ⊢ Proc) ⇒ Proc ]
 730         all    : ∀{A} →
 731             ∀[ Ch (∀ A) * ∩[ X : Type ] ((subst [ X / ] A ::_) ⊢ Proc) ⇒ Proc ]
 732         ex    : ∀{A B} → ∀[ Ch (∃ A) * ((subst [ B / ] A ::_) ⊢ Proc) ⇒ Proc ]
 733         server : ∀{A} → ∀[ Ch (! A) * (Un ∩ ((A ::_) ⊢ Proc)) ⇒ Proc ]
 734         client : ∀{A} → ∀[ Ch (? A) * ((A ::_) ⊢ Proc) ⇒ Proc ]
```

weaken : $\forall\{A\} \rightarrow \forall[\text{Ch}(\text{`? } A) * \text{Proc} \Rightarrow \text{Proc}]$	737
contract : $\forall\{A\} \rightarrow \forall[\text{Ch}(\text{`? } A) * ((\text{`? } A :: _) \vdash (\text{`? } A :: _) \vdash \text{Proc}) \Rightarrow \text{Proc}]$	738
cut : $\forall\{A\} \rightarrow \forall[((A :: _) \vdash \text{Proc}) * ((\text{dual } A :: _) \vdash \text{Proc}) \Rightarrow \text{Proc}]$	739
	740

The constructor `link` builds a link $x \leftrightarrow y$. This process is well typed in a context of the form $x : A, y : A^\perp$, namely a context satisfying the predicate `Ch A * Ch (dual A)` which we see on the left-hand side of \Rightarrow .

The constructor `cut` builds a cut $(x : A)(P \mid Q)$. This process is well typed in a context Γ if $\Gamma \simeq \Delta + \Theta$ so that P and Q are well typed in the contexts $x : A, \Delta$ and $x : A^\perp, \Theta$, which are obtained from Δ and Θ by adding the bindings $x : A$ and $x : A^\perp$, respectively. Since x is the most recently introduced channel, the types A and A^\perp are added *in front* of Δ and Θ , which we do by means of the functions $(A :: _)$ and $(\text{dual } A :: _)$. These are partial applications of the constructor $_ :: _$ for lists to which we have supplied the left operand.

All the remaining constructors basically follow the same pattern: they possibly quantify over some types A and B and then (implicitly) over a typing context Γ through the function $\forall[_]$ applied to a predicate of the form $P \Rightarrow \text{Proc}$. The predicate states how to build a process that is well typed in Γ , provided that Γ satisfies P . In general, P is a (separating) conjunction of sub-predicates corresponding to the channel on which the process is acting and to the premises of its typing rule.

For example, the constructor `fail`, which builds a process $x \triangleright \{\}$, requires the context Γ to satisfy the predicate `Ch T * U`, meaning that Γ must contain an entry `T` (`U` is the universal predicate that holds for every context, cf. Table 4). That form of Γ matches the typing context in the conclusion of the rule $[\top]$.

The constructor `wait`, which builds a process $x().P$, requires Γ to (separately) satisfy `Ch ⊥`, that is the channel x on which the process is operating, as well as `Proc`, that is the continuation process P , which must be well typed in the remaining typing context.

The constructor `close`, which builds a process $x[]$, requires the typing context to be the singleton list `[1]`.

Let us move on to the forms that produce continuation channels. As an example, the constructor `case` builds a process $x \triangleright (y)\{P, Q\}$, where both P and Q use the continuation channel y . In this case Γ must satisfy the predicate

$$\text{Ch}(A \& B) * ((A :: _) \vdash \text{Proc} \sqcap (B :: _) \vdash \text{Proc})$$

which looks intimidating at first but makes perfect sense once we recall the typing rule $[\&]$ and the definitions of \sqcap and \vdash in Table 4. Remember that we are trying to establish whether $x \triangleright (y)\{P, Q\}$ is well typed in Γ . The predicate `Ch(A & B)` expresses the requirement that the type of x must be of the form $A \& B$ and should be found in Γ . In other words, $\Gamma \simeq [A \& B] + \Delta$ for some Δ . Now P and Q must be well typed in the context Δ augmented with the association $y : A$ and $y : B$, respectively, whence the use of \sqcap to verify a (non-separating) conjunction of the predicates $(A :: _) \vdash \text{Proc}$ and $(B :: _) \vdash \text{Proc}$. The two new contexts are obtained by *adding* either A or B to Δ , which we perform using \vdash . Crucially, the types A and B are *prepended* to Δ , which is consistent with the fact that the continuation y has been freshly introduced

783 and the channel x has been consumed. Notice how easy it is to *prepend* either A or
 784 B to Δ instead of *changing* the type of x in Γ from $A \& B$ to either A or B while
 785 preserving the position of the type, as we would have to do in a “true” session type
 786 system without explicit continuation channels.

787 The interpretation of the remaining constructors is analogous, so we only comment
 788 **all**, which builds a process $x(X, y).P$. This constructor models the continuation P using
 789 higher-order abstract syntax (HOAS): proving that a context Γ satisfies the predicate
 790

$$\bigcap [X : \text{Type}] ((\text{subst} [X/] A :: _) \vdash \text{Proc}$$

791 means providing a function that, for every type X , produces a witness for the predicate
 792

$$((\text{subst} [X/] A :: _) \vdash \text{Proc}$$

793 applied to Γ . Note that the side condition $X \notin \text{fv}(\Gamma)$ of [v] is trivially enforced *by*
 794 *definition*: A has type **PreType 1**, that is a pre-type with *at most one* free type variable
 795 X , whereas Γ is a typing context, that is a list of **Type = PreType 0** without free type
 800 variables. Therefore, X cannot occur in Γ .

801 We conclude this module proving that permutations preserve process typing. Since
 802 list permutations basically correspond to channel renaming, we can read this property
 803 as the fact that typing is preserved by (bijective) name substitutions.
 804

$$\rightsquigarrow\text{proc} : \forall\{\Gamma \Delta\} \rightarrow \Gamma \rightsquigarrow \Delta \rightarrow \text{Proc} \quad \Gamma \rightarrow \text{Proc} \quad \Delta$$

808 3.5 Structural Pre-Congruence

809 We formalise structural precongruence as a binary relation between processes that
 810 are well typed in the *same* typing context. This entails that structural precongruence
 811 preserves typing by definition.
 812

$$813 \quad \text{data } \sqsupseteq \{ \Gamma \} : \text{Proc} \quad \Gamma \rightarrow \text{Proc} \quad \Gamma \rightarrow \text{Set} \quad \text{where}$$

814 The datatype for \sqsupseteq has one constructor for each structural pre-congruence rule
 815 in Table 2. Since many aspects recur repeatedly, we illustrate the implementation of
 816 just a few representative rules starting from [s-COMM].
 817

$$818 \quad \text{s-comm} : \forall\{A \Gamma_1 \Gamma_2 P Q\} (p : \Gamma \simeq \Gamma_1 + \Gamma_2) \rightarrow \\ 819 \quad \quad \quad \text{cut} \{A\} (P \langle p \rangle Q) \sqsupseteq \text{cut} (Q \langle +\text{-comm} p \rangle P)$$

820 The constructor **s-comm** models the commutativity property of parallel composition.
 821 We use **+comm** to compute the proof of the splitting $\Gamma \simeq \Gamma_2 + \Gamma_1$ from p .
 822 Notice that **s-comm** makes key use of the implicit rewriting rule **dual-inv** described
 823 in Section 3.1. Indeed P and Q have type **Proc** ($A :: \Gamma_1$) and **Proc** (**dual** $A :: \Gamma_2$),
 824 respectively, but the **cut** on the r.h.s. of \sqsupseteq expects P to have type **dual** (**dual** A).
 825

Thanks to `dual-inv`, Agda considers these types equivalent without requiring intricate substitutions in the index of `Proc`. 829
830

The constructor `s-wait` models the [s-WAIT] rule: 831

```

s-wait :
   $\forall \{\Gamma_1 \Gamma_2 \Delta A P Q\} (p : \Gamma \simeq \Gamma_1 + \Gamma_2) (q : \Gamma_1 \simeq [\perp] + \Delta) \rightarrow$  833
  let _ , p' , q' = +assoc-l p q in 834
  cut {A} (wait (ch < q > P) < p > Q)  $\Xi$  835
  wait (ch < q' > cut (P < p' > Q)) 836

```

There are two non-trivial aspects worth commenting. The first one concerns the proof $> q$ used within `wait`. To understand the meaning of this proof, we must recall three key elements: 837
838

1. (`wait (ch < q > P)` is a direct sub-process of the `cut`, and therefore it is meant to be well typed in the context $A :: \Gamma_1$. 839
840
841
2. Being a `wait` process, such context must contain a \perp type as per the typing rule $[\perp]$. That is $A :: \Gamma_1 \simeq [\perp] + A :: \Delta$ for some Δ . 842
843
844
3. The [s-WAIT] rule is applicable only provided that the channel restricted by the `cut` (say x , of type A) is different from the channel consumed by the `wait` process (say y , of type \perp). We enforce the side condition $x \neq y$ of [s-WAIT] (which we left implicit in Table 2) imposing that the type A in front of $A :: \Gamma_1$ goes to the right partition of the splitting $[\perp] + A :: \Delta$ through the use of $>$. 845
846
847
848
849
850
851

The other aspect that is worth commenting concerns the rearrangement of the splittings in the process after the application of structural precongruence. Overall, p and q prove the splittings $([\perp] + \Delta) + \Gamma_2$, but the precongruence rule requires this splitting to be rearranged as $[\perp] + (\Delta + \Gamma_2)$. That is, we need to apply the left-to-right associativity property of context splitting which we called `+assoc-l` in Section 3.2. The nested `let-in` allows us to pattern match on the result of the application `+assoc-l p q` and to extract the new proofs p' and q' for the rearranged splittings. 852
853
854
855
856
857
858

The constructors `s-select-l` and `s-select-r` model [s-SELECT] when the selected tag is respectively `inj1` and `inj2`. For example, for `s-select-l` we have: 859
860
861

```

s-select-l :
   $\forall \{\Gamma_1 \Gamma_2 \Delta A B C P Q\} (p : \Gamma \simeq \Gamma_1 + \Gamma_2) (q : \Gamma_1 \simeq [B \oplus C] + \Delta) \rightarrow$  862
  let _ , p' , q' = +assoc-l p q in 863
  cut {A} (select (ch < q > inj1 P) < p > Q)  $\Xi$  864
  select (ch < q' > inj1 (cut (~~proc swap P < p' > Q))) 865

```

Here the process `(select (ch < q >) inj1 P)`, that is $y \triangleleft \text{inj}_1[z].P$, is found under a cut for $x : A$ and is using some channel $y : B \oplus C$ to select `inj1`. The continuation process P uses a fresh continuation channel $z : B$. Therefore, P is required to be well typed in the context $B :: A :: \Delta$, where the type B of z comes *before* the type A of x since z is introduced later than x . After structural pre-congruence is applied, however, the type of the continuation channel z ends up behind that of the restricted channel x , because now z and x are introduced in the opposite order. Therefore, we need to 866
867
868
869
870
871
872
873
874

875 rename the channels in P so that it is well typed in the context $A :: B :: \Delta$. Such
 876 renaming is achieved applying the function `~~~proc` to the `swap` permutation and to
 877 the process P .

878 We also discuss the modeling of the [s-FORK-L] rule, which is interesting because
 879 of its complex side conditions:

880

```
881     s-fork-l :
882      $\forall \{\Gamma_1 \Gamma_2 \Delta \Delta_1 \Delta_2 A B C P Q R\}$ 
883      $(p : \Gamma \simeq \Gamma_1 + \Gamma_2) (q : \Gamma_1 \simeq [B \otimes C] + \Delta) (r : \Delta \simeq \Delta_1 + \Delta_2) \rightarrow$ 
884      $\text{let } \_, p', q' = \text{+assoc-l } p \ q \text{ in}$ 
885      $\text{let } \_, p'', r' = \text{+assoc-l } p' \ r \text{ in}$ 
886      $\text{let } \_, q'', r'' = \text{+assoc-r } r' (\text{+comm } p'') \text{ in}$ 
887      $\text{cut } \{A\} (\text{fork } (\text{ch } \langle > q) (P \langle < r \rangle Q)) \langle p \rangle R \sqsupseteq$ 
888      $\text{fork } (\text{ch } \langle q' \rangle (\text{cut } (\text{~~~proc } \text{swap } P \langle < q'' \rangle R) \langle r'' \rangle Q))$ 
889
```

890 Recall from Table 2 that we allow using this rule on a process of the form $(x : A)(y[u, v](P | Q) | R)$ when $x \in \text{fc}(P)$. We capture the condition $x \in \text{fc}(P)$ by means
 891 of the splitting $\langle r$, implying that the type A of x ends up in the typing context for
 892 P and not in the one for Q . The symmetric rule [s-FORK-R] is modeled by another
 893 constructor `s-fork-r`, which is similar to `s-fork-l` except that $\langle r$ is replaced by $\rangle r$.

894 Finally, in Section 2.3 we have colloquially defined \sqsupseteq as a “pre-congruence”, implying
 895 that it is a reflexive, transitive relation preserved by some forms of the calculus.
 896 In the formalisation we have to be precise and we introduce specific rules:

897

```
898
899     s-refl :  $\forall \{P\} \rightarrow P \sqsupseteq P$ 
900     s-tran :  $\forall \{P Q R\} \rightarrow P \sqsupseteq Q \rightarrow Q \sqsupseteq R \rightarrow P \sqsupseteq R$ 
901     s-cong :  $\forall \{\Gamma_1 \Gamma_2 A P Q P' Q'\} (p : \Gamma \simeq \Gamma_1 + \Gamma_2) \rightarrow$ 
902      $P \sqsupseteq Q \rightarrow P' \sqsupseteq Q' \rightarrow \text{cut } \{A\} (P \langle p \rangle P') \sqsupseteq \text{cut } (Q \langle p \rangle Q')$ 
903
```

904 Note that we define a single congruence rule `s-cong` that allows us to apply \sqsupseteq
 905 within cuts, but not underneath prefixes. This limited form of pre-congruence turns
 906 out to be sufficient for the development that follows.

907 We concede that the implementation of the pre-congruence rules (including those
 908 not discussed here) can be difficult to decipher. In part, this is due to the fact that
 909 splitting proofs are manifest and no longer hidden by separating conjunctions (as
 910 in Section 3.4) because we need them to enforce the side conditions of the rules in
 911 Table 2. We should also bear in mind that, using an intrinsically-typed representation
 912 of processes, we have already taken care of the proof that structural pre-congruence
 913 preserves typing.

914

915 3.6 Reduction

916

917 Just like structural pre-congruence, reduction is formalised as a binary relation
 918 between processes that are well typed in the same typing context. Thus, the definition
 919 of reduction embeds subject reduction (Theorem 2.1).

920

data $_ \rightsquigarrow _ \{\Gamma\}$: **Proc** $\Gamma \rightarrow \text{Proc} \Gamma \rightarrow \text{Set}$ **where** 921

922

There is a constructor for each of the reduction rules in Table 2. Let us comment 923
a few representative cases. 924

The constructor **r-link** models the reduction $(x : A)(x \leftrightarrow y \mid P) \rightsquigarrow P\{y/x\}$ called 925
[R-LINK] in Table 2: 926

r-link : $\forall \{\Delta A P\} (p : \Gamma \simeq [\text{dual } A] + \Delta) \rightarrow$ 928
 cut $\{A\} (\text{link} (\text{ch} \langle < \rangle \bullet) \text{ch} \langle p \rangle P) \rightsquigarrow \rightsquigarrow \text{proc} (\rightsquigarrow \text{concat } p) P$ 929

930

The splitting p indicates that y (of type A^\perp) occurs in the left sub-process of 931
the cut (that is the link $x \leftrightarrow y$) and the splitting $\langle > \bullet$ to which **link** is applied is 932
structured consistently with the syntax of the link being reduced, which is oriented so 933
that the restricted channel x is on the left. The process P has type **Proc** (**dual** $A :: \Delta$) 934
and turns into $P\{y/x\}$ after the reduction. The type **dual** A of x in P is the first in the 935
typing context, indicating that it is the newest channel that P is aware of; however, 936
after the reduction, x is replaced by y which is found *somewhere* within Γ . The exact 937
location of y in Γ is encoded in the splitting p , thus we “rename” x into y within P 938
using the permutation $\rightsquigarrow \text{concat } p$. 939

The constructor **r-close** models [R-CLOSE]: 940

r-close : $\forall \{P\} (p_0 q_0 : \Gamma \simeq [] + \Gamma) \rightarrow$ 942
 cut $(\text{close} \text{ch} \langle p_0 \rangle \text{wait} (\text{ch} \langle < q_0 \rangle P)) \rightsquigarrow P$ 943

944

While the process constructor **close** implicitly refers to the only free channel occurring 945
in a process of the form $x[]$, the constructor **wait** uses a splitting proof of the form 946
 $\langle < q_0 \rangle$ to make sure that the referenced channel is also the restricted one, and therefore 947
matches the one of the **close** process. 948

Note that **r-close** (and several other reduction constructors) quantifies over p_0 and 949
 q_0 which both prove the splitting $\Gamma \simeq [] + \Gamma$. Since the left partition is empty, these 950
splittings must be equal and made of a sequence of \rangle applications followed by \bullet . In 951
general, Agda will not be able to “see” that they are definitionally equal, hence it 952
is easier to quantify them separately so that we do not have to prove their equality 953
whenever we wish to apply this reduction. 954

The constructor **r-select-l** models [R-SELECT] when the selected tag is **inj1**: 955

r-select-l : $\forall \{\Gamma_1 \Gamma_2 A B P Q R\}$ 957
 $(p : \Gamma \simeq \Gamma_1 + \Gamma_2) (p_0 : \Gamma_1 \simeq [] + \Gamma_1) (q_0 : \Gamma_2 \simeq [] + \Gamma_2) \rightarrow$ 958
 cut $\{A \oplus B\} (\text{select} (\text{ch} \langle < p_0 \rangle \text{inj}_1 P) \langle p \rangle$ 959
 case $(\text{ch} \langle < q_0 \rangle (Q, R)) \rightsquigarrow \text{cut} (P \langle p \rangle Q)$ 960

961

There is not much to note here except again for the multiple quantifications over 962
the trivial splittings $\Gamma_i \simeq [] + \Gamma_i$ and the use of $\langle < \rangle$ to make sure that the channel referred 963
to by **select** and **case** is indeed the one restricted by the cut. 964

The remaining constructors that describe the base reductions follow a similar 965
pattern, except for the implementation of [R-WEAKEN] and [R-CONTRACT] which require 966

967 auxiliary functions to respectively weaken and contract the typing context of the
 968 resulting process as shown in Table 2. It is worth glancing at the implementation of
 969 [R-EXISTS] since it involves a non-trivial rewriting of types:

```
970
971   r-exists : ∀{A B Γ₁ Γ₂ P F}
972     (p : Γ ≈ Γ₁ + Γ₂) (p₀ : Γ₁ ≈ [] + Γ₁) (q₀ : Γ₂ ≈ [] + Γ₂) →
973     cut {‘∃ A} (ex {A} {B} (ch ⟨ < p₀ ⟩ P) ⟨ p ⟩ all (ch ⟨ < q₀ ⟩ F)) ↵
974     cut (P ⟨ p ⟩ F B)
975
```

976 Recalling the definitions of `ex` and `all` from Section 3.4, we note that P has type
 977 $\text{Proc}(\text{subst}[B/]A :: \Gamma_1)$ and $F B$ is a process of type $\text{Proc}(\text{subst}[B/](\text{dual} A) :: \Gamma_2)$.
 978 In order for these two processes to be composable in a cut, it must be the case that
 979 $\text{subst}[B/](\text{dual} A) \equiv \text{dual}(\text{subst}[B/]A)$, which was proved in Section 3.1 under
 980 the name `dual-subst`. Thanks to the implicit rewriting rule, we do not have to rewrite
 981 the index in the type of $F B$, which is silently accepted as is.

982 Reduction is closed under cuts and by structural pre-congruence as per [R-CUT] and
 983 [R-CONG]. The corresponding constructors that model these features are shown below:

```
984
985   r-cut  : ∀{Γ₁ Γ₂ A P Q R} (q : Γ ≈ Γ₁ + Γ₂) →
986     P ↵ Q → cut {A} (P ⟨ q ⟩ R) ↵ cut (Q ⟨ q ⟩ R)
987   r-cong : ∀{P R Q} → P ⊒ R → R ↵ Q → P ↵ Q
988
989
```

990 3.7 Deadlock Freedom

991 As we have seen in Section 2, the deadlock freedom property and Theorem 2.2 rest on
 992 some notions and predicates about processes which must be formalised in Agda. First
 993 of all we need to define the notion of *thread*, that is any process other than a cut. It
 994 is convenient to provide a more fine-grained classification of threads, distinguishing
 995 between links and input/output actions and sometimes also on whether such actions
 996 operate on free or bound channels. We define predicates for each of these classes:

```
998
999   data Link      : ∀{Γ} → Proc Γ → Set
1000  data Input     : ∀{Γ} → Proc Γ → Set
1001  data Output    : ∀{Γ} → Proc Γ → Set
1002  data Delayed   : ∀{Γ} → Proc Γ → Set
1003  data Server    : ∀{Γ} → Proc Γ → Set
1004  data DelayedServer : ∀{Γ} → Proc Γ → Set
```

1005 The implementation of these predicates is not interesting since it is essentially
 1006 isomorphic to the relevant fragments of the `Proc` datatype. The only aspect that is
 1007 worth pointing out here is that in `Input`, `Output` and `Server` the channel being acted
 1008 upon by the thread is the *first* in Γ , hence it is the *most recently introduced* channel,
 1009 whereas in `Delayed` and `DelayedServer` the channel is not the first. This allows us to
 1010 distinguish those threads that, in the context of a cut, operate on the channel bound
 1011
 1012

by the cut or on a free channel. To clarify this aspect, let us look at the implementation of the constructor `wait` in `Input` and in `Delayed`. In the former predicate we have

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

```
wait : ∀{Γ Δ P} (p : Γ ≈ [] + Δ) → Input (wait (ch ⟨ < p ⟩ P))
```

where the use of the constructor `<` indicates that the thread operates on the most recent channel. In the latter predicate we have

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

```
wait : ∀{C Γ Δ P} (p : Γ ≈ [ ⊥ ] + Δ) → Delayed (wait (ch ⟨ >_ {C} p ⟩ P))
```

where the use of the constructor `>` indicates that the thread operates on a channel other than the most recent one. Note that here we have to specify the type `C` in front of `Γ` or else Agda is unable to automatically resolve some metavariables.

The predicate `Thread` is simply the disjoint union of all the previous ones.

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

```
data Thread {Γ} (P : Proc Γ) : Set where
  link : Link P → Thread P
  delayed : Delayed P → Thread P
  output : Output P → Thread P
  input : Input P → Thread P
  server : Server P → Thread P
  dserver : DelayedServer P → Thread P
```

Observability, reducibility and aliveness are defined in the expected way:

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

```
Observable : ∀{Γ} → Proc Γ → Set
Observable P = ∃[ Q ] P ⊑ Q × Thread Q

Reducible : ∀{Γ} → Proc Γ → Set
Reducible P = ∃[ Q ] P ↣ Q

Alive : ∀{Γ} → Proc Γ → Set
Alive P = Observable P ⊔ Reducible P
```

In order to prove that every (well-typed) process is alive, it is convenient to define a “canonical” form for cuts, that is a form that matches at least one of the l.h.s of one of the rules for structural pre-congruence or reduction in Table 2. This is the notion where the fine-grained classification of threads introduced earlier comes into play.

1051
1052
1053
1054
1055
1056
1057
1058

```
data CanonicalCut {Γ} : Proc Γ → Set where
  cc-link : ∀{Γ₁ Γ₂ A P Q} (p : Γ ≈ Γ₁ + Γ₂) →
    Link P → CanonicalCut (cut {A} (P ⟨ p ⟩ Q))
  cc-redex : ∀{Γ₁ Γ₂ A P Q} (p : Γ ≈ Γ₁ + Γ₂) →
    Output P → (Input ⊔ Server) Q →
    CanonicalCut (cut {A} (P ⟨ p ⟩ Q))
  cc-delayed : ∀{Γ₁ Γ₂ A P Q} (p : Γ ≈ Γ₁ + Γ₂) →
```

```

1059      Delayed  $P \rightarrow \text{CanonicalCut} (\text{cut} \{A\} (P \langle p \rangle Q))$ 
1060  cc-servers :  $\forall \{\Gamma_1 \Gamma_2 A P Q\} (p : \Gamma \simeq \Gamma_1 + \Gamma_2) \rightarrow$ 
1061      DelayedServer  $P \rightarrow \text{Server} Q \rightarrow$ 
1062      CanonicalCut ( $\text{cut} \{A\} (P \langle p \rangle Q))$ 
1063
1064  A canonical cut ( $x : A$ )( $P | Q$ ) has one of these forms:
1065  •  $P$  is a link (cc-link), or
1066  •  $P$  performs an output on  $x$  and  $Q$  performs an input on  $x$  (cc-redex), or
1067  •  $P$  operates on a channel other than  $x$  and is not a server (cc-delayed), or
1068  • both  $P$  and  $Q$  are servers and  $P$  operates on a channel other than  $x$  (cc-servers).
1069
1070  We have to distinguish servers from the other input operations because the struc-
1071 tural pre-congruence rule [s-SERVER] can only be applied when the two sub-processes
1072 of a cut are both servers.
1073  Every cut ( $x : A$ )( $P | Q$ ) where both  $P$  and  $Q$  are threads can be rewritten into a
1074 canonical cut using structural pre-congruence:
1075
1076  canonical-cut :  $\forall \{A \Gamma \Gamma_1 \Gamma_2 P Q\} (p : \Gamma \simeq \Gamma_1 + \Gamma_2) \rightarrow$ 
1077      Thread  $P \rightarrow \text{Thread} Q \rightarrow$ 
1078       $\exists [R] \text{CanonicalCut} R \times \text{cut} \{A\} (P \langle p \rangle Q) \sqsupseteq R$ 
1079
1080  It is easy to prove that every canonical cut is alive, either reducing it or applying
1081 structural pre-congruence to rewrite it into a thread.
1082
1083  canonical-cut-alive :  $\forall \{\Gamma\} \{C : \text{Proc } \Gamma\} \rightarrow \text{CanonicalCut} C \rightarrow \text{Alive} C$ 
1084
1085  Now deadlock freedom for  $P$  can be proved by induction on  $P$ .
1086
1087  deadlock-freedom :  $\forall \{\Gamma\} (P : \text{Proc } \Gamma) \rightarrow \text{Alive} P$ 
1088
1089  When  $P$  is a thread, then it is obviously observable and hence alive. When  $P$ 
1090 is a cut ( $x : A$ )( $P | Q$ ), deadlock-freedom is applied recursively to  $P$  and to  $Q$ , in
1091 turn. If either of these applications yields a reduction, then the whole cut is reducible
1092 and therefore alive. If both applications yield a thread, then we conclude that the
1093 cut is alive first rewriting it into a canonical cut with canonical-cut and then using
1094 canonical-cut-alive.
1095
1096 3.8 Type Safety
1097  We have seen that type safety is a simple instance of deadlock freedom, which is
1098 made even simpler to formalise in our development where processes are intrinsically
1099 typed. We start by defining reduction contexts as processes with a single hole. In our
1100 intrinsically-typed formalisation, reduction contexts are parameterised by the typing
1101 context  $\Delta$  of the hole, which is invariant, and indexed by the typing context  $\Gamma$  of the
1102 whole reduction context:
1103
1104

```

```

data ReductionContext ( $\Delta$  : Context) : Context  $\rightarrow$  Set where
  hole : ReductionContext  $\Delta$   $\Delta$ 
  cut-l :  $\forall\{A\} \rightarrow \forall[(A :: \_) \vdash \text{ReductionContext } \Delta] * ((\text{dual } A :: \_) \vdash \text{Proc}) \Rightarrow$ 
    ReductionContext  $\Delta$  ]
  cut-r :  $\forall\{A\} \rightarrow \forall[((A :: \_) \vdash \text{Proc}) * ((\text{dual } A :: \_) \vdash \text{ReductionContext } \Delta) \Rightarrow$ 
    ReductionContext  $\Delta$  ]

```

The constructor `hole` builds a hole, as the name implies. The constructors `cut-l` and `cut-r` build reduction contexts where the hole is found in the left (respectively, right) sub-term of a cut, as per the grammar of reduction contexts given in Section 2.5.

Substitution inside a reduction context \mathcal{C} is a straightforward function $\llbracket _ \rrbracket$ that operates recursively on the structure of \mathcal{C} :

```

 $\llbracket \_ \rrbracket : \forall\{\Gamma \Delta\} \rightarrow \text{ReductionContext } \Delta \Gamma \rightarrow \text{Proc } \Delta \rightarrow \text{Proc } \Gamma$ 
  hole  $\llbracket P \rrbracket = P$ 
  cut-l  $(\mathcal{C} \langle p \rangle Q) \llbracket P \rrbracket = \text{cut } ((\mathcal{C} \llbracket P \rrbracket) \langle p \rangle Q)$ 
  cut-r  $(Q \langle p \rangle \mathcal{C}) \llbracket P \rrbracket = \text{cut } (Q \langle p \rangle (\mathcal{C} \llbracket P \rrbracket))$ 

```

This notion of process substitution preserves typing by construction thanks to the fact that both processes and reduction contexts are intrinsically typed.

A process P is well formed if every unguarded sub-process Q in it is alive.

```

WellFormed :  $\forall\{\Gamma\} \rightarrow \text{Proc } \Gamma \rightarrow \text{Set}$ 
WellFormed  $\{\Gamma\} P = \forall\{\Delta\} \{\mathcal{C} : \text{ReductionContext } \Delta \Gamma\} \{Q : \text{Proc } \Delta\} \rightarrow$ 
   $P \sqsupseteq (\mathcal{C} \llbracket Q \rrbracket) \rightarrow \text{Alive } Q$ 

```

The proof of type safety ends up being a trivial application of `deadlock-freedom`. No work is needed to deduce that the process Q in the hole of a reduction context is well typed because structural pre-congruence preserves typing by definition.

```

type-safety :  $\forall\{\Gamma\} (P : \text{Proc } \Gamma) \rightarrow \text{WellFormed } P$ 
type-safety  $P \{ \_ \} \{ \_ \} \{ Q \} \_ = \text{deadlock-freedom } Q$ 

```

3.9 Examples

In this section we revisit and expand the processes discussed in Examples 2.1 and 2.3 and show their encoding in our formalisation. The encoding of \mathbb{B} is straightforward

```

 $\mathbb{B} : \text{Type}$ 
 $\mathbb{B} = \mathbf{1} \oplus \mathbf{1}$ 

```

and the boolean constants are encoded thus:

```

True : Proc [  $\mathbb{B}$  ]
True = select (ch <  $\gg$  inj1 (close ch))

```

```

1151
1152  False : Proc [ B ]
1153  False = select (ch < >) inj2 (close ch)
1154
1155  We take advantage of the host language for programming higher-order processes.
1156  For example, we can define a conditional process thus:
1157
1158  If_Else : ∀[ Proc ⇒ Proc ⇒ (dual B ::_) ⊢ Proc ]
1159  If P Else Q = curry* case ch (< >) ( wait (ch < >) P)
1160                                , wait (ch < >) Q)
1161
1162  A term If P Else Q is a process that waits for a boolean value (cf. the dual B type at
1163 the front of its typing context) and continues as either P or Q depending on whether
1164 it receives true or false. We use curry* (defined in Section 3.2) to curry the constructor
1165 case so that we can supply its arguments one by one saving a few parentheses and
1166 reducing clutter (more on this in Remark 3.1 at the end of this section).
1167  Next we define a process Drop P that consumes a boolean and continues as P
1168 regardless of its value.
1169
1170  Drop : ∀[ Proc ⇒ (dual B ::_) ⊢ Proc ]
1171  Drop P = If P Else P
1172
1173  Using these higher-order forms, it is easy to define the usual boolean connectives.
1174
1175  !! : Proc [ B ] → Proc [ B ]
1176  !! B = curry* cut B >> (If False Else True)
1177
1178  _&&_ _||_ : Proc [ B ] → Proc [ B ] → Proc [ B ]
1179  A && B = curry* cut A >> $
1180          curry* cut B >> $
1181          If curry* link ch (< >) ch Else (Drop False)
1182  A || B = !! (!! A && !! B)
1183
1184  The function $ (defined in Agda's standard library) is just a low-precedence, vis-
1185 ible function application operator. We use it as a separator to flatten deeply nested
1186  expressions and save a bunch of parentheses. For the sake of illustration, we have
1187  chosen to define the disjunction || from the conjunction && and negation !! using De
1188  Morgan's laws.
1189  To test our definitions, we implement a simple evaluator using the deadlock free-
1190  dom property. We have not proved a termination result, but since linear logic enjoys
1191  cut elimination we can safely annotate the evaluator as terminating.
1192
1193  {-# TERMINATING #-}
1194  eval : ∀[ Proc ⇒ Proc ]
1195  eval P with deadlock-freedom P
1196

```

```

... | inj1 (Q , _ , _) = Q
... | inj2 (Q , _)      = eval Q

```

Now if we ask Agda to normalise the goal eval (False || False) we obtain
`select (ch < • > inj2 (close ch))`, that is the definition of False, as expected.

For the encoding of the polymorphic echo server (Example 2.3), we start by
encoding its type !($\forall X. X^\perp \wp (X \otimes \mathbf{1})$):

```

ServerT : Type
ServerT = '! (‘ $\forall$  (rav (# 0)  $\wp$  (var (# 0)  $\otimes$  1)))’

```

The notation `# n` (defined in Agda’s standard library) creates an element of `Fin`
from the natural number n . Here it is used to create the de Bruijn index of the type
variable X . We now encode the server

```

Server : Proc [ ServerT ]
Server = curry (curry* server ch (< >)) un-[] $
  curry* all ch (< >)  $\lambda X \rightarrow$ 
  curry* join ch (< >) $
  curry* (curry* fork ch (< >)) (curry* link ch (< > •) ch) (< >) $
  close ch

```

and the client that sends true to it

```

Client : Proc (dual ServerT :: B :: [])
Client = curry* client ch (< >) $
  curry* (ex {_} {B}) ch (< >) $
  curry* (curry* fork ch (< >)) True  $\gg$  $
  curry* join ch (< >) $
  curry* wait ch (< >) $
  curry* link ch (< > •) ch

```

To test our definitions, we compose client and server in parallel

```

Main : Proc [ B ]
Main = curry* cut Client (< •) Server

```

and then ask Agda to normalize `Main`, which yields `True` as expected.

Remark 3.1. Writing processes in Agda would be more pleasant if the constructors of
the data type `Proc` were naturally curried, instead of currying them on demand with
`curry*` as we do here. Below is the naturally curried constructor `fork` of a hypothetical
data type `Proc'`, obtained by expanding the definition of separating conjunction:

```

fork :  $\forall \{A B \Gamma \Delta \Theta \Theta_1 \Theta_2\} \rightarrow \mathbf{Ch} (A \otimes B) \Delta \rightarrow \Gamma \simeq \Delta + \Theta \rightarrow$ 
      Proc' (A ::  $\Theta_1$ )  $\rightarrow$   $\Theta \simeq \Theta_1 + \Theta_2 \rightarrow \mathbf{Proc}' (B :: \Theta_2) \rightarrow \mathbf{Proc}' (A \otimes B :: \Gamma)$ 

```

1243 This version of `fork` is fully curried, but also less readable than the one we gave
1244 in Section 3.4 because of the (now visible) context splittings. We can recover some
1245 clarity and still obtain a curried version of `fork` using (literally) the magic wand:

1246
1247 `fork` : $\forall\{A\ B\} \rightarrow$
1248 $\forall[\text{Ch}(A \otimes B) \Rightarrow (A :: _) \vdash \text{Proc}'' \rightarrow (B :: _) \vdash \text{Proc}'' \rightarrow \text{Proc}'']$
1249

1250 However, the first arrow must be a plain implication \Rightarrow and not a magic wand to
1251 account for the appropriate amount of context splittings. We found this formulation
1252 of the constructors harder to explain and motivate in Section 3.4. Since none of the
1253 alternative definitions of `Proc` was fully satisfactory, we preferred the most elegant
1254 version of the data type at the expense of additional clutter in this section. \square

1255

1256 4 Related Work

1257

1258 We have compared our formalisation with others of typed calculi that support binary
1259 sessions either natively or through their encoding using continuations [9, 28].

1260 Goto et al. [14] describe the formalisation of a session-based variant of the π -
1261 calculus which supports channel polymorphism. This is the oldest formalisation of a
1262 session-based calculus for which we were able to retrieve the source code (the work of
1263 Gay [29] predates this one, but its source code is not publicly available any more).

1264 Thiemann [15] formalises a subset of GV [30], a functional language extended with
1265 session communication primitives, along with an interpreter. Ciccone and Padovani
1266 [17] have taken inspiration from his work to formalise a variant of the linear π -
1267 calculus [28] that supports dependent types, so as to enable the description of
1268 communication protocols whose structure may depend on the content of messages.

1269 Castro-Perez et al. [16] describe EMTST, a library for the formalisation of session
1270 type systems that includes as case studies the session calculus of Honda et al. [3]
1271 (called ‘‘original system’’) and a revised version of it that is more amenable to be
1272 formalised using a locally nameless representation of channels.

1273 Rouvoet et al. [18] present a library of abstractions inspired to separation logic
1274 aiding the formalisation of interpreters for languages with linear resources. One of the
1275 presented case studies is the formalisation of a fragment of GV [11, 30]. Unlike the
1276 other formalisations we are discussing, Rouvoet et al. [18] do not define a small-step
1277 semantics for GV but their formalisation is intrinsically typed, hence the interpreter
1278 preserves proves a form of subject reduction property. The separating conjunction
1279 defined in Section 3.2 and the typing of the constructors for the representation of
1280 processes in Section 3.4 have been adapted from this work of Rouvoet et al. [18].

1281 Jacobs et al. [19] formalise a library of *connectivity graphs* for reasoning on and
1282 enforcing deadlock freedom in a variant of GV [11, 30]. This is the first formalisation
1283 of deadlock freedom for a calculus of sessions.

1284 All the formalisations mentioned so far make use of context splitting. In contrast,
1285 Zalakain and Dardha [6] formalise a generalisation of the linear π -calculus which is
1286 parametric in a *usage algebra* (to account for channel sharing/linearity) and that is
1287 based on *leftover typing* [31]. Typing judgments have the form $\Gamma \vdash P \triangleright \Delta$ so that a
1288 process P is typed with respect to an input context Γ , which describes all the available

channels, and a context of leftovers Δ , which describes the residual channels not consumed by the process. In this way, it is possible to “concatenate” typing judgments by matching the leftovers in one judgment with the input context of the subsequent one, with no need for splitting. As Zalakain and Dardha [6] nicely summarise, context splittings are not necessary because they “contain usage information that is already present in processes.” This is true provided that channels are named (Zalakain and Dardha [6] use de Bruijn indices to this aim). In fact, the co-de Bruijn representation of processes [27], whereby channels are nameless and context splitting is performed eagerly, can be seen as the “dual approach” of leftover typing: channel names provide information that is already present in their (singleton) typing context, hence they can be omitted from contexts and processes.

Motivated by the technical difficulties arising from context splittings, Sano et al. [7] define a structural version of CP using an approach based on *linearity predicates*. The key idea is to treat typing contexts structurally and to enforce the linear usage of channels by checking their syntactical occurrence in processes. Interestingly, this approach relies on the *explicit naming of continuations* so as to precisely account for the number of times a channel is actually used. Sano et al. [7] do not connect their technique with the continuation-passing encoding of binary sessions [9, 10], but the analogies are evident even though the role of continuations differs.

Zackon et al. [8] describe a typing context management technique where channels are associated not just with a type but also with a *tag*, that is an element of a given resource algebra that summarises the number of allowed usages of a particular channel, including the possibility that the channel is not available. This approach streamlines context splitting since contexts can be treated in an essentially structural way, except for tags which are conveniently combined using operations from the resource algebra.

Table 5 shows an overview of the aforementioned formalisations (sorted by publication date) including our own. The first five columns identify the calculus being formalised. We provide its reference paper, the prover in which it is formalised and an acronym that gives an idea of the flavour of the calculus. We also specify whether the calculus features *cuts* (that is, the combination of restriction and parallel composition corresponding to the cut of linear logic) and continuations. CP [5, 11] and GV [11, 30] are well-known acronyms in the literature on session types. $S\pi$ refers to (variants of) the session-based π -calculus presented by Honda et al. [3] while $L\pi$ refers to (variants of) the linear π -calculus [28]. Finally, SCP is the structural version of CP introduced by Sano et al. [7] and LCC is our calculus. We emphasize that the actual calculus being formalised usually differs from (typically, is a strict subset of) the one identified by the acronym and that the same acronym may sometimes refer to different versions of the same calculus. In particular, GV in a logical setting is described by Wadler [11] but its first (non-logical) version is due to Gay and Vasconcelos [30].

Concerning the use of continuations, the approaches based directly on the linear π -calculus (into which sessions can be encoded) are marked with $+$ and those based on a calculus with native sessions are marked with $-$. The calculus SCP is marked with \pm because, while not directly inspired to the linear π -calculus, it makes use of explicit continuations for defining the predicates that check the linear usage of channels. Finally, all the approaches based on GV are also marked with \pm . Officially,

1335 **Table 5** Overview of different formalisations of binary session calculi (sizes in kb).

1336 Reference paper	1337 Prover	1338 Calculus	1339 Cuts	1340 Continuations	1341 Linearity	1342 Channels	Intrinsically typed	1343 Subject reduction	1344 Library	1345 Deadlock freedom	1346 Library	1347 Total size
1342 Goto et al. [14]	1343 Coq	1344 $S\pi$	1345 –	1346 –	1347 splits	1348 loc. nameless	1349 –	1350 543	1351 –	1352 –	1353 –	1354 543^a
1343 Thiemann [15]	1344 Agda	1345 GV	1346 –	1347 \pm	1348 splits	1349 co-de Bruijn	1350 +	1351 177	1352 –	1353 –	1354 –	1355 177^b
1344 Rouvoet et al. [18]	1345 Agda	1346 GV	1347 –	1348 \pm	1349 splits	1350 co-de Bruijn	1351 +	1352 27	1353 55	1354 –	1355 –	1356 82^c
1345 Castro-Perez et al. [16]	1346 Coq	1347 $S\pi$	1348 –	1349 –	1350 splits	1351 loc. nameless	1352 –	1353 204	1354 –	1355 –	1356 –	1357 204^d
1346 Ciccone and Padovani [17]	1347 Agda	1348 $L\pi$	1349 –	1350 +	1351 splits	1352 co-de Bruijn	1353 +	1354 77	1355 –	1356 –	1357 –	1358 77^e
1346 Zalakain and Dardha [6]	1347 Agda	1348 $L\pi$	1349 –	1350 +	1351 leftovers	1352 de Bruijn	1353 –	1354 82	1355 8	1356 –	1357 –	1358 90^f
1347 Jacobs et al. [19]	1348 Coq	1349 GV	1350 +	1351 \pm	1352 splits	1353 named	1354 –	1355 68	1356 –	1357 25	1358 171	1359 264^g
1348 Sano et al. [7]	1349 Beluga	1350 SCP	1351 +	1352 \pm	1353 predicates	1354 HOAS	1355 –	1356 35	1357 –	1358 –	1359 –	1360 35^h
1349 Zackon et al. [8]	1350 Beluga	1351 CP	1352 +	1353 –	1354 tags	1355 HOAS	1356 –	1357 56	1358 73	1359 –	1360 –	1361 129^h
1350 this	1351 Agda	1352 LCC	1353 +	1354 +	1355 splits	1356 co-de Bruijn	1357 +	1358 21	1359 –	1360 15	1361 –	1362 36ⁱ

1351 ^aIncludes shared and polymorphic channels. Excluded safety results.

1352 ^bIncludes shared channels, recursive types, subtyping and the interpreter.

1353 ^cIncludes type-preserving evaluator and library for proof-relevant separation algebra.

1354 ^dIncludes shared channels. Excluded original syntax.

1355 ^eIncludes shared channels, recursive and dependent session types.

1356 ^fIncludes shared channels and the library for the algebra of types.

1357 ^gIncludes deadlock freedom and the library for connectivity graphs.

1358 ^hExcluded correspondence between CP and SCP .

1359 ⁱIncludes shared, polymorphic channels and deadlock freedom. Excluded safety results.

1360 *none* of these calculi makes use of continuations, but GV is designed in such a way
1361 that each operation acting on a channel s is a function that returns the result of
1362 the operation (if present) *along with the same channel s* . In this way, the type of s
1363 can be conveniently “updated” to take into account the effect of the operation. As
1364 observed by Padovani [32], this semantics of the communication primitives is virtually
1365 indistinguishable from one making use of explicit continuation channels.

1366 The three middle columns of Table 5 report the relevant qualitative aspects of
1367 the formalisations, namely the management of typing contexts, the representation of
1368 channels and whether processes are intrinsically or extrinsically typed.

1369 The rightmost columns report the size (in kilobytes) of the formalisations as rough
1370 (and possibly questionable) estimates of their complexity. Papers describing formal-
1371 isations typically report the “lines of code” as a measure of development effort, but
1372 the number of lines may be affected by code indentation styles and syntactical con-
1373 straints of the proof assistant being used. For this reason, we have preferred to count
1374 the total number of characters after comments have been removed and spaces have
1375 been squeezed.² The reported sizes account for the source code of the formalisations
1376 excluding examples and any safety result, if present. We have excluded safety results
1377 because their meaning varies widely across the formalisations and, except for our
1378

1379 ²Sequences of two or more consecutive space-like characters are collapsed into a single space. The
1380 squeezing is obtained by running the command `tr -s [:space:]` file on Unix-like systems.

own, they all differ from the one stated in the linearity challenge [1]. Some formalisations [6, 8, 18, 19] define <i>libraries</i> which can be reused in different contexts. In these cases, the size of the library is reported separately next to the size of the part of the development that uses it.	1381
	1382
	1383
	1384
	1385
In general, it is difficult to draw firm conclusions on the effectiveness of the various approaches in addressing the linearity challenge because the formalisations differ widely for a variety of entangled factors. Looking at the available data, we can make the following observations. The adoption of context splitting, which is very well represented, does not seem to be a good indicator of the complexity of the formalisation. Indeed, the formalisations based on context splitting span the whole range of sizes, from the largest by Goto et al. [14] (543kb) to our own (21kb, without the proof of deadlock freedom) which is also the only one supporting all the features of CP.	1386
	1387
	1388
	1389
	1390
	1391
	1392
	1393
The two largest formalisations [14, 16] are also the ones that adopt a locally nameless representation of channels. In these formalisations channels are represented in two different ways, depending on whether they are free or bound. This entails some duplication of effort as well as some transformation machinery between the two representations. Other channel representations are not strong complexity indicators. Note that the adoption of co-de Bruijn syntax implies the use of context splitting, hence the two aspects are not completely independent.	1394
	1395
	1396
	1397
	1398
	1399
	1400
There is no strong evidence that the intrinsically typed representation of processes reduces the size of the formalisation. As observed in Section 3.4, this choice helps reducing the overall number of datatypes to be defined and makes some results trivial (e.g. Theorem 2.3 formalised by type-safety), but the definitions are also more involved because they incorporate invariants and bits of the proofs of typing preservation. We speculate that the effort for representing processes, types and typing rules is not substantially impacted overall, but the data types for representing syntax and semantics of untyped processes in extrinsically-typed representations are certainly more readable.	1401
	1402
	1403
	1404
	1405
	1406
	1407
	1408
	1409
Using the cut in the style of linear logic instead of separate restriction and parallel composition simplifies the representation of channels (or session endpoints). All the formalisations of calculi that adopt the cut tend to be small (if we exclude the libraries), but this is not a general rule.	1410
	1411
	1412
	1413
Finally, it appears that the use of (explicit) continuations is related to the complexity of the formalisation more than anything else. Indeed, the six smallest formalisations (excluding the deadlock freedom results) – with an average size of around 62kb – are all based on continuations, no matter if they are explicit (L π , SCP, LCC) or “virtual” (GV), while the remaining ones are 263kb on average. At the very least, the use of continuations enables a cleaner management of typing contexts since linear channels are true “use-once” resources and there is no need to update their type.	1414
	1415
	1416
	1417
	1418
	1419
	1420
	1421
	1422
	1423
We have presented a formalisation of LCC, a linear calculus of continuations closely related to the linear π -calculus [28] and supported by the same type system of CP [11].	1424
	1425
	1426

1427 Binary sessions can be modeled in LCC using the continuation-passing encoding
1428 described by Kobayashi [9, extended version] and Dardha et al. [10].

1429 The linear calculus of continuations and the calculus described in the linearity
1430 challenge [1] are incomparable in terms of expressiveness. On the one hand, the chal-
1431 lenge only considers a minimal calculus of first-order, monomorphic sessions while
1432 LCC supports linear, shared, higher-order, polymorphic channels; on the other hand,
1433 the calculus of the challenge allows the modeling of sequential processes owning both
1434 endpoints of a session and in general of cyclic network topologies, none of which can
1435 be modeled in LCC because of its tight correspondence with linear logic. We think
1436 that LCC deserves its own space in the context of the linearity challenge alongside
1437 with (but not in substitution of) more traditional session calculi.

1438 Considering the richness of LCC in terms of features and proved properties, the
1439 simple formalisation of LCC casts some doubts on the actual role of context splitting
1440 as a source of complexity. We perceive more tangible benefits from the adoption of
1441 a calculus with explicit continuations where channels are linear in a literal sense. In
1442 this respect, we find it intriguing that, among the alternative approaches that have
1443 been proposed to overcome the difficulties of context splitting, the one by Sano et al.
1444 [7] makes key use of explicit continuations.

1445 The compact formalisation of LCC is a good starting point for further develop-
1446 ments. We have already extended LCC with support for coinductive (i.e. possibly
1447 infinite) types and recursive processes (this extension is in LCC’s public reposi-
1448 tory [20]). In the future, it would be interesting to formalise the strong normalisation
1449 property of LCC as a consequence of cut elimination of classical linear logic.

1450 In this work we have focused on models of *binary sessions* (those connecting exactly
1451 two processes), but there are also formalisations of *multiparty sessions*, notably those
1452 by Jacobs et al. [33] and Tirore et al. [34], which can be significantly more complex
1453 than those of binary sessions. The formalisation by Jacobs et al. [33] amounts to 173kb
1454 and the one by Tirore et al. [34] to more than 1Mb of Coq code. Also in these cases,
1455 the formalisation based on (virtual) continuations [33] happens to be substantially
1456 smaller. Whether this is a coincidence or further evidence of the effectiveness of the
1457 continuation-based approaches is left for future investigations.

1458

1459 **Declarations**

1460

1461 **Funding**

1462

1463 No funding was received for conducting this study.

1464

1465 **Author Contributions**

1466 C.R. developed the initial Agda formalisation and reviewed the existing related work.

1467 L.P. refined and extended the formalisation and wrote the main manuscript text. All
1468 authors reviewed the manuscript.

1469

1470

1471

1472

References	1473
[1] Carbone, M., Castro-Perez, D., Ferreira, F., Gheri, L., Jacobsen, F.K., Momigliano, A., Padovani, L., Scalas, A., Tirore, D.L., Vassor, M., Yoshida, N., Zackon, D.: The concurrent calculi formalisation benchmark. In: Castellani, I., Tiezzi, F. (eds.) <i>Coordination Models and Languages - 26th IFIP WG 6.1 International Conference, COORDINATION 2024, Held as Part of the 19th International Federated Conference on Distributed Computing Techniques, DisCoTec 2024, Groningen, The Netherlands, June 17-21, 2024, Proceedings. Lecture Notes in Computer Science</i> , vol. 14676, pp. 149–158. Springer, Germany (2024). https://doi.org/10.1007/978-3-031-62697-5_9	1474
[2] Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) <i>CONCUR '93, 4th International Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings. Lecture Notes in Computer Science</i> , vol. 715, pp. 509–523. Springer, Germany (1993). https://doi.org/10.1007/3-540-57208-2_35	1475
[3] Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for structured communication-based programming. In: Hankin, C. (ed.) <i>Programming Languages and Systems - ESOP'98, 7th European Symposium on Programming, Held as Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS'98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. Lecture Notes in Computer Science</i> , vol. 1381, pp. 122–138. Springer, Germany (1998). https://doi.org/10.1007/BF0053567	1476
[4] Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P., Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.: Foundations of session types and behavioural contracts. <i>ACM Comput. Surv.</i> 49 (1), 3–1336 (2016) https://doi.org/10.1145/2873052	1477
[5] Gay, S.J., Vasconcelos, V.T.: <i>Session Types</i> . Cambridge University Press, Cambridge, UK (2025). https://doi.org/10.1017/9781009000062	1478
[6] Zalakain, U., Dardha, O.: π with leftovers: A mechanisation in agda. In: Peters, K., Willemse, T.A.C. (eds.) <i>Formal Techniques for Distributed Objects, Components, and Systems - 41st IFIP WG 6.1 International Conference, FORTE 2021, Held as Part of the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings. Lecture Notes in Computer Science</i> , vol. 12719, pp. 157–174. Springer, Germany (2021). https://doi.org/10.1007/978-3-030-78089-0_9	1479
[7] Sano, C., Kavanagh, R., Pientka, B.: Mechanizing session-types using a structural view: Enforcing linearity without linearity. <i>Proc. ACM Program. Lang.</i> 7 (OOPSLA2), 374–399 (2023) https://doi.org/10.1145/3622810	1480
[8] Zackon, D., Sano, C., Momigliano, A., Pientka, B.: Split decisions: Explicit contexts for substructural languages. In: Stark, K., Timany, A., Blazy, S., Tabareau, N., Yoshida, N. (eds.) <i>Formal Techniques for Distributed Objects, Components, and Systems - 42nd IFIP WG 6.1 International Conference, FORTE 2022, Held as Part of the 17th International Federated Conference on Distributed Computing Techniques, DisCoTec 2022, Valletta, Malta, June 12-16, 2022, Proceedings. Lecture Notes in Computer Science</i> , vol. 13929, pp. 151–170. Springer, Germany (2022). https://doi.org/10.1007/978-3-031-12700-9_9	1481
	1482
	1483
	1484
	1485
	1486
	1487
	1488
	1489
	1490
	1491
	1492
	1493
	1494
	1495
	1496
	1497
	1498
	1499
	1500
	1501
	1502
	1503
	1504
	1505
	1506
	1507
	1508
	1509
	1510
	1511
	1512
	1513
	1514
	1515
	1516
	1517
	1518

1519 N. (eds.) Proceedings of the 14th ACM SIGPLAN International Conference on
 1520 Certified Programs and Proofs, CPP 2025, Denver, CO, USA, January 20-21,
 1521 2025, pp. 257–271. ACM, USA (2025). <https://doi.org/10.1145/3703595.3705888>

1522

1523 [9] Kobayashi, N.: Type systems for concurrent programs. In: 10th Anniversary Col-
 1524 loquium of UNU/IIST. LNCS 2757, pp. 439–453. Springer, Germany (2002).
 1525 Extended version available at <http://www.kb.ecei.tohoku.ac.jp/~koba/papers/>
 1526 [tutorial-type-extended.pdf](http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf)

1527

1528 [10] Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. *Inf. Comput.* **256**, 253–286 (2017) <https://doi.org/10.1016/j.ic.2017.06.002>

1529

1530 [11] Wadler, P.: Propositions as sessions. *J. Funct. Program.* **24**(2-3), 384–418 (2014)
 1531 <https://doi.org/10.1017/S095679681400001X>

1532

1533 [12] Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. *Acta Infor-
 1534 matica* **42**(2-3), 191–225 (2005) <https://doi.org/10.1007/S00236-005-0177-Z>

1535

1536 [13] Vasconcelos, V.T.: Fundamentals of session types. *Inf. Comput.* **217**, 52–70 (2012)
 1537 <https://doi.org/10.1016/J.IC.2012.05.002>

1538

1539 [14] Goto, M.A., Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: An extensible
 1540 approach to session polymorphism. *Math. Struct. Comput. Sci.* **26**(3), 465–509
 1541 (2016) <https://doi.org/10.1017/S0960129514000231>

1542

1543 [15] Thiemann, P.: Intrinsically-typed mechanized semantics for session types. In: Komendantskaya, E. (ed.) *Proceedings of the 21st International Symposium on Principles and Practice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019*, pp. 19–11915. ACM, USA (2019). <https://doi.org/10.1145/3354166.3354184>

1544

1545 [16] Castro-Perez, D., Ferreira, F., Yoshida, N.: EMTST: engineering the meta-theory
 1546 of session types. In: Biere, A., Parker, D. (eds.) *Tools and Algorithms for the
 1547 Construction and Analysis of Systems - 26th International Conference, TACAS
 1548 2020, Held as Part of the European Joint Conferences on Theory and Practice of
 1549 Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II.
 1550 Lecture Notes in Computer Science, vol. 12079, pp. 278–285. Springer, Germany
 1551 (2020). https://doi.org/10.1007/978-3-030-45237-7_17*

1552

1553 [17] Ciccone, L., Padovani, L.: A dependently typed linear π -calculus in agda. In: PPDP '20: 22nd International Symposium on Principles and Practice of Declarative Programming, Bologna, Italy, 9-10 September, 2020, pp. 8–1814. ACM, USA
 1554 (2020). <https://doi.org/10.1145/3414080.3414109>

1555

1556 [18] Rouvoet, A., Poulsen, C.B., Krebbers, R., Visser, E.: Intrinsically-typed definitional
 1557 interpreters for linear, session-typed languages. In: Blanchette, J., Hritcu,
 1558 C. (eds.) *Proceedings of the 9th ACM SIGPLAN International Conference on*
 1559

1560

Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pp. 284–298. ACM, USA (2020). <https://doi.org/10.1145/3372885.3373818> 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[19] Jacobs, J., Balzer, S., Krebbers, R.: Connectivity graphs: a method for proving deadlock freedom based on separation logic. Proc. ACM Program. Lang. **6**(POPL), 1–33 (2022) <https://doi.org/10.1145/3498662> 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[20] Padovani, L., Raffaelli, C.: Agda Formalisation of the Linear Calculus of Continuations. Last access 2025-12-29 (2025). <https://github.com/boystrange/LinearityChallenge> 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[21] Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J. (ed.) Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9032, pp. 560–584. Springer, Germany (2015). https://doi.org/10.1007/978-3-662-46669-8_23 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[22] Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6269, pp. 222–236. Springer, Germany (2010). https://doi.org/10.1007/978-3-642-15375-4_16 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[23] Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types. Math. Struct. Comput. Sci. **26**(3), 367–423 (2016) <https://doi.org/10.1017/S0960129514000218> 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[24] Horne, R., Padovani, L.: A logical account of subtyping for session types. J. Log. Algebraic Methods Program. **141**, 100986 (2024) <https://doi.org/10.1016/J.JLAMP.2024.100986> 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[25] Kokke, W., Siek, J.G., Wadler, P.: Programming language foundations in agda. Sci. Comput. Program. **194**, 102440 (2020) <https://doi.org/10.1016/J.SCICO.2020.102440> 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[26] O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Log. **5**(2), 215–244 (1999) <https://doi.org/10.2307/421090> 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[27] McBride, C.: Everybody’s got to be somewhere. In: Atkey, R., Lindley, S. (eds.) Proceedings of the 7th Workshop on Mathematically Structured Functional Programming, MSFP@FSCD 2018, Oxford, UK, 8th July 2018. EPTCS, vol. 275, pp. 53–69 (2018). <https://doi.org/10.4204/EPTCS.275.6> 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

[28] Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Transactions on Programming Languages and Systems **21**(5), 914–947 (1999) 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610

1611 [29] Gay, S.J.: A framework for the formalisation of pi calculus type systems in
 1612 isabelle/hol. In: Boulton, R.J., Jackson, P.B. (eds.) Theorem Proving in Higher
 1613 Order Logics, 14th International Conference, TPHOLs 2001, Edinburgh, Scot-
 1614 land, UK, September 3-6, 2001, Proceedings. Lecture Notes in Computer Science,
 1615 vol. 2152, pp. 217–232. Springer, Germany (2001). https://doi.org/10.1007/3-540-44755-5_16

1617

1618 [30] Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous ses-
 1619 sion types. *J. Funct. Program.* **20**(1), 19–50 (2010) <https://doi.org/10.1017/S0956796809990268>

1621

1622 [31] Allais, G.: Typing with leftovers - A mechanization of intuitionistic multiplicative-
 1623 additive linear logic. In: Abel, A., Forberg, F.N., Kaposi, A. (eds.) 23rd
 1624 International Conference on Types for Proofs and Programs, TYPES 2017,
 1625 Budapest, Hungary, May 29 - June 1, 2017. LIPIcs, vol. 104, pp. 1–1122. Schloss
 1626 Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2017). <https://doi.org/10.4230/LIPICS.TYPES.2017.1>

1627

1628 [32] Padovani, L.: A simple library implementation of binary sessions. *J. Funct.*
 1629 *Program.* **27**, 4 (2017) <https://doi.org/10.1017/S0956796816000289>

1630

1631 [33] Jacobs, J., Balzer, S., Krebbers, R.: Multiparty GV: functional multiparty session
 1632 types with certified deadlock freedom. *Proc. ACM Program. Lang.* **6**(ICFP),
 1633 466–495 (2022) <https://doi.org/10.1145/3547638>

1634

1635 [34] Tirore, D.L., Bengtson, J., Carbone, M.: Multiparty asynchronous session types:
 1636 A mechanised proof of subject reduction. In: Aldrich, J., Silva, A. (eds.) 39th
 1637 European Conference on Object-Oriented Programming, ECOOP 2025, Bergen,
 1638 Norway, June 30 - July 2, 2025. LIPIcs, vol. 333, pp. 31–13130. Schloss Dagstuhl
 1639 - Leibniz-Zentrum für Informatik, Germany (2025). <https://doi.org/10.4230/LIPICS.ECOOP.2025.31>

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656